1
|
Wu Y, Li B, Deng D, Zhou H, Liu M, Ai H, Xin Y, Hua W, Zhao L, Li L. Circ_0036490 and DKK1 competitively bind miR-29a to promote lipopolysaccharides-induced human gingival fibroblasts injury. Autoimmunity 2024; 57:2312927. [PMID: 38321980 DOI: 10.1080/08916934.2024.2312927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
MicroRNA (miRNA) plays a regulatory role in periodontitis. This study aimed to explore whether miR-29a could affect lipopolysaccharides (LPSs)-induced injury in human gingival fibroblasts (HGFs) through the competitive endogenous RNAs (ceRNA) mechanism. Periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. Periodontitis cell model was established by treating HGFs with LPS. Expression levels of circ_0036490, miR-29a, and DKK1 were evaluated by the reverse transcription quantitative real-time PCR (RT-qPCR) method. Western blotting assay was performed to assess protein expression levels of pyroptosis-related proteins and Wnt signalling related proteins. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 were determined by Enzyme-linked immunosorbent assay (ELISA). Pyroptosis rate were determined by flow cytometry assay to evaluate pyroptosis. The interaction between miR-29a and circ_0036490 or DKK1 was verified by dual-luciferase reporter and RNA pull-down assays. MiR-29a expression was lower in PDL tissues of patients with periodontitis than that in healthy group; likewise, miR-29a was also downregulated in LPS-treated HGFs. Overexpression of miR-29a increased cell viability and decreased pyroptosis of HGFs induced by LPS while inhibition of miR-29a exerted the opposite role. MiR-29a binds to circ_0036490 and elevation of circ_0036490 contributed to dysfuntion of LPS-treated HGFs and reversed the protection function of elevated miR-29a. In addition, miR-29a targets DKK1. Overexpression of DKK1 abrogated the effects of overexpressed miR-29a on cell vaibility, pyroptosis, and protein levels of Wnt signalling pathway of LPS-treated HGFs. Circ_0036490 and DKK1 competitively bind miR-29a to promote LPS-induced HGF injury in vitro. Wnt pathway inactivated by LPS was activated by miR-29a. Thence, miR-29a may be a promising target for periodontitis.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Disi Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilin Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Weihan Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Xu D, Liu Y, Liu Q, Li G, Zhang L, Yu C, Liang H, Chen X, Zheng J, Song J. N 6-methyladenosine modification of circular RNA circASH2L suppresses growth and metastasis in hepatocellular carcinoma through regulating hsa-miR-525-3p/MTUS2 axis. J Transl Med 2024; 22:1026. [PMID: 39543614 PMCID: PMC11566831 DOI: 10.1186/s12967-024-05745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND CircRNAs have been demonstrated to play a crucial role in regulating the growth and progression of various cancers, including hepatocellular carcinoma (HCC). Nevertheless, the circRNA's expression pattern and function in HCC need more investigation. METHODS Bioinformatics techniques were used to identify differentially expressed circRNAs in HCC. CircASH2L expression in HCC tissues was assessed through qRT-PCR and ISH analysis. To assess circASH2L's impact on HCC progression, a variety of experiments were carried out both in vitro and in vivo, such as CCK8, colony formation, EdU assay, flow cytometry, transwell assay, and xenograft mouse model. Various experimental techniques including qRT-PCR, dual luciferase reporter assay, FISH, RNA pull-down, and RIP experiments were utilized to evaluate the relationship between circASH2L, miR-525-3p, and MTUS2. Additionally, experiments were conducted to explore the impact of m6A modification on circASH2L expression, including RNA stability assay, m6A RNA immunoprecipitation assay (MeRIP), and Co-IP experiments. RESULTS We found that circASH2L was downregulated in HCC tissues and the downregulation of circASH2L was significantly correlated with malignant characteristics as well as poor overall survival of patients with HCC. CircASH2L was found to inhibit cells growth, migration and invasion as well as tumorigenesis and metastasis in vivo. Mechanistically, we established that circASH2L directly interacted with miR-525-3p to enhance MTUS2 expression, subsequently leading to tumor suppression. Moreover, the influence of circASH2L on tumor suppression was attenuated by increasing miR-525-3p levels, and MTUS2 was recognized as an essential intermediary in circASH2L-induced tumor suppression. Additionally, N6-methyladenosine (m6A) modification was identified in circASH2L. Our data suggested that METTL3 was responsible for mediating m6A methylation of circASH2L, ultimately regulating circASH2L expression through the promotion of its degradation. These findings collectively highlight the role of circASH2L as a tumor suppressor through a unique circASH2L/miR-525-3p/MTUS2 axis, shedding light on the significance of m6A modification in regulating circASH2L function. CONCLUSION The work emphasizes circASH2L as a promising therapeutic target for treating HCC, offering new insights into the role of circRNAs in HCC development.
Collapse
Affiliation(s)
- Dafeng Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Lu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
Youness RA, Hassan HA, Abaza T, Hady AA, El Magdoub HM, Ali M, Vogel J, Thiersch M, Gassmann M, Hamdy NM, Aboouf MA. A Comprehensive Insight and In Silico Analysis of CircRNAs in Hepatocellular Carcinoma: A Step toward ncRNA-Based Precision Medicine. Cells 2024; 13:1245. [PMID: 39120276 PMCID: PMC11312109 DOI: 10.3390/cells13151245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease at all stages, including initiation, development, progression, invasion, and metastasis, in addition to the response to treatment. In this review, we discuss the biogenesis and regulatory functional roles of circRNAs, as well as circRNA-protein-mRNA ternary complex formation, elucidating the intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm of HCC.
Collapse
Affiliation(s)
- Rana A. Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Hossam A. Hassan
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Tasneem Abaza
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
- Biotechnology Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt
| | - Ahmed A. Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Hekmat M. El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 19648, Egypt;
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Johannes Vogel
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Markus Thiersch
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mostafa A. Aboouf
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
5
|
Sun W, Zhou C, Peng C, Yang R, Li M, Geng J, Zhou J, Chen L, Li W. Diagnostic value of plasma circular RNA based on droplet digital polymerase chain reaction in lung adenocarcinoma. Lab Med 2024; 55:420-432. [PMID: 38048812 DOI: 10.1093/labmed/lmad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Plasma circular (circ)RNAs detected by droplet digital polymerase chain reaction (ddPCR) may be ideal markers for liquid biopsy. However, ddPCR detection of circRNAs in plasma for diagnosis of lung adenocarcinoma has been rarely reported. METHODS An RNA sequencing analysis was performed in plasma from patients with early lung adenocarcinoma and healthy individuals. Droplet digital PCR was used to verify the differentially expressed genes. RESULTS The copy numbers of circle RNALZIC (circLZIC)and circle RNACEP350 (circCEP350) in the plasma of lung adenocarcinoma patients were significantly higher than in plasma of healthy people, and the copy numbers in postoperative plasma of the same patients were significantly lower than those in preoperative plasma. CircLZIC and circCEP350 alone and in combination had diagnostic value in lung adenocarcinoma and early lung adenocarcinoma. CircLZIC and circCEP350 had more binding sites with multiple microRNAs. Their target genes were enriched in several signaling pathways. CONCLUSION The copy numbers of circLZIC and circCEP350 were higher in plasma of lung adenocarcinoma patients than in plasma of healthy controls, significantly correlated with tumor size and TNM stage, and closely related to the occurrence and development of tumors. These circRNAs may serve as molecular markers for the diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Wanying Sun
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Changming Zhou
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Caiqiu Peng
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Ran Yang
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Mengting Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| | - Jian Geng
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| | - Jihong Zhou
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| | - Liang Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Center for Clinical Medicine of Respiratory Disease (Tumor) in Anhui, Bengbu, China
- Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu, China
| |
Collapse
|
6
|
Gong J, Han G, Chen Z, Zhang Y, Xu B, Xu C, Gao W, Wu J. CircDCAF8 promotes the progression of hepatocellular carcinoma through miR-217/NAP1L1 Axis, and induces angiogenesis and regorafenib resistance via exosome-mediated transfer. J Transl Med 2024; 22:517. [PMID: 38816735 PMCID: PMC11137954 DOI: 10.1186/s12967-024-05233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), which are a new type of single-stranded circular RNA, have significant involvement in progression of many diseases, including tumors. Currently, multiple circRNAs have been identified in hepatocellular carcinoma (HCC). Our study aims to investigate the function and mechanism of circDCAF8 in HCC. METHODS The expression of circDCAF8 (hsa_circ_0014879) in HCC and para-carcinoma tissue samples was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The biological function of circDCAF8 in HCC was confirmed by experiments conducted both in vitro and in vivo. And the relationship between circDCAF8, miR-217 and NAP1L1 was predicted by database and verified using qRT-PCR, RNA-binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Exosomes isolated from HCC cells were utilized to assess the connection of exosomal circDCAF8 with HCC angiogenesis and regorafenib resistance. RESULTS CircDCAF8 is upregulated in HCC tissues and cell lines, and is linked to an unfavourable prognosis for HCC patients. Functionally, circDCAF8 was proved to facilitate proliferation, migration, invasion and Epithelial-Mesenchymal Transformation (EMT) in HCC cells. Animal examinations also validated the tumor-promoting characteristics of circDCAF8 on HCC. Besides, exosomal circDCAF8 promoted angiogenesis in HUVECs. Mechanistically, circDCAF8 interacted with miR-217 and NAP1L1 was a downstream protein of miR-217. CircDCAF8 promoted NAP1L1 expression by sponging miR-217. In addition, exosomes may transfer circDCAF8 from regorafenib-resistant HCC cells to sensitive cells, where it would confer a resistant phenotype. CONCLUSION CircDCAF8 facilitates HCC proliferation and metastasis via the miR-217/NAP1L1 axis. Meanwhile, circDCAF8 can promote angiogenesis and drive resistance to regorafenib, making it a viable therapeutic target for HCC patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Exosomes/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Drug Resistance, Neoplasm/genetics
- Neovascularization, Pathologic/genetics
- Disease Progression
- Animals
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Cell Line, Tumor
- Pyridines/pharmacology
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Male
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Mice
- Mice, Inbred BALB C
- Female
- Base Sequence
- Human Umbilical Vein Endothelial Cells/metabolism
- Middle Aged
- Angiogenesis
Collapse
Affiliation(s)
- Jiahao Gong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Yinqi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Bin Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong Province, China
| | - Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
8
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
9
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|
11
|
Chen J, Liu Z, Zhong Y, Chen H, Xie L. Circ_0124208 Promotes the Progression of Hepatocellular Carcinoma by Regulating the miR-338-3p/LAMC1 Axis. Mol Biotechnol 2023; 65:1750-1763. [PMID: 36780058 DOI: 10.1007/s12033-023-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
Hundreds of circular RNAs (circRNAs) have been identified as key regulators in biological processes; however, only few of these circRNAs have been functionally described to participate in the development of hepatocellular carcinoma (HCC). The present study aimed to reveal the function and molecular mechanisms of circ_0124208 in HCC. Real-time quantitative PCR revealed the upregulation of circ_0124208 in HCC tissues and cells. Based on cell functional experiments, silencing circ_0124208 attenuated proliferation and migration, but boosted the apoptosis of Hep 3B and Huh7 cells in vitro. The in vivo experiment further validated the repression of tumor growth via circ_0124208 knockdown. RNA immunoprecipitation and dual-luciferase reporter assays showed that circ_0124208 sponged miR-338-3p and reduced its expression. miR-338-3p inhibition was found to partially reverse the tumor-suppressive effects caused by circ_0124208 in Hep 3B and Huh7 cells. Furthermore, miR-338-3p directly targeted laminin subunit gamma 1 (LAMC1). The malignancy of Hep 3B and Huh7 cell was decreased by LAMC1 knockdown, and this effect was mitigated by miR-338-3p suppression. Overall, circ_0124208 was demonstrated for the first time to play a crucial role as an oncogene in HCC, implying that it could be a useful biomarker for HCC diagnosis. Furthermore, the circ_0124208/miR-338-3p/LAMC1 axis can be used as a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Hui Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Liang Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
12
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
13
|
Mafi A, Rismanchi H, Malek Mohammadi M, Hedayati N, Ghorbanhosseini SS, Hosseini SA, Gholinezhad Y, Mousavi Dehmordi R, Ghezelbash B, Zarepour F, Taghavi SP, Asemi Z, Alimohammadi M, Mirzaei H. A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Front Oncol 2023; 13:1224138. [PMID: 37546393 PMCID: PMC10403753 DOI: 10.3389/fonc.2023.1224138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to multifocal development and distant metastasis resulting from late diagnosis. Consequently, new approaches to HCC diagnosis and treatment are required to reduce mortality rates. A large body of evidence suggests that non-coding RNAs (ncRNAs) are important in cancer initiation and progression. Cancer cells release many of these ncRNAs into the blood or urine, enabling their use as a diagnostic tool. Circular RNAs (CircRNAs) are as a members of the ncRNAs that regulate cancer cell expansion, migration, metastasis, and chemoresistance through different mechanisms such as the Wnt/β-catenin Signaling pathway. The Wnt/β-catenin pathway plays prominent roles in several biological processes including organogenesis, stem cell regeneration, and cell survival. Aberrant signaling of both pathways mentioned above could affect the progression and metastasis of many cancers, including HCC. Based on several studies investigated in the current review, circRNAs have an effect on HCC formation and progression by sponging miRNAs and RNA-binding proteins (RBPs) and regulating the Wnt/β-catenin signaling pathway. Therefore, circRNAs/miRNAs or RBPs/Wnt/β-catenin signaling pathway could be considered promising prognostic and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Hosseini
- Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Xiong H, Huang G, Zhu Y, Chen R, Zuo L, Liu H. Circ-SHPRH in human cancers: a systematic review and meta-analysis. Front Cell Dev Biol 2023; 11:1182900. [PMID: 37305675 PMCID: PMC10248025 DOI: 10.3389/fcell.2023.1182900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Circular RNA (circRNA) molecules are noncoding RNAs with ring-like structures formed by covalent bonds and are characterized by no 5'caps or 3'polyadenylated tails. Increasing evidence shows that circRNAs may play an important role in tumorigenesis and cancer metastasis. Circ-SHPRH originates from exons 26-29 of the SHPRH gene, and it is closely associated with human cancers. We searched PubMed, Web of Science, and Embase databases for relevant literatures until 24 December 2022. Eighteen research papers were included in this review, and 11 papers were selected for meta-analysis after screening. Three eligible published studies about circ-SHPRH were enrolled based on their tumor diagnosis aspect, 7 eligible published studies were related to overall survival (OS), and 3 eligible published studies were related to tumor grade. Many studies have shown that circ-SHPRH acts as a miRNA sponge or encodes a protein to regulate downstream genes or signal pathways, and exerts specific biological functions that affect the proliferation, invasion, and apoptosis of cancer cells. Meta-analysis showed that patients with high expression of circ-SHPRH had better OS (HR = 0.53, 95% CI 0.38-0.74, p-value <0.05) and lower TNM stage (HR = 0.33, 95% CI 0.18-0.62, p-value = 0.001). In addition, circ-SHPRH has potential diagnostic value (AUC = 0.8357). This review will help enrich our understanding of the role and mechanism of circ-SHPRH in human cancers. Circ-SHPRH has the potential to be a novel diagnostic and prognostic biomarker for various solid cancers.
Collapse
Affiliation(s)
- Hong Xiong
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gaozhen Huang
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Zhu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ruiqi Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongwei Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Ishaq Y, Ikram A, Alzahrani B, Khurshid S. The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes (Basel) 2022; 14:genes14010013. [PMID: 36672755 PMCID: PMC9858589 DOI: 10.3390/genes14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
- Correspondence:
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Sana Khurshid
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road, Lahore 54000, Pakistan
| |
Collapse
|
16
|
Zhu B, Gao J, Zhang Y, Liao B, Zhu S, Li C, Liao J, Liu J, Jiang C, Zeng J. CircRNA/miRNA/mRNA axis participates in the progression of partial bladder outlet obstruction. BMC Urol 2022; 22:191. [PMID: 36434693 PMCID: PMC9700926 DOI: 10.1186/s12894-022-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND More and more evidence showed that circRNA/miRNA/mRNA axis played a vital role in the pathogenesis of some diseases. However, the role of circRNA/miRNA/mRNA axis in partial bladder outlet obstruction (pBOO) remains unknown. Our study aimed to explore the complex regulatory mechanism of circRNA/miRNA/mRNA axis in pBOO. METHODS The pBOO rat model was established, and the bladder tissues were collected for mRNA sequencing. The differentially expressed mRNAs were analyzed by high-throughput sequencing, and the GO and KEGG analysis of the differentially expressed mRNAs were performed. Competing endogenous RNAs (ceRNAs) analysis identified the potential regulation function of circRNA/miRNA/mRNA axis in pBOO. qRT-PCR detected the expression of circRNA/miRNA/mRNA. miRanda software was performed to predict the relationship between circRNA and miRNA, miRNA and mRNA. RESULTS Compared with the sham group, a total of 571 mRNAs were differentially expressed in the pBOO group, of which 286 were up-regulated and 285 were down-regulated. GO analysis showed that the mRNAs were mainly involved in cellular process, single-organism process, and cell, etc. KEGG analysis showed that the enriched signaling pathways were metabolic pathways, cell adhesion molecules (CAMs), and HTLV-I infection, etc. Based on the previous transcriptome data and differentially expressed circRNAs, we drew the ceRNA network regulation diagram. qRT-PCR results confirmed that chr3:113195876|113197193/rno-miR-30c-1-3p/Gata4, chr1:126188351|126195625/rno-miR-153-5p/Diaph3, and chr9:81258380|81275269/rno-miR-135b-5p/Pigr axis may have ceRNA function. miRanda confirmed there have the binding sites of circRNA/miRNA/mRNA axis. CONCLUSIONS CircRNA/miRNA/mRNA axis was involved in the progression of pBOO. Our research on the circRNA/miRNA/mRNA axis revealed new pathogenesis and treatment strategies for pBOO.
Collapse
Affiliation(s)
- Baoyi Zhu
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Jun Gao
- grid.410737.60000 0000 8653 1072Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong People’s Republic of China
| | - Yuying Zhang
- Department of Child Health Care, Shenzhen Longhua Maternity and Child Health Care Hospital, Shenzhen, 518000 Guangdong People’s Republic of China
| | - Baojian Liao
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510700 Guangdong People’s Republic of China
| | - Sihua Zhu
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Chunling Li
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Junhao Liao
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Jianjia Liu
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Chonghe Jiang
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Jianwen Zeng
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| |
Collapse
|
17
|
Liu H, Yan Y, Lin J, He C, Liao H, Li H, Zhou Z, Wang J, Mao K, Xiao Z. Circular RNA circSFMBT2 downregulation by HBx promotes hepatocellular carcinoma metastasis via the miR-665/TIMP3 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:788-802. [PMID: 36159591 PMCID: PMC9463182 DOI: 10.1016/j.omtn.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/02/2022] [Indexed: 04/30/2023]
Abstract
Hepatitis B virus X protein (HBx) is considered as an oncogene in tumorigenesis and progression of hepatocellular carcinoma (HCC). In recent years, the important role of circular RNAs (circRNAs) in HCC has been increasingly demonstrated. However, the regulatory mechanisms of HBx on circRNAs remains largely unknown. In this study, we identified that a novel circRNA, circSFMBT2, was markedly downregulated by HBx. Low expression of circSFMBT2 was correlated with poor prognosis and vascular invasion. Functionally, overexpression of circSFMBT2 significantly inhibited HCC metastasis both in vitro and in vivo. The mechanism of circSFMBT2 was to as a sponge of miR-665, which is a negative regulator of tissue inhibitor of metalloproteinases 3 (TIMP3). However, HBx downregulated circSFMBT2 via the interaction with DExH-box helicase 9 (DHX9), which binds to flanking circRNA-forming introns. In conclusion, circSFMBT2, which is downregulated by HBx, acts as a tumor suppressor to inhibit tumor metastasis through the miR-665/TIMP3 axis. Our study suggests that circSFMBT2 could be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Corresponding author Yongcong Yan, Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road #107, Guangzhou 510120, China.
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of General Surgery, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China
- Corresponding author Kai Mao, Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road #107, Guangzhou 510120, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of General Surgery, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei 516600, China
- Corresponding author Zhiyu Xiao, Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road #107, Guangzhou 510120, China.
| |
Collapse
|
18
|
Lin YH, Zhang BY, Chen ZC. circRERE regulates the expression of GBX2 through miR-1299 and ZC3H13/N6-methyladenosine (m6A) to promote growth and invasion of hepatocellular carcinoma cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Meng H, Niu R, Huang C, Li J. Circular RNA as a Novel Biomarker and Therapeutic Target for HCC. Cells 2022; 11:cells11121948. [PMID: 35741077 PMCID: PMC9222032 DOI: 10.3390/cells11121948] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have a 5′ terminal cap and 3′ poly (A) tail structure. Compared with linear RNA, circRNA is more stable to exonuclease and ribonuclease. In addition, circRNA is structurally conserved, has a stable sequence and is tissue-specific. With the development of high-throughput sequencing and bioinformatics technology, more and more circRNAs have been found. CircRNA plays an important pathophysiological role in the occurrence and development of alcoholic liver injury (ALI), hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases. Our group has been committed to the research of liver disease diagnosis and treatment targets. We review the function and mechanism of circRNA in ALI, HF and HCC, expecting to provide new ideas for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Ruowen Niu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| |
Collapse
|
20
|
Chen G, Xie D, Zhang P, Zhou H. Circular RNA hsa_circ_0000437 may be used as a new indicator for the diagnosis and prognosis of hepatocellular carcinoma. Bioengineered 2022; 13:14118-14124. [PMID: 35730467 PMCID: PMC9342253 DOI: 10.1080/21655979.2022.2081458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Circular RNAs (circRNAs) play an essential role in hepatocellular carcinoma (HCC); however, the precise role of circRNAs in the diagnosis and prognosis of HCC remains unclear. The circRNA circ_0000437 was identified in the microarray dataset GSE166678 and was detected in HCC and paired adjacent tissue and serum samples in both the HCC and control groups by reverse transcription quantitative PCR. The association between circ_0000437 expression and clinicopathological characteristics was investigated. Furthermore, the diagnostic and prognostic values of circ_0000437 were determined using receiver operating characteristic (ROC) and Kaplan-Meier curves. Circ_0000437 expression was markedly upregulated in the tumor group compared with the control group and was correlated with tumor node metastasis (TNM) classification, differentiation degree, tumor size, and Barcelona Clinic Liver Cancer (BCLC) stage (P< 0.05) in both the tumor tissues and serum. Furthermore, poor overall survival (OS) was correlated with high circ_0000437 expression, and the area under the ROC curve (AUC) of circ_0000437 for the diagnosis of HCC was 0.9281 in the serum. Our findings suggest that circ_0000437 may be used as a novel biomarker for the diagnosis and prognosis of patients with HCC.
Collapse
Affiliation(s)
- Guangji Chen
- The Clinical Laboratory Center of The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Dihuo Xie
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou, China
| | - Ping Zhang
- The Clinical Laboratory Center of The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hongke Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou, China
| |
Collapse
|
21
|
Ma S, Adzavon YM, Wen X, Zhao P, Xie F, Liu M, Ma X. Novel Insights in the Regulatory Mechanisms of Ferroptosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:873029. [PMID: 35663406 PMCID: PMC9160826 DOI: 10.3389/fcell.2022.873029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a newly defined programmed cell death, which by its mechanism differs from other programmed cell death processes such as apoptosis, necrosis, and autophagy. It has a unique morphology and biological properties that antioxidants and iron-chelating agents can regulate. Ferroptosis has the characteristics of iron ion deposition and dependence on lipid peroxidation. It can affect the progression of many cancers, including liver cancer, by inducing an intracellular iron-dependent accumulation of reactive oxygen species, providing new possibilities for cancer treatment. At present, great progress has been made in exploring the molecular mechanism of ferroptosis. In this review, we summarize the characteristics, mechanisms, and regulatory factors of ferroptosis in detail, discuss the progress of ferroptosis research in liver cancer, and provide directions and new ideas for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shiwen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Yao Mawulikplimi Adzavon
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- *Correspondence: Yao Mawulikplimi Adzavon,
| | - Xiaohu Wen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
| |
Collapse
|
22
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
24
|
Nanoscopic characterization of hepatocytes treated with normoxic and hypoxic tumor-derived exosomes. Micron 2022; 158:103283. [DOI: 10.1016/j.micron.2022.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
|
25
|
Huang X, Zhao Y, Zhou H, Li Y. Circular RNAs in atherosclerosis. Clin Chim Acta 2022; 531:71-80. [PMID: 35339453 DOI: 10.1016/j.cca.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory lesion of the arterial vessel wall caused by a variety of complex factors. Furthermore, it is a major cause of cardiovascular disease and a leading cause of death. Circular RNAs (circRNAs) are a new family of endogenous non-coding RNAs with unique covalently closed loops that have sparked interest due to their unique characteristics and potential diagnostic and therapeutic applications in various diseases. A growing number of studies have shown that circRNAs can be used as biomarkers for the diagnosis and treatment of AS. In this article, we review the biogenesis, classification as well as functions of circRNA and summarize the research on circRNA as a diagnostic biomarker for AS. Finally, we describe the regulatory capacity of circRNA in AS pathogenesis through its pathogenesis and demonstrate the potential therapeutic role of circRNA for AS.
Collapse
Affiliation(s)
- Xiaoni Huang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yuwen Zhao
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Huijiao Zhou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China.
| |
Collapse
|
26
|
Circular RNA TLK1 Exerts Oncogenic Functions in Hepatocellular Carcinoma by Acting as a ceRNA of miR-138-5p. JOURNAL OF ONCOLOGY 2022; 2022:2415836. [PMID: 35359342 PMCID: PMC8964207 DOI: 10.1155/2022/2415836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022]
Abstract
Mounting evidence has shown that circular RNAs (circRNAs) function as key regulators in carcinogenesis and cancer progression, and this study is aimed at investigating the regulatory functions of circRNA TLK1 (circ-TLK1) in hepatocellular carcinoma (HCC). We observed that circ-TLK1 was highly expressed in HCC samples, and its high expression was closely associated with poor clinicopathological variables of HCC patients. The results of functional experiments revealed that knockdown of circ-TLK1 remarkably inhibited the proliferation, migration, invasion, and EMT of HCC cells, while circ-TLK1 overexpression promoted these malignant behaviors. Moreover, we noted that circ-TLK1 was capable of binding to miR-138-5p and upregulating its target gene, SOX4 in HCC. Based on rescue assays, miR-138-5p inhibition partially suppressed the effects of circ-TLK1 knockdown on the malignant behaviors of HCC cells. In short, this study is the first to indicate that circ-TLK1 functions as an oncogene in HCC progression partly through acting as a ceRNA of miR-138-5p, which may be a promising target for HCC therapy.
Collapse
|
27
|
Gan Y, Fang W, Zeng Y, Wang P, Shan R, Zhang L. Identification of a Novel Survival-Related circRNA–miRNA–mRNA Regulatory Network Related to Immune Infiltration in Liver Hepatocellular Carcinoma. Front Genet 2022; 13:800537. [PMID: 35309118 PMCID: PMC8924452 DOI: 10.3389/fgene.2022.800537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Increasing studies have reported that circular RNAs (circRNAs) play critical roles in tumorigenesis and cancer progression. However, the underlying regulatory mechanisms of circRNA-related competing endogenous RNA (ceRNA) in liver hepatocellular carcinoma (LIHC) are still unclear. In the present study, we discovered dysregulated circRNAs through Gene Expression Omnibus (GEO) analysis and validated the expression of the top seven circRNAs with upregulated expression by qRT–PCR and Sanger sequencing. Then, the Cancer-Specific CircRNA Database (CSCD) was used to predict the downstream miRNAs of seven circRNAs, and expression and survival analyses through The Cancer Genome Atlas (TCGA) were performed to identify the key miRNA in LIHC. Thereafter, the hsa_circ_0017264-hsa-miR-195–5p subnetwork was successfully constructed. Subsequently, we predicted downstream target genes of hsa-miR-195–5p with TargetScan, miRDB, and mirtarbase and overlapped them with differentially expressed mRNAs to obtain 21 target genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the biological and functional roles of these target genes. Finally, with Pearson correlation and prognostic value analysis, a survival-related hsa_circ_0017264-hsa-miR-195-5p-CHEK1/CDC25A/FOXK1 axis was established. Gene set enrichment analysis (GSEA) was performed to determine the function of CHEK1/CDC25A/FOXK1 in the ceRNA network. Moreover, immune infiltration analysis revealed that the ceRNA network was markedly associated with the levels of multiple immune cell infiltrates, immune cell biomarkers and immune checkpoints. Overall, the hsa_circ_0017264-hsa-miR-195-5p-CHEK1/CDC25A/FOXK1 network might provide novel insights into the potential mechanisms underlying LIHC onset and progression.
Collapse
Affiliation(s)
- Yu Gan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weidan Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peijun Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Human Genetic Resources Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ling Zhang,
| |
Collapse
|
28
|
The circular RNA hsa_circ_0001394 promotes hepatocellular carcinoma progression by targeting the miR-527/UBE2A axis. Cell Death Dis 2022; 8:81. [PMID: 35210429 PMCID: PMC8873434 DOI: 10.1038/s41420-022-00866-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022]
Abstract
Circular RNAs (circRNAs) have been recognized as significant participants in the progression of different cancers; however, the detailed mechanisms of circRNAs in hepatocellular carcinoma (HCC) remain unclear. In this study, hsa_circ_0001394 was identified by RNA-seq analysis, and hsa_circ_0001394 was determined to be highly expressed in HCC specimens and cell lines. Patients with high expression of hsa_circ_0001394 tended to exhibit poor survival. Increased hsa_circ_0001394 expression in plasma was closely correlated with clinicopathological features including elevated vascular invasion and an advanced TNM stage, as indicated by alpha-fetoprotein (AFP) analysis. Hsa_circ_0001394 promoted the proliferation, migration, and invasion of HCC cells, whereas knockdown of hsa_circ_0001394 inhibited HCC tumorigenesis in vivo. In addition, mechanistic studies showed that miR-527 negatively interacted with hsa_circ_0001394. Furthermore, UBE2A was revealed to serve as a target of miR-527. Overall, the present study suggested that hsa_circ_0001394 may function as a sponge to promote HCC progression by regulating the miR-527/UBE2A pathway. Thus, hsa_circ_0001394 may become a promising biomarker and potential therapeutic target in HCC treatment.
Collapse
|
29
|
Pan J, Zhao L, Liu J, Wang G. Inhibition of circular RNA circ_0138959 alleviates pyroptosis of human gingival fibroblasts via the microRNA-527/caspase-5 axis. Bioengineered 2022; 13:1908-1920. [PMID: 35030963 PMCID: PMC8805901 DOI: 10.1080/21655979.2021.2020396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) plays a regulatory role in periodontitis. This study explored whether circ_0138959 affected lipopolysaccharide (LPS)-induced pyroptosis in human gingival fibroblasts (HGFs). The periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. HGFs treated with LPS were considered to mimic periodontitis in vitro. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate the mRNA expression levels of circRNAs, miR-527, and caspase-5 (CASP5), and Western blotting assay was used to measure protein expression levels of caspase-1, caspase-4, and cleaved N-terminal gasdermin D (GSDMD-N). Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 and the pyroptosis rate were determined to evaluate pyroptosis. The interaction between miR-527 and circ_0138959 or CASP5 was verified by dual-luciferase reporter and RNA pull-down assays. Circ_0138959 expression was higher in the PDL tissues of patients with periodontitis than in the healthy group; likewise, circ_0138959 was also upregulated in LPS-treated HGFs. Suppressed circ_0138959 increased cell viability and decreased pyroptosis of HGFs induced by LPS. miR-527 was a target of circ_0138959, and inhibition of miR-527 contributed to the dysfunction of LPS-treated HGFs and reversed the protective effects of downregulated circ_0138959. Additionally, miR-527 targeted CASP5. Increased CASP5 abrogated the effects of overexpressed miR-527 on cell viability and pyroptosis of LPS-treated HGFs. Inhibition of circ_0138959 promoted cell viability and suppressed pyroptosis of HGFs via the miR-527/CASP5 axis. Therefore, knockdown of circ_0138959 may be a promising therapy for periodontitis.
Collapse
Affiliation(s)
- Jiaxin Pan
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| | - Lu Zhao
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| | - Jue Liu
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| | - Guoyun Wang
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| |
Collapse
|
30
|
Lidocaine Inhibits Hepatocellular Carcinoma Development by Modulating circ_ITCH/miR-421/CPEB3 Axis. Dig Dis Sci 2021; 66:4384-4397. [PMID: 33433806 DOI: 10.1007/s10620-020-06787-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lidocaine plays an anticancer role in hepatocellular carcinoma. Nevertheless, the mechanism of lidocaine in hepatocellular carcinoma remains largely unclear. AIMS This study aims to assess the function of lidocaine and explore the potential regulatory mechanism. METHODS Hepatocellular carcinoma cells were challenged via lidocaine. Cell proliferation, apoptosis, migration, and invasion were detected via colony formation, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, flow cytometry, Western blot, and transwell analyses. Circular RNA itchy E3 ubiquitin protein ligase (circ_ITCH), microRNA-421 (miR-421), and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) abundances were detected via quantitative reverse transcription polymerase chain reaction or Western blot. The relationship between miR-421 and circ_ITCH or CPEB3 was tested via dual-luciferase reporter analysis. The role of circ_ITCH in lidocaine-challenged cell growth in vivo was assessed via xenograft model. RESULTS Lidocaine inhibited hepatocellular carcinoma cell proliferation by decreasing colony formation and cell viability. Lidocaine suppressed hepatocellular carcinoma cell migration and invasion and promoted apoptosis. circ_ITCH and CPEB3 levels were decreased in hepatocellular carcinoma tissues and cells, and were restored in cells via lidocaine treatment. circ_ITCH knockdown weakened the suppressive effect of lidocaine on hepatocellular carcinoma development, which was abolished via CPEB3 overexpression. circ_ITCH could modulate CPEB3 by competitively binding with miR-421. miR-421 knockdown mitigated the effect of circ_ITCH silence in lidocaine-challenged cells. circ_ITCH knockdown increased xenograft tumor growth. CONCLUSIONS Lidocaine represses hepatocellular carcinoma cell proliferation, migration, and invasion and promotes apoptosis via regulating circ_ITCH/miR-421/CPEB3 axis, indicating a new insight into the mechanism of lidocaine in hepatocellular carcinoma.
Collapse
|
31
|
Chen X, She P, Wang C, Shi L, Zhang T, Wang Y, Li H, Qian L, Li M. Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2. J Clin Lab Anal 2021; 35:e23991. [PMID: 34664737 PMCID: PMC8649327 DOI: 10.1002/jcla.23991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and a leading cause of cancer death. Circular RNA (circRNA) has been demonstrated to play an important role in regulating tumour development. The current study aims to explore the specific role of hsa_circ_0001806 during HCC progression. METHODS The expression of hsa_circ_0001806 in HCC tissues and cells was measured through qRT-PCR. Cell proliferation, apoptosis and migration were measured using CCK-8 and Annexin V/PI staining kits, and Transwell assay. Bioinformatics prediction and dual-luciferase reporter assay were adopted to explore the mechanism underlying the cell function of hsa_circ_0001806 in HCC cells. In addition, glycolysis was assessed by measuring the glucose uptake, lactate production and ATP level using a glucose assay kit, fluorometric lactate assay kit and ATP detection assay kit. RESULTS Hsa_circ_0001806 was up-regulated in HCC tissues and cells and positively associated with the advanced TNM stage, metastasis and poor overall survival. The overexpression of hsa_circ_0001806 promoted HCC cell proliferation, migration and glycolysis and inhibited cell apoptosis, while the silence of hsa_circ_0001806 showed an opposite effect. Furthermore, hsa_circ_0001806 acted as a sponge of miR-125b to up-regulate hexokinase II (HK2) expression. In addition, the inhibition of miR-125b and HK2 overexpression partly reversed the inhibitory effect of hsa_circ_0001806 silencing on HCC cell proliferation, migration and glycolysis. CONCLUSION The inhibition of hsa_circ_0001806 suppressed HCC cell proliferation, migration and glycolysis through mediating miR-125b/HK2 axis.
Collapse
Affiliation(s)
- Xueyi Chen
- College of Life SciencesNorthwest UniversityXi’anChina
| | - Pengyun She
- The First Affliliated Hospital of Xi’an Jiao Tong UniversityXi’anChina
- Department of EndocrinologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Caihua Wang
- College of Life SciencesNorthwest UniversityXi’anChina
| | - Lina Shi
- Department of EndocrinologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Tieying Zhang
- Department of NeurologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Yanfei Wang
- Department of NeurologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Haixia Li
- Department of GeriatricsXianyang first people’s HospitalXianyangChina
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular DiseasesThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Man Li
- Department of Internal MedicineThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| |
Collapse
|
32
|
Hui Y, Jin D, Leng J, Liu D, Yuan P, Tang C, Wang Q. Hsa_circ_0007059 sponges miR-421 to repress cell growth and stemness in hepatocellular carcinoma by the PTEN-AKT/mTOR pathway. Pathol Res Pract 2021; 229:153692. [PMID: 34847369 DOI: 10.1016/j.prp.2021.153692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a substantial health concern worldwide. Increasing studies have suggested that circle RNAs (circRNAs) function as new regulators in HCC progression. The present work explored the role of hsa_circ_0007059 (circ_0007059) in the developing process of hepatocarcinogenesis. METHODS The circ_0007059 level in HCC was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and northern blot. Its biological role in HCC cells was assessed using 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT), colony formation, flow cytometry, Transwell, sphere formation and western blotting analyses. Bioinformatics analysis, luciferase reporter, and RNA immunoprecipitation (RIP) assays were used to test the regulatory mechanisms of circ_0007059. RESULTS Our results revealed that circ_0007059 expression was downregulated in HCC samples and cells. Moreover, circ_0007059 overexpression inhibited HCC cell proliferation, migration, invasion, and stem cell-like property, and strengthened cell apoptosis. In mechanism, circ_0007059 suppressed AKT/mTOR pathway by positively regulating phosphatase and tensin homolog (PTEN) expression. Additionally, circ_0007059 acted as a positive regulator of PTEN through controlling the availability of miR-421. Rescue assays demonstrated that PTEN knockdown or SC79 (AKT agonist) eliminated the effect of circ_0007059 on HCC cell phenotypes. CONCLUSION Circ_0007059 sponges miR-421 to inhibit oncogenic cellular process in HCC by mediating the PTEN-AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Dong Jin
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Di Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Peng Yuan
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
33
|
circ_0001588 Induces the Malignant Progression of Hepatocellular Carcinoma by Modulating miR-874/CDK4 Signaling. J Immunol Res 2021; 2021:3759879. [PMID: 34722778 PMCID: PMC8550835 DOI: 10.1155/2021/3759879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence indicates that circular RNAs (circRNAs) can interact with microRNAs to modulate gene expression in various cancers, including hepatocellular carcinoma (HCC). Although the significant role of circRNAs has been well documented in HCC, the complex mechanisms of circRNAs still need to be elucidated. Our current study is aimed at investigating the function of circ_0001588 in HCC, which was observed to significantly increase in HCC tissues and cells. We demonstrated that the knockdown of circ_0001588 resulted in repressed cell proliferation, migration, and invasion. In vivo studies using a nude mouse model showed that circ_0001588 downregulation reduced tumor size. Moreover, miR-874 was predicted as a target of circ_0001588. Using luciferase binding assays, we proved that circ_0001588 functions as a molecular ceRNA of miR-874 and that CDK4 acts as a downstream target of miR-874 in HCC. It was confirmed that overexpression of miR-874 decreased the proliferation, migration, and invasion triggered by the increase in circ_0001588. In summary, our results indicate that circ_0001588 acts as a ceRNA and promotes HCC progression by targeting the miR-874/CDK4 signaling pathway. Hence, we propose that circ_0001588 may be a promising target for HCC treatment.
Collapse
|
34
|
Wang H, Zhang Q, Cui W, Li W, Zhang J. Circ_0004018 suppresses cell proliferation and migration in hepatocellular carcinoma via miR-1197/PTEN/PI3K/AKT signaling pathway. Cell Cycle 2021; 20:2125-2136. [PMID: 34570663 DOI: 10.1080/15384101.2021.1962633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of primary liver cancer. Circular RNAs (circRNAs) have been demonstrated to be a crucial player in multiple cancers. However, a large number of circRNAs remain to be explored. Our study focused on investigating hsa_circ_0004018 in HCC. Firstly, we conducted quantitative reverse transcription PCR (RT-qPCR) to find that circ_0004018 was down-regulated in HCC cells. Western blot analysis was performed to detect the protein levels of phosphatase and tensin homologue (PTEN) and related factors of PI3K/AKT signaling pathway. From the results of functional assays, we found that overexpression of circ_0004018 significantly inhibited the proliferative and migratory capacities of HCC cells. The regulatory mechanism of circ_0004018 in HCC was determined by RNA immunoprecipitation (RIP), RNA pull-down, and luciferase reporter assays, thereby we knew that circ_0004018 regulated PTEN by sequestering microRNA-1197 (miR-1197) to modulate PI3K/AKT signaling pathway. Finally, rescue assays verified that circ_0004018 participated in modulation of cell proliferation and migration in HCC via sponging miR-1197 and regulating PTEN. In conclusion, circ_0004018 suppresses the proliferation and migration of HCC cells via sponging miR-1197 to inactivate the PTEN/PI3K/AKT signaling pathway.Abbreviations: HCC: Hepatocellular carcinoma; circRNAs: Circular RNAs; PTEN: Phosphatase and tensin homologue; miR-1197: microRNA-1197; ceRNA: competitive endogenous RNA; ATCC: American Type Culture Collection; EMEM: Eagle's Minimum Essential Medium; RT-qPCR: Quantitative real-time PCR; EdU: 5-ethynyl-20-deoxyuridine; FISH: Fluorescent in situ hybridization; RIP: RNA immunoprecipitation; 3'-UTR: 3'-untranslated region; Wt: wild-type; Mut; mutant type; gDNA: genomic DNA; Act D: Actinomycin D; PI3K: phosphatidylinositol-3-kinase; AKT: protein kinase; lncRNAs: long non-coding RNAs.
Collapse
Affiliation(s)
- He Wang
- Department of Interventional, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qiao Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenyu Cui
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Jimei Zhang
- Biology College, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Ameli-Mojarad M, Ameli-Mojarad M, Hadizadeh M, Young C, Babini H, Nazemalhosseini-Mojarad E, Bonab MA. The effective function of circular RNA in colorectal cancer. Cancer Cell Int 2021; 21:496. [PMID: 34535136 PMCID: PMC8447721 DOI: 10.1186/s12935-021-02196-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.
Collapse
Affiliation(s)
| | - Melika Ameli-Mojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Mahrooyeh Hadizadeh
- School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD UK
| | - Chris Young
- Institute of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Hosna Babini
- Department of Cell & Molecular Biology, Faculty of Science, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Ashrafian Bonab
- School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland, SR1 3SD UK
| |
Collapse
|
36
|
Shen H, Liu B, Xu J, Zhang B, Wang Y, Shi L, Cai X. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol 2021; 14:134. [PMID: 34461958 PMCID: PMC8407006 DOI: 10.1186/s13045-021-01145-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies globally. Despite aggressive and multimodal treatment regimens, the overall survival of HCC patients remains poor. MAIN: Circular RNAs (circRNAs) are noncoding RNAs (ncRNAs) with covalently closed structures and tissue- or organ-specific expression patterns in eukaryotes. They are highly stable and have important biological functions, including acting as microRNA sponges, protein scaffolds, transcription regulators, translation templates and interacting with RNA-binding protein. Recent advances have indicated that circRNAs present abnormal expression in HCC tissues and that their dysregulation contributes to HCC initiation and progression. Furthermore, researchers have revealed that some circRNAs might serve as diagnostic biomarkers or drug targets in clinical settings. In this review, we systematically evaluate the characteristics, biogenesis, mechanisms and functions of circRNAs in HCC and further discuss the current shortcomings and potential directions of prospective studies on liver cancer-related circRNAs. CONCLUSION CircRNAs are a novel class of ncRNAs that play a significant role in HCC initiation and progression, but their internal mechanisms and clinical applications need further investigation.
Collapse
Affiliation(s)
- Hao Shen
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Boqiang Liu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Junjie Xu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yifan Wang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Liang Shi
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Xiujun Cai
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
37
|
Wu M, Miao H, Fu R, Zhang J, Zheng W. Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma. Curr Mol Pharmacol 2021; 13:261-272. [PMID: 32091349 DOI: 10.2174/1874467213666200224102820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Liver cancer is a leading cause of cancer-related death worldwide, in which hepatocellular carcinoma (HCC) accounts for the majority. Despite the progression in treatment, the prognosis remains extremely poor for HCC patients. The mechanisms of hepatocarcinogenesis are complex, of which fibrosis is acknowledged as the pre-cancerous stage of HCC. Approximately, 80-90% of HCC develops in the fibrotic or cirrhotic livers. Hepatic stellate cells (HSCs), the main effector cells of liver fibrosis, could secret various biological contents to maintain the liver inflammation. By decades, HSCs are increasingly correlated with HCC in the tumor microenvironment. In this review, we summarized the underlying mechanisms that HSCs participated in the genesis and progression of HCC. HSCs secrete various bioactive contents and regulate tumor-related pathways, subsequently contribute to metastasis, angiogenesis, immunosuppression, chemoresistance and cancer stemness. The study indicates that HSC plays vital roles in HCC progression, suggesting it as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Huajie Miao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Rong Fu
- Department of Pathology, Affiliated Haian Hospital of Nantong University, 17 Zhongba Road, 226600, Haian, Jiangsu, China
| | - Jie Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| |
Collapse
|
38
|
Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021; 9:biomedicines9080964. [PMID: 34440168 PMCID: PMC8391662 DOI: 10.3390/biomedicines9080964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022] Open
Abstract
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid, and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed based on electrochemical, optical, and electromechanical detection methods. This review presents ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA detection is provided.
Collapse
|
39
|
Circular RNA as An Epigenetic Regulator in Chronic Liver Diseases. Cells 2021; 10:cells10081945. [PMID: 34440714 PMCID: PMC8392363 DOI: 10.3390/cells10081945] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA characterized by a covalently closed continuous loop. CircRNA is generated by pre-mRNA through back-splicing and is probably cleared up by extracellular vesicles. CircRNAs play a pivotal role in the epigenetic regulation of gene expression at transcriptional and post-transcriptional levels. Recently, circRNAs have been demonstrated to be involved in the regulation of liver homeostasis and diseases. However, the epigenetic role and underlying mechanisms of circRNAs in chronic liver diseases remain unclear. This review discussed the role of circRNAs in non-neoplastic chronic liver diseases, including alcoholic liver disease (ALD), metabolic-associated fatty liver disease (MAFLD), viral hepatitis, liver injury and regeneration, liver cirrhosis, and autoimmune liver disease. The review also highlighted that further efforts are urgently needed to develop circRNAs as novel diagnostics and therapeutics for chronic liver diseases.
Collapse
|
40
|
Gong L, Zhou X, Sun J. Circular RNAs Interaction with MiRNAs: Emerging Roles in Breast Cancer. Int J Med Sci 2021; 18:3182-3196. [PMID: 34400888 PMCID: PMC8364445 DOI: 10.7150/ijms.62219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Despite significant advances in cancer therapy strategies, breast cancer is one of the most common and lethal malignancies worldwide. Characterization of a new class of RNAs using next-generation sequencing opened new doors toward uncovering etiopathogenesis mechanisms of breast cancer as well as prognostic and diagnostic biomarkers. Circular RNAs (circRNAs) are a novel class of RNA with covalently closed and highly stable structures generated primarily from the back-splicing of precursor mRNAs. Although circRNAs exert their function through various mechanisms, acting as a sponge for miRNAs is their primary mechanism of function. Furthermore, growing evidence has shown that aberrant expression of circRNAs is involved in the various hallmarks of cancers. This paper reviews the biogenesis, characteristics, and mechanism of functions of circRNAs and their deregulation in various cancers. Finally, we focused on the circRNAs roles as a sponge for miRNAs in the development, metastasis, angiogenesis, drug resistance, apoptosis, and immune responses of breast cancer.
Collapse
Affiliation(s)
- Liu Gong
- Department of Medical Oncology, Hangzhou Xiasha Hospital, Hangzhou, Zhejiang Province, China
| | | | | |
Collapse
|
41
|
Liao R, Liu L, Zhou J, Wei X, Huang P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front Oncol 2021; 11:697747. [PMID: 34277444 PMCID: PMC8284075 DOI: 10.3389/fonc.2021.697747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are newly classified noncoding RNA (ncRNA) members with a covalently closed continuous loop structure that are involved in immune responses against hepatitis B virus (HBV) infections and play important biological roles in the occurrence and pathogenesis of HCC progression. The roles of circRNAs in HBV-associated HCC (HBV-HCC) have gained increasing attention. Substantial evidence has revealed that both tissue and circulating circRNAs may serve as potential biomarkers for diagnostic, prognostic and therapeutic purposes. So far, at least four circRNA/miRNA regulatory axes such as circRNA_101764/miR-181, circRNA_100338/miR-141-3p, circ-ARL3/miR-1305, circ-ATP5H/miR-138-5p, and several circulating circRNAs were reported to be associated with HBV-HCC development. Notably, TGF/SMAD, JAK/STAT, Notch and Wnt/β-catenin signaling pathways may play pivotal roles in this HBV-driven HCC via several circRNAs. Moreover, in non-HBV HCC patients or HCC patients partially infected by HBV, numerous circRNAs have been identified to be important regulators impacting the malignant biological behavior of HCC. Furthermore, the role of circRNAs in HCC drug resistance has become a focus of research with the aim of reversing chemoresistance and immune resistance. Herein, we review the molecular biology of circRNAs in HBV-HCC and their potential in therapeutic strategies.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People's Rongchang Hospital, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Yang G, Xu Q, Wan Y, Zhang L, Wang L, Meng F. Circ-CSPP1 knockdown suppresses hepatocellular carcinoma progression through miR-493-5p releasing-mediated HMGB1 downregulation. Cell Signal 2021; 86:110065. [PMID: 34182091 DOI: 10.1016/j.cellsig.2021.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and leads to a high death rate. Research on circular RNAs (circRNAs) suggests that circRNAs are promising biomarkers for cancer treatment. This study aimed to explore the function of a novel circRNA (circ-CSPP1) in HCC. METHODS Circ-CSPP1 was obtained from the microarray data downloaded from the Gene Expression Omnibus (GEO) database. The expression of circ-CSPP1, miR-493-5p and high mobility group box 1 (HMGB1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation ability, migration and invasion were monitored using cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and transwell assay, respectively. The protein levels of CyclinD1, Vimentin, matrix metallopeptidase 9 (MMP-9) and HMGB1 were detected by western blot. Xenograft models were established to investigate the function of circ-CSPP1 in vivo. The association between miR-493-5p and circ-CSPP1 or HMGB1 was predicted by the online tool starBase and ensured by dual-luciferase reporter assay. RESULTS The expression of circ-CSPP1 and HMGB1 was elevated, while the expression of miR-493-5p was declined in HCC tissues and cells. Circ-CSPP1 knockdown not only depleted HCC cell proliferation, formation, migration and invasion in vitro but also inhibited tumor growth in vivo. MiR-493-5p was a target of circ-CSPP1, and HMGB1 was a target of miR-493-5p. Rescue experiments presented that miR-493-5p deficiency reversed the effects of circ-CSPP1 knockdown, and HMGB1 overexpression reversed the effects of miR-493-5p restoration. Circ-CSPP1 sponged miR-493-5p to regulate HMGB1 expression. CONCLUSION Knockdown of circ-CSPP1 suppressed HCC development both in vitro and in vivo by upregulation of miR-493-5p and downregulation of HMGB1, hinting that circ-CSPP1 participated in HCC pathogenesis.
Collapse
Affiliation(s)
- Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qinhong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
43
|
Niu Y, Liu F, Wang X, Chang Y, Song Y, Chu H, Bao S, Chen C. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. Onco Targets Ther 2021; 14:3649-3658. [PMID: 34113130 PMCID: PMC8187087 DOI: 10.2147/ott.s304117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/24/2021] [Indexed: 01/15/2023] Open
Abstract
Background The mortality and morbidity of hepatocellular carcinoma (HCC) are still unacceptably high, despite decades of extensive studies. Aerobic glycolysis is a hallmark of cancer metabolism, closely relating to invasion and metastasis of HCC. MicroRNAs (miRNAs) are involved in the regulation of aerobic glycolysis. miR-183-5p, an oncogenic miRNA, is highly expressed in HCC, but the regulatory mechanism of miR-183-5p in migration, invasion and aerobic glycolysis in HCC remains unclear. Purpose To elucidate whether miR-183-5p affects aerobic glycolysis to regulate the migration and invasion of HCC, and to explore its regulatory mechanism. Methods We attempted to observe the effects of miR-183-5p on the migration and invasion of HepG2 cells by a wound-healing assay and Transwell assays. The effect of miR-183-5p on glycolysis was determined by glucose uptake and lactate generation. Western blot and qPCR were used to detect the relevant proteins and miRNA expression. Results Our results show that miR-183-5p promoted migration and invasion, enhanced glycolysis via increasing glucose uptake and lactate generation, and up-regulated glycolysis-related gene (PKM2, HK2, LDHA, GLUT1) expression in HepG2 cells. Further experiments indicated that miR-183-5p could decrease PTEN expression, but increased Akt, p-Akt and mTOR expression in HepG2 cells. Conclusion These findings suggest that miR-183-5p may promote HCC migration and invasion via increasing aerobic glycolysis through targeting PTEN and then activating Akt/mTOR signaling.
Collapse
Affiliation(s)
- Yaqian Niu
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Fang Liu
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Xiuyue Wang
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yuling Chang
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yanmei Song
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Huiyuan Chu
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Che Chen
- Department of Clinical Laboratory Diagnostics, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
44
|
Xu Y, Zuo W, Wang X, Zhang Q, Gan X, Tan N, Jia W, Liu J, Li Z, Zhou B, Zhao D, Xie Z, Tan Y, Zheng S, Liu C, Li H, Chen Z, Yang X, Huang Z. Deciphering the effects of PYCR1 on cell function and its associated mechanism in hepatocellular carcinoma. Int J Biol Sci 2021; 17:2223-2239. [PMID: 34239351 PMCID: PMC8241733 DOI: 10.7150/ijbs.58026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yanzhen Xu
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, China
| | - Wenpu Zuo
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinle Zhang
- Genetic and metabolic central laboratory, the maternal and children's health hospital of Guangxi, Nanning, 530000, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ning Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhouquan Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhibin Xie
- Department of Urology, the Five Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Hongtao Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhijian Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
45
|
Zhang Y, Wang Y. Circular RNAs in Hepatocellular Carcinoma: Emerging Functions to Clinical Significances. Front Oncol 2021; 11:667428. [PMID: 34055634 PMCID: PMC8160296 DOI: 10.3389/fonc.2021.667428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and carries high morbidity and mortality. Diagnosing HCC at an early stage is challenging. Therefore, finding new, highly sensitive and specific diagnostic biomarkers for the diagnosis and prognosis of HCC patients is extremely important. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed loop structures. They are characterized by remarkable stability, long half-life, abundance and evolutionary conservation. Recent studies have shown that many circRNAs are expressed aberrantly in HCC tissues and have important regulatory roles during the development and progression of HCC. Hence, circRNAs are promising biomarkers for the diagnosis and prognosis of HCC. This review: (i) summarizes the biogenesis, categories, and functions of circRNAs; (ii) focuses on current progress of dysregulated expression of circRNAs in HCC with regard to regulation of the tumor hallmarks, “stemness” of cancer cells, and immunotherapy; (iii) highlights circRNAs as potential biomarkers and therapeutic targets for HCC; and (iv) discusses some of the challenges, questions and future perspectives of circRNAs research in HCC.
Collapse
Affiliation(s)
- Yucheng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Liu C, Wu H, Mao Y, Chen W, Chen S. Exosomal microRNAs in hepatocellular carcinoma. Cancer Cell Int 2021; 21:254. [PMID: 33964930 PMCID: PMC8106840 DOI: 10.1186/s12935-021-01941-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors worldwide and the fourth leading cause of cancer-related deaths. The prognosis of hepatocellular carcinoma patients is extremely poor due to the occult onset and high metastasis of hepatocellular carcinoma. Therefore, biomarkers with high specificity and sensitivity are of great importance in early screening, diagnosis prognosis, and treatment of hepatocellular carcinoma patients. Exosomes are tiny vesicles secreted by various types of cells, which can serve as mediators of intercellular communication to regulate the tumor microenvironment, and play a key role in the occurrence, development, prognosis, monitor and treatment of hepatocellular carcinoma. As microRNA deliverer, exosomes are involved in multiple life activities by regulating target genes of recipient cells such as proliferation, invasion, metastasis and apoptosis of cancer cells. In this review, we summarized the composition, active mechanism and function of exosomal microRNAs in hepatocellular carcinoma, and elaborated on their potential application value of early diagnosis and treatment in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai, 200025, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
47
|
Zhang S, Han J, Fu J. The circ_0032822 Promotes the Proliferation of Head and Neck Squamous Cell Carcinoma Cells Through miR-141/EF3 Signaling Axis. Front Oncol 2021; 11:662496. [PMID: 33981611 PMCID: PMC8107724 DOI: 10.3389/fonc.2021.662496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) refers to an epithelial malignant tumor that originates in the head and neck, and over 600,000 new cases are reported every year, However, the overall prognosis is still poor due to local recurrence and distant metastasis after surgery. The circ_0032822 has been reported upregulated in human oral squamous cell carcinoma; however, the detailed function or mechanism remains unknown. In this study, we confirmed the upregulation of circ_0032822 in HNSCC tumor tissues. Functionally, the overexpression of circ_0032822 significantly promoted the proliferation of HNSCC cell lines along with the S phase arrest and reduced apoptosis, while downregulation of circ_0032822 has the opposite effect in vitro. Mechanistic analysis showed that circ_0032822 acted as a competing endogenous RNA of miR-141 to diminish the repressive effect of miR-141 on its target E2F3. In conclusion, we demonstrated that circ_0032822 functions as a tumor oncogene in HNSCC and that its function is regulated via the miR-141/E2F3 axis.
Collapse
Affiliation(s)
- Shuajia Zhang
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Jiahui Han
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Jing Fu
- Department of Respiratory Medicine, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
48
|
Identification of prognostic and metastasis-related alternative splicing signatures in hepatocellular carcinoma. Biosci Rep 2021; 40:225701. [PMID: 32627826 PMCID: PMC7364508 DOI: 10.1042/bsr20201001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
As the most common neoplasm in digestive system, hepatocellular carcinoma (HCC) is one of the most important leading cause of cancer deaths worldwide. Its high-frequency metastasis and relapse rate lead to the poor survival of HCC patients. However, the mechanism of HCC metastasis is still unclear. Alternative splicing events (ASEs) have a great effect in cancer development, progression and metastasis. We downloaded RNA sequencing and seven types of ASEs data of HCC samples, in order to explore the mechanism of ASEs underlying tumorigenesis and metastasis of HCC. The data were taken from the The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases. Univariate Cox regression analysis was used to determine a total of 3197 overall survival-related ASEs (OS-SEs). And based on five OS-SEs screened by Lasso regression, we constructed a prediction model with the Area Under Curve of 0.765. With a good reliability of the model, the risk score was also proved to be an independent predictor. Among identified 390 candidate SFs, Y-box protein 3 (YBX3) was significantly correlated with OS and metastasis. Among 177 ASEs, ATP-binding cassette subfamily A member 6 (ABCA6)-43162-AT and PLIN5-46808-AT were identified both associated with OS, bone metastasis and co-expressed with SFs. Then we identified primary bile acid biosynthesis as survival-related (KEGG) pathway by Gene Set Variation Analysis (GSVA) and univariate regression analysis, which was correlated with ABCA6-43162-AT and PLIN5-46808-AT. Finally, we proposed that ABCA6-43162-AT and PLIN5-46808-AT may contribute to HCC poor prognosis and metastasis under the regulation of aberrant YBX3 through the pathway of primary bile acid biosynthesis.
Collapse
|
49
|
Chen F, He L, Qiu L, Zhou Y, Li Z, Chen G, Xin F, Dong X, Xu H, Wang G, Liu J, Cai Z. Circular RNA CircEPB41L2 Functions as Tumor Suppressor in Hepatocellular Carcinoma Through Sponging miR-590-5p. Cancer Manag Res 2021; 13:2969-2981. [PMID: 33833580 PMCID: PMC8021265 DOI: 10.2147/cmar.s291682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) could interact with miRNAs to regulate gene expression, participating in hepatocellular carcinoma (HCC) initiation and development. This work aimed to determine the potential function and molecular mechanism of circEPB41L2 (hsa_circ_0077837) during HCC progression. Materials and Methods The expression of circEPB41L2 in HCC tissues and HCC cell lines was quantified using real-time quantitative PCR (qRT-PCR). CCK-8 assays and colony formation assays were utilized to detect the proliferation of HCC cells. Wound healing assay and transwell assay were performed to determine the capability of migration and invasion for HCC cells. Western blot was conducted to determine gene expression on protein levels. The effect of circEPB41L2 on HCC in vivo was investigated via xenograft experiment. Interaction between circEPB41L2 and miR-590-5p was predicted through bioinformatics methods and confirmed via luciferase reporter assay. Results Extensive analysis of circRNA profiles in tumor and matched para-tumor tissues collected from 61 HCC patients identified that circEPB41L2 was significantly down-regulated in HCC, which was further confirmed in another HCC group by qRT-PCR analysis. The clinicopathological analysis revealed that down-regulation of circEPB41L2 was negatively associated with tumor size, vascular invasion and alpha-fetoprotein, while positively correlated with HCC prognosis. The biological function experiments showed that overexpression of circEPB41L2 could obviously inhibit the proliferation and metastasis of HCC cells in vitro, while knockdown of circEPB41L2 induced opposite results. Moreover, we also found that circEPB41L2 inhibited HCC migration and invasion though EMT signaling pathway. Similarly, overexpression of circEPB41L2 can also significantly inhibit the proliferation of HCC cells in vivo. Bioinformatic analysis and luciferase reporter assay revealed that circEPB41L2 interacts directly with miR-590-5p and the corresponding biological functions were also verified in miRNA rescue experiments. Conclusion Our results suggest that circEPB41L2 might function as a tumor suppressor during HCC progression by sponging miR-590-5p.
Collapse
Affiliation(s)
- Feng Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Lei He
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Yang Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Fuli Xin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Gaoxiong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| |
Collapse
|
50
|
Tang K, Zhang H, Li Y, Sun Q, Jin H. Circular RNA as a Potential Biomarker for Melanoma: A Systematic Review. Front Cell Dev Biol 2021; 9:638548. [PMID: 33869186 PMCID: PMC8047128 DOI: 10.3389/fcell.2021.638548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are newly discovered RNAs with covalently looped structures. Due to their resistance to RNAase degradation and tissue-specific expression, circRNAs are expected to be potential biomarkers in early diagnosis and target treatment of many diseases. However, the role of circRNAs in melanoma still needs to be systematically reviewed for better understanding and further research. Based on published articles in PubMed, Embase, Cochrane Library, and Web of Science database, we systematically reviewed the implications and recent advances of circRNAs in melanoma, focusing on function, mechanism, and correlation with melanoma progression. According to inclusion and exclusion criteria, a total of 19 articles were finally included in this systematic review. Of the 19 studies, 17 used human samples, including melanoma tissues (n = 16) and blood serum of patients with melanoma (n = 1). The sample size of the study group ranged from 20 to 105 based on the reported data. Several studies explored the association between circRNAs and clinicopathological characteristics. circRNA dysregulation was commonly observed in melanoma patients. circRNAs function in melanoma by miRNA sponging and interaction with RNA binding proteins (RBP), ultimately controlling several important signaling pathways and cancer-related cellular processes, including proliferation, migration, invasion, metastasis, apoptosis, and glucose metabolism. circRNA expression could be associated with prognostic factors and drug responses, consolidating the potential clinical value in melanoma. Herein, we clarified the functional, prognostic, and predictive roles of circRNAs in melanoma in this systematic review, providing future directions for studies on melanoma-associated circRNAs.
Collapse
Affiliation(s)
- Keyun Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanlin Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yaqi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiuning Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongzhong Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|