1
|
Zheng J, Wang C, Zhou X, Tang Y, Tang L, Tan Y, Zhang J, Yu H, Zhang J, Liu D. Structural and functional connectivity coupling as an imaging marker for bone metastasis pain in lung cancer patients. Brain Res Bull 2025; 221:111210. [PMID: 39832755 DOI: 10.1016/j.brainresbull.2025.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cancer pain is a common symptom in patients with malignant tumors and associated with poor prognosis and a high risk of death. Structural connectivity (SC) and functional connectivity (FC) couplings have not yet been explored in lung cancer patients with bone metastasis pain. METHODS In total, 51 patients with lung cancer without bone metastasis pain (BMP-), 52 patients with lung cancer with bone metastasis pain (BMP+), and 28 healthy controls (HC) were prospectively enrolled in our study. Firstly, SC-FC couplings were measured and analyzed at global, regional, and modular levels. Subsequently, individualized SC-FC coupling networks were constructed based on the Euclidean distance metric. In addition, the convolutional neural network (CNN) model was selected to analyze and classify three groups based on individualized networks. RESULTS The coupling analysis demonstrated that weaker SC-FC couplings related to lung cancer itself were present at various levels, including global, regional, inter-network, and intra-network couplings. Notably, hyper-couplings related to bone metastasis pain were present in several brain regions, mainly involving the default mode network, frontoparietal network, salience network, and limbic system. Significant positive correlations were observed between regional coupling in the right amygdala and the numeric rating scale scores in BMP+. Moreover, CNN model built on individualized networks exhibited relatively great classification performance. CONCLUSION Alterations in SC-FC coupling patterns may play a crucial role in the development and modulation of bone metastasis pain. Understanding these changes could provide valuable insights into the neural mechanisms underlying cancer pain.
Collapse
Affiliation(s)
- Jiahui Zheng
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Xiaoyu Zhou
- School of Medicine, Chongqing University, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Lin Tang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, China.
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, China.
| |
Collapse
|
2
|
Wu S, Jiang J, Wang D, Lin D, Lin M, Chen P, Chen J, Zhang H, Wang Y, Chen X, Zheng X. JAK/STAT3 signaling promotes pain and depression-like behaviors in rats with bone cancer pain by regulating Th17 cell differentiation. Brain Res Bull 2025; 221:111218. [PMID: 39864595 DOI: 10.1016/j.brainresbull.2025.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Pain and depression are common complications in patients with advanced cancer, which significantly affects their quality of life and survival. Dysregulation of the JAK/STAT3 pathway in the central nervous system is associated with pain and brain inflammatory disorders, but its role in bone cancer pain (BCP) remains unclear. This study aimed to investigate the specific role of the JAK/STAT3 pathway in the amygdala in BCP. METHODS A BCP rat model was established by intratibial injection of MRMT-1 carcinoma cells. Pain behavior was assessed using the mechanical withdrawal threshold, while depression-like behavior was assessed using the sucrose preference and forced swim test. Changes in inflammatory factors and related protein expression levels in the amygdala were detected using western blotting, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of intra-amygdala injections of a lentivirus targeting retinoic acid-related orphan receptor γt (RORγt) (LV-shRORγt), nifuroxazide (a STAT3 antagonist), and colivelin (a STAT3 agonist) were evaluated. RESULTS Rats with BCP demonstrated increased microglial activation in the amygdala. Rats experiencing RORγt knockout in the amygdala showed reduced microglial activation levels. Nifuroxazide reduced Th17 cell differentiation, potentially alleviating pain and depression-like behaviors. To further explore the underlying relationship between the JAK/STAT3 pathway and Th17 cells, LV-shRORγt and a STAT3 agonist were co-administered. The inhibitory effect of LV-shRORγt counteracted the STAT3 agonist's active effects. CONCLUSIONS Our study showed that targeting JAK/STAT3 signaling alleviated pain- and depression-like behaviors in rats with BCP by inhibiting Th17 cell differentiation.
Collapse
Affiliation(s)
- Shuyan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Jundan Jiang
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Danfeng Wang
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Daoyi Lin
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Mingxue Lin
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Pinzhong Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Jianghu Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Honghong Zhang
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Ying Wang
- Department of Anesthesiology, Fujian Medical University Teaching Hospital, Fujian Provincial Geriatric Hospital, Fuzhou 350003, China
| | - Xiaohui Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350000, China.
| |
Collapse
|
3
|
Hua Y, Geng Y, Liu S, Xia S, Liu Y, Cheng S, Chen C, Pang C, Zhao Z, Peng B, Dai Y, Ji J, Wu D. Identification of Specific Abnormal Brain Functional Activity and Connectivity in Cancer Pain Patients: A Preliminary Resting-State fMRI Study. J Pain Res 2024; 17:3959-3971. [PMID: 39600396 PMCID: PMC11590652 DOI: 10.2147/jpr.s470750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study investigates the differences in brain functional activity and connectivity patterns between Cancer Pain (CP) patients and Healthy Controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI) to identify potential neuroimaging biomarkers. Methods This study collected rs-fMRI data from 25 CP patients and 25 hCs, processed the functional MRI images, and calculated metrics such as amplitude of low-frequency fluctuation (ALFF), Regional Homogeneity (ReHo), and FC. Through statistical analysis, differences in brain functional activity and connectivity between the cancer pain group and the healthy control group were investigated, followed by machine learning classification. Results The results showed that compared to the normal group, reductions in the ALFF were primarily observed in the bilateral inferior temporal gyrus; ReHo increased in the right middle temporal gyrus and decreased in the left cerebellum Crus2. Using the statistically different brain areas as seed points to construct FC networks and performing statistical analysis, it was found that the regions with decreased FC connection strength between the cancer pain group and the normal group were mainly in the prefrontal cortex (PFC), the postcentral gyrus of the parietal lobe, and the cerebellum. Statistical results indicated that there was no significant correlation between pain scores (Numeric Rating Scale, NRS) and neuroimaging metrics. According to the machine learning classification, the FC features of the right precentral gyrus achieved higher diagnostic efficacy (AUC = 0.804) compared to ALFF and ReHo in distinguishing between CP patients and HCs. Conclusion Brain activity and FC in CP patients show abnormalities in regions such as the inferior temporal gyrus, middle temporal gyrus, prefrontal cortex, parietal lobe, and cerebellum. These areas may be interconnected through neural networks and jointly participate in functions related to pain perception, emotion regulation, cognitive processing, and motor control. However, the precise connections and mechanisms of action require further research.
Collapse
Affiliation(s)
- Yingjie Hua
- Department of Pain Medicine, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Yongkang Geng
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, People’s Republic of China
| | - Surui Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Shuiwei Xia
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Sufang Cheng
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Chunmiao Chen
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Chunying Pang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, People’s Republic of China
| | - Zhongwei Zhao
- Department of Pain Medicine, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Bo Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, People’s Republic of China
| | - Jiansong Ji
- Department of Radiology, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| | - Dan Wu
- Department of Pain Medicine, Zhejiang Key Laboratory of Imaging and Interventional Medicine. The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
5
|
Sulistio M, Ling N, Finkelstein T, Tee HJ, Gorelik A, Kissane D, Michael N. The Edmonton Classification System for Cancer Pain in Patients with Bone Metastasis: a descriptive cohort study. Support Care Cancer 2023; 31:305. [PMID: 37106261 PMCID: PMC10140090 DOI: 10.1007/s00520-023-07711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE We describe the prevalence of the Edmonton Classification System for Cancer Pain (ECS-CP) features in patients with bone metastasis and cancer-induced bone pain (CIBP) and the relationship between ECS-CP features, pain intensity, and opioid consumption. METHODS We assessed ECS-CP features and recoded pain mechanisms and opioid use in adult patients with bone metastasis. Validated measures were used to assess pain intensity, incident pain, psychological distress, addictive behavior, and cognition. RESULTS Among 147 eligible patients, 95.2% completed the assessment. Mean participant age was 73.2 years, the majority female (52.1%) with breast cancer occurring most commonly (25.7%). One or more ECS-CP features were present in 96.4% and CIBP in 75.7% of patients. The median average and worst pain scores were 3 and 6, respectively. Neuropathic pain was the most prevalent pain mechanism (45.0%) and was associated with breakthrough pain frequency (p=0.014). Three-quarters had incident pain, which was strongly associated with a higher average and worst pain scores (3.5 and 7, p<0.001 for both), background oral morphine equivalent daily dose (26.7mg, p=0.005), and frequency of daily breakthrough analgesia (1.7 doses/day, p=0.007). Psychological distress (n=90, 64.3%) was associated with a significantly higher average pain score (4, p=0.009) and a slightly higher worst pain score (7, p=0.054). Addictive behaviour and cognitive dysfunction were relatively uncommon (18.6% and 12.9%, respectively). CONCLUSION There is a need to promote standardized assessment and classification of pain syndromes such as CIBP. The ECS-CP may allow us to consider CIBP in a systematic manner and develop personalized pain interventions appropriate to the pain profile. TRIAL REGISTRATION Retrospectively registered in ANZCTR ACTRN12622000853741 (16/06/2022).
Collapse
Affiliation(s)
- Merlina Sulistio
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia.
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia.
| | - Natalie Ling
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tara Finkelstein
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Hoong Jiun Tee
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
| | - Alexandra Gorelik
- Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology, Cabrini Health, Malvern, VIC, Australia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine (RMH), University of Melbourne, Melbourne, VIC, Australia
| | - David Kissane
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
- Sacred Heart Health Service, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Natasha Michael
- Supportive, Psychosocial and Palliative Care Research Department, Cabrini Health, 181-183 Wattletree Rd, Mlavern, VIC, 3144, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Li X, Zhang K, Xu D, Xu Y. The effect of Orem's nursing theory on the pain levels, self-care abilities, psychological statuses, and quality of life of bone cancer patients. Am J Transl Res 2023; 15:1438-1445. [PMID: 36915789 PMCID: PMC10006768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 03/16/2023]
Abstract
OBJECTIVE This study aims to explore the impact of Orem-based nursing intervention on the pain levels, self-care abilities, psychological statuses, and quality of life in bone cancer patients. METHODS A total of 91 patients with primary bone cancer admitted to our hospital from January 2019 to January 2020 were randomly placed into one of two groups. The patients in the control group (n=43) underwent routine nursing care, and the patients in the experimental group (n=48) underwent Orem-based nursing care during the perioperative period. The two groups were compared in terms of their postoperative recovery times and treatment effects, and their adverse emotion scores, pain levels, self-care abilities, and quality of life before and after intervention. RESULTS The treatment efficacy in the two groups was similar, but the postoperative recovery times in the experimental group were shorter than they were in the control group (P < 0.05). Compared with before the intervention, the SDS, SAS, and VAS scores were significantly decreased in both groups (P < 0.05), and their self-care abilities and quality of life were significantly higher (P < 0.05) after intervention. CONCLUSION Orem-based nursing combined with perioperative care can mobilize patients' initiative, significantly improve patients' adverse emotions and pain levels, shorten their postoperative recovery times, and help improve their self-care abilities and quality of life.
Collapse
Affiliation(s)
- Xia Li
- Department of Critical Care Medicine, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| | - Kaiya Zhang
- Department of Critical Care Medicine, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| | - Duoduo Xu
- Department of Urology Surgery/ENT/Anorectal, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| | - Yaoyao Xu
- Department of Critical Care Medicine, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine Wenzhou 325000, Zhejiang, China
| |
Collapse
|
7
|
Zhou X, Tan Y, Chen J, Wang C, Tang Y, Liu J, Lan X, Yu H, Lai Y, Hu Y, Zhang J, Cao Y, Liu D, Zhang J. Altered Functional Connectivity in Pain-Related Brain Regions and Its Correlation with Pain Duration in Bone Metastasis with Cancer Pain. DISEASE MARKERS 2022; 2022:3044186. [PMID: 36072897 PMCID: PMC9441405 DOI: 10.1155/2022/3044186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
Bone metastatic pain is thought to be a severe type of cancer pain that has refractory characteristics and a long duration. This study is aimed at exploring the brain functional connectivity (FC) pattern in lung cancer patients with bone metastatic pain. In this study, 27 lung cancer patients with bone metastatic pain (CP+), 27 matched lung cancer patients without pain-related complaints (CP-), and 27 matched healthy controls (HC) were recruited. All participants underwent fMRI data acquisition and clinical assessments. One-way ANOVA or a Mann-Whitney U test was applied to compare clinical data according to data distribution. Seventeen hypothesis-driven pain-related brain regions were selected as regions of interest (ROIs). FC values among pain-related brain regions across the three groups were computed by using ROI-ROI functional connectivity analysis. ANCOVA with a post hoc test was applied to compare FC differences among the three groups. p < 0.05 indicated statistical significance. Correlation analysis was conducted to explore the potential relationship between the FC values and clinical characteristics. Except for years of education, no significant differences were revealed among the three groups in age, gender, or neuropsychological assessment. In the CP+ group, FC alterations were mainly concentrated in the dorsal lateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), secondary somatosensory cortex (SII), and amygdala compared to the CP- group. Among these brain regions with statistical differences, FC between the right DLPFC and the right ACC showed a positive correlation with the duration of cancer pain in the CP+ group. In addition, in the CP- group, altered FC was found in the bilateral SII, ACC, and thalamus compared to the HC group. Altered FC in pain-related brain regions may be a brain pattern of bone metastatic pain and may be associated with the long duration of cancer pain.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yixin Hu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
8
|
Safety and Feasibility of Steerable Radiofrequency Ablation in Combination with Cementoplasty for the Treatment of Large Extraspinal Bone Metastases. Curr Oncol 2022; 29:5891-5900. [PMID: 36005203 PMCID: PMC9406475 DOI: 10.3390/curroncol29080465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Radiofrequency ablation (RFA) and cementoplasty, individually and in concert, has been adopted as palliative interventional strategies to reduce pain caused by bone metastases and prevent skeletal related events. We aim to evaluate the feasibility and safety of a steerable RFA device with an articulating bipolar extensible electrode for the treatment of extraspinal bone metastases. Methods: All data were retrospectively reviewed. All the ablation procedures were performed using a steerable RFA device (STAR, Merit Medical Systems, Inc., South Jordan, UT, USA). The pain was assessed with a VAS score before treatment and at 1-week and 3-, 6-, and 12-month follow-up. The Functional Mobility Scale (FMS) was recorded preoperatively and 1 month after the treatment through a four-point scale (4, bedridden; 3, use of wheelchair; 2, limited painful ambulation; 1, normal ambulation). Technical success was defined as successful intraoperative ablation and cementoplasty without major complications. Results: A statistically significant reduction of the median VAS score before treatment and 1 week after RFA and cementoplasty was observed (p < 0.001). A total of 6/7 patients who used a wheelchair reported normal ambulation 1 month after treatment. All patients with limited painful ambulation reported normal ambulation after the RFA and cementoplasty (p = 0.003). Technical success was achieved in all the combined procedures. Two cement leakages were reported. No local recurrences were observed after 1 year. Conclusions: The combined treatment of RFA with a steerable device and cementoplasty is a safe, feasible, and promising clinical option for the management of painful bone metastases, challenging for morphology and location, resulting in an improvement of the quality of life of patients.
Collapse
|
9
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Paindelli C, Casarin S, Wang F, Diaz-Gomez L, Zhang J, Mikos AG, Logothetis CJ, Friedl P, Dondossola E. Enhancing 223Ra Treatment Efficacy by Anti- β1 Integrin Targeting. J Nucl Med 2022; 63:1039-1045. [PMID: 34711616 PMCID: PMC9258579 DOI: 10.2967/jnumed.121.262743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
223Ra is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity toward PCa cells near the bone interface, whereas cells positioned in the core respond poorly because of short α-particle penetrance. β1 integrin (β1I) interference has been shown to increase radiosensitivity and significantly enhance external-beam radiation efficiency. We hypothesized that targeting β1I would improve 223Ra outcome. Methods: We tested the effect of combining 223Ra and anti-β1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low β1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo 3-dimensional imaging of bone lesions and by proteomic analysis and were further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Results: Interference with β1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, whereas no change was achieved in C4-2B tumors. Anti-β1I treatment decreased the PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects 2-fold, in vivo and in silico. Regression was paralleled by decreased expression of radioresistance mediators. Conclusion: Targeting β1I significantly improves 223Ra outcome and points toward combinatorial application in PCa tumors with high β1I expression.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefano Casarin
- Center for Computational Surgery, Department of Surgery and Houston Methodist Academic Institute, Houston Methodist Research Institute, Houston, Texas
| | - Feng Wang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, Houston, Texas; and
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas; and
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Peter Friedl
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
- Cancer Genomics Centre, Utrecht, The Netherlands
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas;
| |
Collapse
|
11
|
Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res 2022; 10:44. [PMID: 35668080 PMCID: PMC9170780 DOI: 10.1038/s41413-022-00217-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
AbstractThe field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.
Collapse
|
12
|
Alkalay RN, Adamson R, Miropolsky A, Davis RB, Groff ML, Hackney DB. Large Lytic Defects Produce Kinematic Instability and Loss of Compressive Strength in Human Spines: An in Vitro Study. J Bone Joint Surg Am 2021; 103:887-899. [PMID: 33755638 PMCID: PMC9167060 DOI: 10.2106/jbjs.19.00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In patients with spinal metastases, kinematic instability is postulated to be a predictor of pathologic vertebral fractures. However, the relationship between this kinematic instability and the loss of spinal strength remains unknown. METHODS Twenty-four 3-level thoracic and lumbar segments from 8 cadaver spines from female donors aged 47 to 69 years were kinematically assessed in axial compression (180 N) and axial compression with a flexion or extension moment (7.5 Nm). Two patterns of lytic defects were mechanically simulated: (1) a vertebral body defect, corresponding to Taneichi model C (n = 13); and (2) the model-C defect plus destruction of the ipsilateral pedicle and facet joint, corresponding to Taneichi model E (n = 11). The kinematic response was retested, and compression strength was measured. Two-way repeated-measures analysis of variance was used to test the effect of each model on the kinematic response of the segment. Multivariable linear regression was used to test the association between the kinematic parameters and compressive strength of the segment. RESULTS Under a flexion moment, and for both models C and E, the lesioned spines exhibited greater flexion range of motion (ROM) and axial translation than the control spines. Both models C and E caused lower extension ROM and greater axial, sagittal, and transverse translation under an extension moment compared with the control spines. Two-way repeated-measures analysis revealed that model E, compared with model C, caused significantly greater changes in extension and torsional ROM under an extension moment, and greater sagittal translation under a flexion moment. For both models C and E, greater differences in flexion ROM and sagittal translation under a flexion moment, and greater differences in extension ROM and in axial and transverse translation under an extension moment, were associated with lower compressive strength of the lesioned spines. CONCLUSIONS Critical spinal lytic defects result in kinematic abnormalities and lower the compressive strength of the spine. CLINICAL RELEVANCE This experimental study demonstrates that lytic foci degrade the kinematic stability and compressive strength of the spine. Understanding the mechanisms for this degradation will help to guide treatment decisions that address inferred instability and fracture risk in patients with metastatic spinal disease.
Collapse
Affiliation(s)
- Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| | - Robert Adamson
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| | | | - Roger B. Davis
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| | - Mike L. Groff
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David B. Hackney
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery (R.N.A. and R.A.), Division of General Medicine (R.B.D.), and Department of Radiology (D.B.H.), Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Cai X, Xi X, Li X, Zhang X, Zhang X, Huang Z, Yan Z. Antinociceptive effects of macrophage-derived extracellular vesicles by carrying microRNA-216a. Am J Transl Res 2021; 13:1971-1989. [PMID: 34017370 PMCID: PMC8129326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Cancer-induced bone pain (CIBP) represents the pain induced by bone metastases from malignancies. The role of extracellular vesicles (Evs) has been underscored in bone metastasis. However, the function of Evs, especially these derived from M2 macrophages (M2φ-Evs) in CIBP is unclear. Therefore, this investigation aimed to probe the possible antinociceptive effect of M2φ-Evs in CIBP and the underlying mechanism of action. Using the C57bl/6 mice, a CIBP animal model was established by the administration of Walker 256 mammary gland carcinoma cells, followed by M2φ-Evs administration. It was found that CIBP mice treated with M2φ-Evs had significantly reduced nociception and serum inflammatory factors. Microarray sequencing revealed that microRNA-216a (miR-216a) was the most upregulated miRNA in Evs-treated mouse spinal cord tissues. Subsequent bioinformatics, GSEA and KEGG enrichment analyses demonstrated that HMGB1 and TLR4-NF-κB pathway were the downstream effectors of miR-216a and were both downregulated in spinal cord tissues of CIBP mice treated with M2φ-Evs. Rescue experiments displayed that after we reduced miR-216a expression in M2φ-Evs, the antinociceptive effect of M2φ-Evs on CIBP mice was inhibited, and the HMGB1 expression and the TLR4-NF-κB signaling were significantly activated. Together, M2φ-Evs relieve CIBP by carrying miR-216a, which was elicited through the HMGB1/TLR4-NF-κB axis.
Collapse
Affiliation(s)
- Xinxin Cai
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Xi Xi
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical UniversityKunming 650101, Yunnan, P. R. China
| | - Xiangming Li
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Xiaomei Zhang
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Xiaolina Zhang
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Zhangxiang Huang
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Zhiwen Yan
- Department of Anatomy, Kunming Medical University Haiyuan CollegeKunming 650101, Yunnan, P. R. China
| |
Collapse
|
14
|
Ju L, Hu P, Chen P, Wu J, Li Z, Qiu Z, Cheng J, Huang F. Corydalis Saxicola Bunting Total Alkaloids Attenuate Walker 256-Induced Bone Pain and Osteoclastogenesis by Suppressing RANKL-Induced NF-κB and c-Fos/NFATc1 Pathways in Rats. Front Pharmacol 2021; 11:609119. [PMID: 33574755 PMCID: PMC7870471 DOI: 10.3389/fphar.2020.609119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metastatic bone pain is characterized by insufferable bone pain and abnormal bone structure. A major goal of bone cancer treatment is to ameliorate osteolytic lesion induced by tumor cells. Corydalis saxicola Bunting total alkaloids (CSBTA), the alkaloid compounds extracted from the root of C. saxicola Bunting, have been shown to possess anticancer and analgesic properties. In this study, we aimed to verify whether CSBTA could relieve cancer induced bone pain and inhibit osteoclastogenesis. The in vivo results showed that CSBTA ameliorated Walker 256 induced bone pain and osteoporosis in rats. Histopathological changes also supported that CSBTA inhibited Walker 256 cell-mediated osteolysis. Further in vitro analysis confirmed that CSBTA reduced the expression of RANKL and downregulate the level of RANKL/OPG ratio in breast cancer cells. Moreover, CSBTA could inhibit osteoclastogenesis by suppressing RANKL-induced NF-κB and c-Fos/NFATc1 pathways. Collectively, this study demonstrated that CSBTA could attenuate cancer induced bone pain via a novel mechanism. Therefore, CSBTA might be a promising candidate drug for metastatic bone pain patients.
Collapse
Affiliation(s)
- Linjie Ju
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Peipei Hu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Ping Chen
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jiejie Wu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Zhuoqun Li
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Nanjing Zhongshan Pharmaceutical Co, Ltd., Nanjing Economic and Technological Development Zone, Nanjing, China
| | - Zhixia Qiu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jun Cheng
- Nanjing Zhongshan Pharmaceutical Co, Ltd., Nanjing Economic and Technological Development Zone, Nanjing, China
| | - Fang Huang
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Sulistio M, Wojnar R, Key S, Kwok J, Al-Rubaie Z, Michael N. The role of methadone in cancer-induced bone pain: a retrospective cohort study. Support Care Cancer 2020; 29:1327-1335. [PMID: 32627056 DOI: 10.1007/s00520-020-05606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Cancer-induced bone pain (CIBP) can be challenging to manage in advanced cancer. The unique properties of methadone may have a role in refractory CIBP. We aimed to evaluate the analgesic effects of methadone for CIBP when other opioids are ineffective or intolerable. METHODS A retrospective study of palliative care inpatients rotated to methadone from another opioid for CIBP over a 4-year period. Primary outcome was ≥ 30% reduction in pain intensity (11-point numeric rating scale) from baseline to completion of methadone rotation (MR). Secondary outcomes were ≥ 50% reduction in pain intensity and changes in long-acting and breakthrough opioid requirements. RESULTS Ninety-four eligible patients completed MR for the following reasons: poor pain control (72.3%), opioid toxicities (4.3%) or both (23.4%). On completion of MR, 70.2% and 53.2% achieved a ≥ 30% and ≥ 50% reduction in pain respectively, with mean pain intensity score reduced from 5.6 (SD = 2.1) at baseline to 2.6 (SD = 2.5) (p < 0.001). Mean calculated daily methadone dose pre-MR was 25.7 mg (SD = 10.9), with 72.3% of patients requiring a lower dose on completion of MR (mean 17.0 mg, SD = 8.5). The mean number of breakthrough opioid analgesia used a day reduced from 3.4 (SD = 2.3) to 1.8 (SD = 1.7) (p < 0.001). CONCLUSIONS MR for CIBP may result in reduction in pain intensity, when other opioids are ineffective or intolerable, with patients requiring reduced overall dosing of their long-acting opioid and frequency of breakthrough opioid use.
Collapse
Affiliation(s)
- Merlina Sulistio
- Palliative and Supportive Care Research Department, Cabrini Health, 646 High St, Prahran, Melbourne, VIC, 3181, Australia.
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Robert Wojnar
- Palliative and Supportive Care Research Department, Cabrini Health, 646 High St, Prahran, Melbourne, VIC, 3181, Australia
| | - Seraphina Key
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Justin Kwok
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Ziad Al-Rubaie
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
| | - Natasha Michael
- Palliative and Supportive Care Research Department, Cabrini Health, 646 High St, Prahran, Melbourne, VIC, 3181, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- School of Medicine, University of Notre Dame Australia Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone Pain in Cancer Patients: Mechanisms and Current Treatment. Int J Mol Sci 2019; 20:E6047. [PMID: 31801267 PMCID: PMC6928918 DOI: 10.3390/ijms20236047] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The skeletal system is the third most common site for cancer metastases, surpassed only by the lungs and liver. Many tumors, especially those of the breast, prostate, lungs, and kidneys, have a strong predilection to metastasize to bone, which causes pain, hypercalcemia, pathological skeletal fractures, compression of the spinal cord or other nervous structures, decreased mobility, and increased mortality. Metastatic cancer-induced bone pain (CIBP) is a type of chronic pain with unique and complex pathophysiology characterized by nociceptive and neuropathic components. Its treatment should be multimodal (pharmacological and non-pharmacological), including causal anticancer and symptomatic analgesic treatment to improve quality of life (QoL). The aim of this paper is to discuss the mechanisms involved in the occurrence and persistence of cancer-associated bone pain and to review the treatment methods recommended by experts in clinical practice. The final part of the paper reviews experimental therapeutic methods that are currently being studied and that may improve the efficacy of bone pain treatment in cancer patients in the future.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Wojciech Leppert
- Laboratory of Quality of Life Research, Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| |
Collapse
|
17
|
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019; 39:76. [PMID: 31753020 PMCID: PMC6873445 DOI: 10.1186/s40880-019-0425-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis is the leading cause of death in prostate cancer patients, for which there is currently no effective treatment. Since the bone microenvironment plays an important role in this process, attentions have been directed to the interactions between cancer cells and the bone microenvironment, including osteoclasts, osteoblasts, and bone stromal cells. Here, we explained the mechanism of interactions between prostate cancer cells and metastasis-associated cells within the bone microenvironment and further discussed the recent advances in targeted therapy of prostate cancer bone metastasis. This review also summarized the effects of bone microenvironment on prostate cancer metastasis and the related mechanisms, and provides insights for future prostate cancer metastasis studies.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, No. 6 Jiankang Road, Jining, 272000, Shandong, P. R. China.
| |
Collapse
|
18
|
Liang W, Wang F, Chen Q, Dai J, Escara-Wilke J, Keller ET, Zimmermann J, Hong N, Lu Y, Zhang J. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. J Cancer Res Clin Oncol 2019; 145:1999-2012. [PMID: 31172267 PMCID: PMC6658578 DOI: 10.1007/s00432-019-02950-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The processes of prostate cancer (PCa) invasion and metastasis are facilitated by proteolytic cascade involving multiple proteases, such as matrix metalloproteinases, serine proteases and cysteine proteases including cathepsin K (CatK). CatK is predominantly secreted by osteoclasts and specifically degrades collagen I leading to bone destruction. PCa and breast cancer preferentially metastasize to the bone. Importantly, CatK expression level is greater in PCa bone metastatic sites compared to primary tumor and normal prostate tissues. However, the underlying mechanism of CatK during PCa metastases into the bone remains to be elucidated. We investigated the functional role of CatK during the PCa establishment and growth process in the murine bone. METHODS CatK mRNA expression was validated by RT-PCR, protein expression by immunoblotting in PCa LNCaP, C4-2B, and PC3 cells as well as in PCa tissues. Its protein production was measured using ELISA assay. The effect of both knockdowns via siRNA and CatK inhibitor was compared in regard to PCa cell invasion. We further studied the dose-dependent CatK inhibitor effect on conditioned media-induced bone resorption. In setting up an animal model, C4-2B cells were injected into the tibiae of SCID mice. The animals treated with either vehicle or CatK inhibitor for 8 weeks at the time of tumor cell injection (tumor establishment model; protocol I) or 4 weeks after tumor cell injection (tumor progression model; protocol II) were applied to histological and histomorphometric analyses. RESULTS We confirmed CatK expression in PCa LNCaP, C4-2B, and PC3 cells as well as in PCa tissues. Furthermore, we observed the inhibitory effects of a selective CatK inhibitor on PCa cell invasion. The CatK inhibitor dose-dependently inhibited PCa-conditioned media-induced bone resorption. Upon injection of C4-2B cells into the tibiae of SCID mice, the selective CatK inhibitor significantly prevented the tumor establishment in protocol I, and reduced the tumor growth in bone in protocol II. It also decreased serum PSA levels in both animal models. The inhibitory effects of the CatK inhibitor were enhanced in combination with zoledronic acid (ZA). CONCLUSION The selective CatK inhibitor may prevent the establishment and progression of PCa in bone, thus making it a novel therapeutic approach for advanced PCa.
Collapse
Affiliation(s)
- Weiping Liang
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fuhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China
| | - Qiuyan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinlu Dai
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - June Escara-Wilke
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Johann Zimmermann
- Novartis Pharma Ltd., Basel, Switzerland.,Polyphor Ltd, Hegenheimermattweg 125, 4123, Allschwil, Switzerland
| | - Ni Hong
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, 530021, Guangxi, China. .,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China. .,Department of Urology, University of Pittsburgh, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
19
|
Gouveia DN, Guimarães AG, Santos WBDR, Quintans-Júnior LJ. Natural products as a perspective for cancer pain management: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152766. [PMID: 31005719 DOI: 10.1016/j.phymed.2018.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is the leading cause of death in the world and one of the main symptoms affecting these individuals is chronic pain, which must be evaluated and treated in its various components. Several drugs are currently used, but beyond the high cost, they have harmful side effects to patients or are transitorily effective. Ergo, there is a need to look for new options for cancer pain relief. Natural products (NPs) present themselves as strong candidates for the development of new drugs for the treatment of chronic pain, such as cancer pain. PURPOSE This systematic review aimed to summarize current knowledge about the analgesic profile of NPs in cancer pain. METHODS The search included PubMed, Scopus and Web of Science (from inception to June 2018) sought to summarize the articles studying new proposals with NPs for the management of oncological pain. Two independent reviewers extracted data on study characteristics, methods and outcomes. RESULTS After an extensive survey, 21 articles were selected, which described the analgesic potential of 15 natural compounds to relieve cancer pain. After analyzing the data, it can be suggested that these NPs, which have targets in central and peripheral mechanisms, are interesting candidates for the treatment of cancer pain for addressing different pharmacological mechanisms (even innovative), but ensuring the safety of these compounds is still a challenge. Likewise, the cannabinoids compounds leave the front as the most promising compounds for direct applicability due to the clinical studies that have already been developed and the background already established about these effects on chronic pain. CONCLUSION Regarding these findings, it can be concluded that the variability of possible biological sites of action is strategic for new perspectives in the development of therapeutic proposals different from those available in the current market.
Collapse
Affiliation(s)
- Daniele Nascimento Gouveia
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Av. Governador Marcelo Déda, 13, Lagarto, Sergipe, Brazil.
| | - Wagner Barbosa da Rocha Santos
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
20
|
Aielli F, Ponzetti M, Rucci N. Bone Metastasis Pain, from the Bench to the Bedside. Int J Mol Sci 2019; 20:E280. [PMID: 30641973 PMCID: PMC6359191 DOI: 10.3390/ijms20020280] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Bone is the most frequent site of metastasis of the most common cancers in men and women. Bone metastasis incidence has been steadily increasing over the years, mainly because of higher life expectancy in oncologic patients. Although bone metastases are sometimes asymptomatic, their consequences are most often devastating, impairing both life quality and expectancy, due to the occurrence of the skeletal-related events, including bone fractures, hypercalcemia and spinal cord compression. Up to 75% of patients endure crippling cancer-induced bone pain (CIBP), against which we have very few weapons. This review's purpose is to discuss the molecular and cellular mechanisms that lead to CIBP, including how cancer cells convert the bone "virtuous cycle" into a cancer-fuelling "vicious cycle", and how this leads to the release of molecular mediators of pain, including protons, neurotrophins, interleukins, chemokines and ATP. Preclinical tests and assays to evaluate CIBP, including the incapacitance tester (in vivo), and neuron/glial activation in the dorsal root ganglia/spinal cord (ex vivo) will also be presented. Furthermore, current therapeutic options for CIBP are quite limited and nonspecific and they will also be discussed, along with up-and-coming options that may render CIBP easier to treat and let patients forget they are patients.
Collapse
Affiliation(s)
- Federica Aielli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
21
|
Hunter P. New therapies to relieve pain: The search for more efficient and safer alternatives to opioid pain killers. EMBO Rep 2018; 19:embr.201846925. [PMID: 30224409 DOI: 10.15252/embr.201846925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|