1
|
Bustamante A, Baritaki S, Zaravinos A, Bonavida B. Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel) 2024; 16:3180. [PMID: 39335152 PMCID: PMC11430682 DOI: 10.3390/cancers16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine.
Collapse
Affiliation(s)
- Andrew Bustamante
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Matsuda A, Masuzawa R, Takahashi K, Takano K, Endo T. MEK inhibitors and DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, prevent the migration and invasion of KRAS-mutant cancer cells. Cytoskeleton (Hoboken) 2024. [PMID: 38872577 DOI: 10.1002/cm.21881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
The Ras-induced ERK pathway (Raf-MEK-ERK signaling cascade) regulates a variety of cellular responses including cell proliferation, survival, and migration. Activating mutations in RAS genes, particularly in the KRAS gene, constitutively activate the ERK pathway, resulting in tumorigenesis, cancer cell invasion, and metastasis. DA-Raf1 (DA-Raf) is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain. Consequently, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative manner and can serve as a tumor suppressor that targets mutant Ras protein-induced tumorigenesis. We show here that MEK inhibitors and DA-Raf interfere with the in vitro collective cell migration and invasion of human KRAS-mutant carcinoma cell lines, the lung adenocarcinoma A549, colorectal carcinoma HCT116, and pancreatic carcinoma MIA PaCa-2 cells. DA-Raf expression was silenced in these cancer cell lines. All these cell lines had high collective migration abilities and invasion properties in Matrigel, compared with nontumor cells. Their migration and invasion abilities were impaired by suppressing the ERK pathway with the MEK inhibitors U0126 and trametinib, an approved anticancer drug. Expression of DA-Raf in MIA PaCa-2 cells reduced the ERK activity and hindered the migration and invasion abilities. Therefore, DA-Raf may function as an invasion suppressor protein in the KRAS-mutant cancer cells by blocking the Ras-ERK pathway when DA-Raf expression is induced in invasive cancer cells.
Collapse
Affiliation(s)
- Aoi Matsuda
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Ryuichi Masuzawa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Kazuya Takahashi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
3
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Kim M, Park BJ. NF2-Related Schwannomatosis (NF2): Molecular Insights and Therapeutic Avenues. Int J Mol Sci 2024; 25:6558. [PMID: 38928264 PMCID: PMC11204266 DOI: 10.3390/ijms25126558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
NF2-related schwannomatosis (NF2) is a genetic syndrome characterized by the growth of benign tumors in the nervous system, particularly bilateral vestibular schwannomas, meningiomas, and ependymomas. This review consolidates the current knowledge on NF2 syndrome, emphasizing the molecular pathology associated with the mutations in the gene of the same name, the NF2 gene, and the subsequent dysfunction of its product, the Merlin protein. Merlin, a tumor suppressor, integrates multiple signaling pathways that regulate cell contact, proliferation, and motility, thereby influencing tumor growth. The loss of Merlin disrupts these pathways, leading to tumorigenesis. We discuss the roles of another two proteins potentially associated with NF2 deficiency as well as Merlin: Yes-associated protein 1 (YAP), which may promote tumor growth, and Raf kinase inhibitory protein (RKIP), which appears to suppress tumor development. Additionally, this review discusses the efficacy of various treatments, such as molecular therapies that target specific pathways or inhibit neomorphic protein-protein interaction caused by NF2 deficiency. This overview not only expands on the fundamental understanding of NF2 pathophysiology but also explores the potential of novel therapeutic targets that affect the clinical approach to NF2 syndrome.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - So-mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Minju Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Mehrabipour M, Nakhaei-Rad S, Dvorsky R, Lang A, Verhülsdonk P, Ahmadian MR, Piekorz RP. SIRT4 as a novel interactor and candidate suppressor of C-RAF kinase in MAPK signaling. Life Sci Alliance 2024; 7:e202302507. [PMID: 38499327 PMCID: PMC10948936 DOI: 10.26508/lsa.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Verhülsdonk
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 PMCID: PMC11629483 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
6
|
Lai TH, Ahmed M, Hwang JS, Bahar ME, Pham TM, Yang J, Kim W, Maulidi RF, Lee DK, Kim DH, Kim HJ, Kim DR. Manipulating RKIP reverses the metastatic potential of breast cancer cells. Front Oncol 2023; 13:1189350. [PMID: 37469399 PMCID: PMC10352845 DOI: 10.3389/fonc.2023.1189350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Breast cancer is a common tumor type among women, with a high fatality due to metastasis. Metastasis suppressors encode proteins that inhibit the metastatic cascade independent of the primary tumor growth. Raf kinase inhibitory protein (RKIP) is one of the promising metastasis suppressor candidates. RKIP is reduced or lost in aggressive variants of different types of cancer. A few pre-clinical or clinical studies have capitalized on this protein as a possible therapeutic target. In this article, we employed two breast cancer cells to highlight the role of RKIP as an antimetastatic gene. One is the low metastatic MCF-7 with high RKIP expression, and the other is MDA-MB-231 highly metastatic cell with low RKIP expression. We used high-throughput data to explore how RKIP is lost in human tissues and its effect on cell mobility. Based on our previous work recapitulating the links between RKIP and SNAI, we experimentally manipulated RKIP in the cell models through its novel upstream NME1 and investigated the subsequent genotypic and phenotypic changes. We also demonstrated that RKIP explained the uneven migration abilities of the two cell types. Furthermore, we identified the regulatory circuit that might carry the effect of an existing drug, Epirubicin, on activating gene transcription. In conclusion, we propose and test a potential strategy to reverse the metastatic capability of breast cancer cells by chemically manipulating RKIP expression.
Collapse
Affiliation(s)
- Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Rizi Firman Maulidi
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University Hospital, and Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| |
Collapse
|
7
|
Argueta CE, Figy C, Bouali S, Guo A, Yeung KC, Fenteany G. RKIP localizes to the nucleus through a bipartite nuclear localization signal and interaction with importin α to regulate mitotic progression. J Biol Chem 2023; 299:103023. [PMID: 36805338 PMCID: PMC10060766 DOI: 10.1016/j.jbc.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Raf kinase inhibitor protein (RKIP) is a multifunctional modulator of intracellular signal transduction. Although most of its functions have been considered cytosolic, we show here that the localization of RKIP is primarily nuclear in both growing and quiescent Madin-Darby canine kidney epithelial cells and in Cal-51 and BT-20 human breast cancer cells. We have identified a putative bipartite nuclear localization signal (NLS) in RKIP that maps to the surface of the protein surrounding a known regulatory region. Like classical NLS sequences, the putative NLS of RKIP is rich in arginine and lysine residues. Deletion of and point mutations in the putative NLS lead to decreased nuclear localization. Point mutation of all the basic residues in the putative NLS of RKIP particularly strongly reduces nuclear localization. We found consistent results in reexpression experiments with wildtype or mutant RKIP in RKIP-silenced cells. A fusion construct of the putative NLS of RKIP alone to a heterologous reporter protein leads to nuclear localization of the fusion protein, demonstrating that this sequence alone is sufficient for import into the nucleus. We found that RKIP interacts with the nuclear transport factor importin α in BT-20 and MDA-MB-231 human breast cancer cells, suggesting importin-mediated active nuclear translocation. Taken together, these findings suggest that a bipartite NLS in RKIP interacts with importin α for active transport of RKIP into the nucleus and that this process may be involved in the regulation of mitotic progression. Evaluating the biological function of nuclear localization of RKIP, we found that the presence of the putative NLS is important for the role of RKIP in mitotic checkpoint regulation in MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Christian E Argueta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher Figy
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Sawssen Bouali
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Anna Guo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Kam C Yeung
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Gabriel Fenteany
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary; ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, Szeged, Hungary.
| |
Collapse
|
8
|
Figy C, Guo A, Fernando VR, Furuta S, Al-Mulla F, Yeung KC. Changes in Expression of Tumor Suppressor Gene RKIP Impact How Cancers Interact with Their Complex Environment. Cancers (Basel) 2023; 15:cancers15030958. [PMID: 36765912 PMCID: PMC9913418 DOI: 10.3390/cancers15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.
Collapse
Affiliation(s)
- Christopher Figy
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Anna Guo
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Veani Roshale Fernando
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
| | - Kam C. Yeung
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
9
|
Yu W, Liao M, Chen Y, Xue R, Shi XM, Liu D, Zhuo FF, Tang H, Lu ZY, Tu PF, Han B, Jia X, Zeng KW. Photoaffinity labelling-based chemoproteomic strategy identifies PEBP1 as the target of ethyl gallate against macrophage activation. Chem Commun (Camb) 2023; 59:1022-1025. [PMID: 36598113 DOI: 10.1039/d2cc05440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the colon with an unmet need for therapeutic targets. Ethyl gallate (EG) is a natural small molecule for UC treatment, but its cellular target is unknown. By labelling EG with a diazirine photocrosslinker and a click chemistry handle, we identified phosphatidyl-ethanolamine binding protein1 (PEBP1) as a direct cellular target of EG by forming hydrogen bonds with Asp70 and Tyr120. In particular, hydrogen/deuterium exchange mass spectrometry indicated that EG induced the sequence (residues 141-153) embedding to inhibit S153 phosphorylation of PEBP1. Additionally, the EG-mediated sequence (residues 108-122) exposure significantly enhanced PEBP1-Raf-1 interaction to block the downstream NF-κB inflammatory pathway in macrophages. Moreover, PEBP1 siRNA substantially reversed the EG-dependent down-regulation of the phosphorylation of IKKβ, IκBα and NF-κB, demonstrating that the NF-κB signal functioned as an essential anti-inflammation mechanism of PEBP1. Collectively, we revealed PEBP1 as a previously undescribed cellular target in macrophages for UC therapy and identified a new allosteric site for PEBP1 biology study using EG as a chemical probe.
Collapse
Affiliation(s)
- Wei Yu
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China.
| | - Min Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yang Chen
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China.
| | - Rui Xue
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China.
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Dan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Fang-Fang Zhuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hui Tang
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China.
| | - Zhi-Yuan Lu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Bo Han
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China.
| | - Xin Jia
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China.
| | - Ke-Wu Zeng
- School of Chemistry and Chemical Engineering/School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China. .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
10
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Xu B, He Y, Zhang Y, Ma Z, Zhang Y, Song W. In Situ Growth of Tunable Gold Nanoparticles by Titania Nanotubes Templated Electrodeposition for Improving Osteogenesis through Modulating Macrophages Polarization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50520-50533. [PMID: 36330544 DOI: 10.1021/acsami.2c13976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Driving macrophages M2 polarization has attracted growing attention for improving osteogenesis. Here, the in situ growth of tunable gold nanoparticles (AuNPs) on titania nanotubes (TiNTs) array was realized by electrodeposition, with the guidance of TiNTs. The fabricated Au layer showed excellent biocompatibility with different osteoimmune effects. Briefly, the Au deposition on 5 and 10 V anodized TiNTs surface could induce RAW264.7 cells to M2 polarization, whereas the Au deposition on 20 V anodized TiNTs surface showed M1 polarization, as indicated by various markers determination through immunofluorescence staining, qPCR, Western blot, and ELISA. Furthermore, the osteogenic differentiation of MC3T3-E1 was significantly enhanced by the macrophages conditioned medium from the Au@10VNTs surface. The in vivo tests also confirmed denser and thicker new trabecula bone formation and more M2 macrophages infiltration both on and adjacent to the Au@10VNTs implant surface. In mechanism, the cytokine array analysis of macrophages conditioned medium from the Au@10VNTs surface revealed the upregulation of pro-healing cytokines such as IL-10 and VEGF and downregulation of pro-inflammatory cytokines such as IL-1β and MCSF. In addition, the NF-κB pathway was significantly inhibited. In conclusion, the electrodeposition of a Au layer guided by TiNTs is a promising strategy for reducing postoperative inflammatory reactions and improving osseointegration through modulating macrophages polarization.
Collapse
Affiliation(s)
- Boya Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhiwei Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
12
|
Papale M, Netti GS, Stallone G, Ranieri E. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools. Cancers (Basel) 2022; 14:cancers14205070. [PMID: 36291854 PMCID: PMC9600137 DOI: 10.3390/cancers14205070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Raf Kinase Inhibitor protein is a protein that governs multiple intracellular signalling involved primarily in the progression of tumours and the development of metastases. In this review, we discussed the main mechanisms that regulate the expression and activity of RKIP with the aim of identifying the link between the transcriptional, post-transcriptional and post-translational events in different tumour settings. We also tried to analyse the studies that have measured the levels of RKIP in biological fluids in order to highlight the possible advantages and potential of RKIP assessment to obtain an accurate diagnosis and prognosis of various tumours. Abstract One of the most dangerous aspects of cancer cell biology is their ability to grow, spread and form metastases in the main vital organs. The identification of dysregulated markers that drive intracellular signalling involved in the malignant transformation of neoplastic cells and the understanding of the mechanisms that regulate these processes is undoubtedly a key objective for the development of new and more targeted therapies. RAF-kinase inhibitor protein (RKIP) is an endogenous tumour suppressor protein that affects tumour cell survival, proliferation, and metastasis. RKIP might serve as an early tumour biomarker since it exhibits significantly different expression levels in various cancer histologies and it is often lost during metastatic progression. In this review, we discuss the specific impact of transcriptional, post-transcriptional and post-translational regulation of expression and activation/inhibition of RKIP and focus on those tumours for which experimental data on all these factors are available. In this way, we could select how these processes cooperate with RKIP expression in (1) Lung cancer; (2) Colon cancer, (3) Breast cancer; (4) myeloid neoplasm and Multiple Myeloma, (5) Melanoma and (6) clear cell Renal Cell Carcinoma. Furthermore, since RKIP seems to be a key marker of the development of several tumours and it may be assessed easily in various biological fluids, here we discuss the potential role of RKIP dosing in more accessible biological matrices other than tissues. Moreover, this objective may intercept the still unmet need to identify new and more accurate markers for the early diagnosis and prognosis of many tumours.
Collapse
Affiliation(s)
- Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
- Correspondence:
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
13
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
14
|
Lee J, Olivieri C, Ong C, Masterson LR, Gomes S, Lee BS, Schaefer F, Lorenz K, Veglia G, Rosner MR. Raf Kinase Inhibitory Protein regulates the cAMP-dependent protein kinase signaling pathway through a positive feedback loop. Proc Natl Acad Sci U S A 2022; 119:e2121867119. [PMID: 35696587 PMCID: PMC9231499 DOI: 10.1073/pnas.2121867119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the β-adrenergic receptor (β-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes β-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the β-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Colin Ong
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Suzana Gomes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Bok-Soon Lee
- Department of Biochemistry & Molecular Medicine, George Washington University, Washington, DC 20037
- George Washington University Cancer Center, George Washington University, Washington, DC 20037
| | - Florian Schaefer
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
15
|
Abd Alla J, Quitterer U. The RAF Kinase Inhibitor Protein (RKIP): Good as Tumour Suppressor, Bad for the Heart. Cells 2022; 11:cells11040654. [PMID: 35203304 PMCID: PMC8869954 DOI: 10.3390/cells11040654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The RAF kinase inhibitor protein, RKIP, is a dual inhibitor of the RAF1 kinase and the G protein-coupled receptor kinase 2, GRK2. By inhibition of the RAF1-MAPK (mitogen-activated protein kinase) pathway, RKIP acts as a beneficial tumour suppressor. By inhibition of GRK2, RKIP counteracts GRK2-mediated desensitisation of G protein-coupled receptor (GPCR) signalling. GRK2 inhibition is considered to be cardioprotective under conditions of exaggerated GRK2 activity such as heart failure. However, cardioprotective GRK2 inhibition and pro-survival RAF1-MAPK pathway inhibition counteract each other, because inhibition of the pro-survival RAF1-MAPK cascade is detrimental for the heart. Therefore, the question arises, what is the net effect of these apparently divergent functions of RKIP in vivo? The available data show that, on one hand, GRK2 inhibition promotes cardioprotective signalling in isolated cardiomyocytes. On the other hand, inhibition of the pro-survival RAF1-MAPK pathway by RKIP deteriorates cardiomyocyte viability. In agreement with cardiotoxic effects, endogenous RKIP promotes cardiac fibrosis under conditions of cardiac stress, and transgenic RKIP induces heart dysfunction. Supported by next-generation sequencing (NGS) data of the RKIP-induced cardiac transcriptome, this review provides an overview of different RKIP functions and explains how beneficial GRK2 inhibition can go awry by RAF1-MAPK pathway inhibition. Based on RKIP studies, requirements for the development of a cardioprotective GRK2 inhibitor are deduced.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-632-9801
| |
Collapse
|
16
|
Harnessing RKIP to Combat Heart Disease and Cancer. Cancers (Basel) 2022; 14:cancers14040867. [PMID: 35205615 PMCID: PMC8870036 DOI: 10.3390/cancers14040867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.
Collapse
|
17
|
Giovanini G, Barros LRC, Gama LR, Tortelli TC, Ramos AF. A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy. Cancers (Basel) 2022; 14:633. [PMID: 35158901 PMCID: PMC8833822 DOI: 10.3390/cancers14030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
Collapse
Affiliation(s)
- Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
| | - Luciana R. C. Barros
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | - Leonardo R. Gama
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | | | - Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| |
Collapse
|
18
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
19
|
Investigation of Marine-Derived Natural Products as Raf Kinase Inhibitory Protein (RKIP)-Binding Ligands. Mar Drugs 2021; 19:md19100581. [PMID: 34677480 PMCID: PMC8539980 DOI: 10.3390/md19100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/31/2023] Open
Abstract
Raf kinase inhibitory protein (RKIP) is an essential regulator of the Ras/Raf-1/MEK/ERK signaling cascade and functions by directly interacting with the Raf-1 kinase. The abnormal expression of RKIP is linked with numerous diseases including cancers, Alzheimer's and diabetic nephropathy. Interestingly, RKIP also plays an indispensable role as a tumor suppressor, thus making it an attractive therapeutic target. To date, only a few small molecules have been reported to modulate the activity of RKIP, and there is a need to explore additional scaffolds. In order to achieve this objective, a pharmacophore model was generated that explores the features of locostatin, the most potent RKIP modulator. Correspondingly, the developed model was subjected to screening, and the mapped compounds from Marine Natural Products (MNP) library were retrieved. The mapped MNPs after ensuing drug-likeness filtration were escalated for molecular docking, where locostatin was regarded as a reference. The MNPs exhibiting higher docking scores than locostatin were considered for molecular dynamics simulations, and their binding affinity towards RKIP was computed via MM/PBSA. A total of five molecules revealed significantly better binding free energy scores than compared to locostatin and, therefore, were reckoned as hits. The hits from the present in silico investigation could act as potent RKIP modulators and disrupt interactions of RKIP with its binding proteins. Furthermore, the identification of potent modulators from marine natural habitat can act as a future drug-discovery source.
Collapse
|
20
|
Yesilkanal AE, Johnson GL, Ramos AF, Rosner MR. New strategies for targeting kinase networks in cancer. J Biol Chem 2021; 297:101128. [PMID: 34461089 PMCID: PMC8449055 DOI: 10.1016/j.jbc.2021.101128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Targeted strategies against specific driver molecules of cancer have brought about many advances in cancer treatment since the early success of the first small-molecule inhibitor Gleevec. Today, there are a multitude of targeted therapies approved by the Food and Drug Administration for the treatment of cancer. However, the initial efficacy of virtually every targeted treatment is often reversed by tumor resistance to the inhibitor through acquisition of new mutations in the target molecule, or reprogramming of the epigenome, transcriptome, or kinome of the tumor cells. At the core of this clinical problem lies the assumption that targeted treatments will only be efficacious if the inhibitors are used at their maximum tolerated doses. Such aggressive regimens create strong selective pressure on the evolutionary progression of the tumor, resulting in resistant cells. High-dose single agent treatments activate alternative mechanisms that bypass the inhibitor, while high-dose combinatorial treatments suffer from increased toxicity resulting in treatment cessation. Although there is an arsenal of targeted agents being tested clinically and preclinically, identifying the most effective combination treatment plan remains a challenge. In this review, we discuss novel targeted strategies with an emphasis on the recent cross-disciplinary studies demonstrating that it is possible to achieve antitumor efficacy without increasing toxicity by adopting low-dose multitarget approaches to treatment of cancer and metastasis.
Collapse
Affiliation(s)
- Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA.
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandre F Ramos
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades, University of São Paulo, Brazil
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
21
|
Parate S, Rampogu S, Lee G, Hong JC, Lee KW. Exploring the Binding Interaction of Raf Kinase Inhibitory Protein With the N-Terminal of C-Raf Through Molecular Docking and Molecular Dynamics Simulation. Front Mol Biosci 2021; 8:655035. [PMID: 34124147 PMCID: PMC8194344 DOI: 10.3389/fmolb.2021.655035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions are indispensable physiological processes regulating several biological functions. Despite the availability of structural information on protein-protein complexes, deciphering their complex topology remains an outstanding challenge. Raf kinase inhibitory protein (RKIP) has gained substantial attention as a favorable molecular target for numerous pathologies including cancer and Alzheimer’s disease. RKIP interferes with the RAF/MEK/ERK signaling cascade by endogenously binding with C-Raf (Raf-1 kinase) and preventing its activation. In the current investigation, the binding of RKIP with C-Raf was explored by knowledge-based protein-protein docking web-servers including HADDOCK and ZDOCK and a consensus binding mode of C-Raf/RKIP structural complex was obtained. Molecular dynamics (MD) simulations were further performed in an explicit solvent to sample the conformations for when RKIP binds to C-Raf. Some of the conserved interface residues were mutated to alanine, phenylalanine and leucine and the impact of mutations was estimated by additional MD simulations and MM/PBSA analysis for the wild-type (WT) and constructed mutant complexes. Substantial decrease in binding free energy was observed for the mutant complexes as compared to the binding free energy of WT C-Raf/RKIP structural complex. Furthermore, a considerable increase in average backbone root mean square deviation and fluctuation was perceived for the mutant complexes. Moreover, per-residue energy contribution analysis of the equilibrated simulation trajectory by HawkDock and ANCHOR web-servers was conducted to characterize the key residues for the complex formation. One residue each from C-Raf (Arg398) and RKIP (Lys80) were identified as the druggable “hot spots” constituting the core of the binding interface and corroborated by additional long-time scale (300 ns) MD simulation of Arg398Ala mutant complex. A notable conformational change in Arg398Ala mutant occurred near the mutation site as compared to the equilibrated C-Raf/RKIP native state conformation and an essential hydrogen bonding interaction was lost. The thirteen binding sites assimilated from the overall analysis were mapped onto the complex as surface and divided into active and allosteric binding sites, depending on their location at the interface. The acquired information on the predicted 3D structural complex and the detected sites aid as promising targets in designing novel inhibitors to block the C-Raf/RKIP interaction.
Collapse
Affiliation(s)
- Shraddha Parate
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Korea
| | - Shailima Rampogu
- Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Department of Bio and Medical Big Data (BK21 Four Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Korea
| | - Gihwan Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Korea
| | - Jong Chan Hong
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Department of Bio and Medical Big Data (BK21 Four Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Korea
| |
Collapse
|
22
|
Bonavida B. RKIP: A Pivotal Gene Product in the Pathogenesis of Cancer. Cancers (Basel) 2021; 13:2488. [PMID: 34065283 PMCID: PMC8160767 DOI: 10.3390/cancers13102488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since its original cloning by Yeung et al [...].
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, College of Life Sciences, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Yesilkanal AE, Yang D, Valdespino A, Tiwari P, Sabino AU, Nguyen LC, Lee J, Xie XH, Sun S, Dann C, Robinson-Mailman L, Steinberg E, Stuhlmiller T, Frankenberger C, Goldsmith E, Johnson GL, Ramos AF, Rosner MR. Limited inhibition of multiple nodes in a driver network blocks metastasis. eLife 2021; 10:e59696. [PMID: 33973518 PMCID: PMC8128439 DOI: 10.7554/elife.59696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis suppression by high-dose, multi-drug targeting is unsuccessful due to network heterogeneity and compensatory network activation. Here, we show that targeting driver network signaling capacity by limited inhibition of core pathways is a more effective anti-metastatic strategy. This principle underlies the action of a physiological metastasis suppressor, Raf Kinase Inhibitory Protein (RKIP), that moderately decreases stress-regulated MAP kinase network activity, reducing output to transcription factors such as pro-metastastic BACH1 and motility-related target genes. We developed a low-dose four-drug mimic that blocks metastatic colonization in mouse breast cancer models and increases survival. Experiments and network flow modeling show limited inhibition of multiple pathways is required to overcome variation in MAPK network topology and suppress signaling output across heterogeneous tumor cells. Restricting inhibition of individual kinases dissipates surplus signal, preventing threshold activation of compensatory kinase networks. This low-dose multi-drug approach to decrease signaling capacity of driver networks represents a transformative, clinically relevant strategy for anti-metastatic treatment.
Collapse
Affiliation(s)
- Ali Ekrem Yesilkanal
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Payal Tiwari
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Alan U Sabino
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades; University of São PauloSão PauloBrazil
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Jiyoung Lee
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Xiao-He Xie
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Siqi Sun
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Christopher Dann
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Ethan Steinberg
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Timothy Stuhlmiller
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Casey Frankenberger
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Gary L Johnson
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Alexandre F Ramos
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades; University of São PauloSão PauloBrazil
| | - Marsha R Rosner
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
24
|
Fudalej MM, Badowska-Kozakiewicz AM. Improved understanding of gastrointestinal stromal tumors biology as a step for developing new diagnostic and therapeutic schemes. Oncol Lett 2021; 21:417. [PMID: 33841578 DOI: 10.3892/ol.2021.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
A gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract, with an estimated incidence of 10-15 per 1 million per year. While preparing holistic care for patients with GIST diagnosis, scientists might face several difficulties - insufficient risk stratification, acquired or secondary resistance to imatinib, or the need for an exceptional therapy method associated with wild-type tumors. This review summarizes recent advances associated with GIST biology that might enhance diagnostic and therapeutic strategies. New molecules might be incorporated into risk stratification schemes due to their proven association with outcomes; however, further research is required. Therapies based on the significant role of angiogenesis, immunology, and neural origin in the GIST biology could become a valuable enhancement of currently implemented treatment schemes. Generating miRNA networks that would predict miRNA regulatory functions is a promising approach that might help in better selection of potential biomarkers and therapeutical targets in cancer, including GISTs.
Collapse
Affiliation(s)
- Marta Magdalena Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
25
|
Li Y, Tian Z, Tan Y, Lian G, Chen S, Chen S, Li J, Li X, Huang K, Chen Y. Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer 2020; 19:109. [PMID: 32580736 PMCID: PMC7315508 DOI: 10.1186/s12943-020-01229-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously reported an inverse relationship between B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and Raf kinase inhibitory protein (RKIP), which is associated with the prognosis of gastric cancer (GC). In this study, we further explored the microRNA (miRNA) regulatory mechanism between Bmi-1 and RKIP. METHODS Microarray analysis was first carried out to identify miRNA profiles that were differentially expressed in cells overexpressing Bmi-1. Then, miRNAs that could regulate RKIP were identified. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to measure the expression of Bmi-1, miR-155, miR-27a and RKIP. RKIP was confirmed as a target of miR-27a and miR-155 through luciferase reporter assays, qRT-PCR and Western blotting. The effects of the Bmi-1/miR-27a/RKIP and Bmi-1/miR-155/RKIP axes on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. RESULTS The downregulation of RKIP by Bmi-1 occurred at the protein but not mRNA level. This indicates probable posttranscriptional regulation. miRNA expression profiles of cells with ectopic expression of Bmi-1 were analyzed and compared to those of control cells by microarray analysis. A total of 51 upregulated and 72 downregulated miRNAs were identified. Based on publicly available algorithms, miR-27a and miR-155 were predicted, selected and demonstrated to target RKIP. Bmi-1, miR-27a and miR-155 are elevated in human GC and associated with poor prognosis of GC, while RKIP is expressed at lower levels in GC and correlated with good prognosis. Then, in vitro tests shown that in addition to regulating RKIP expression via miR-27a and miR-155, Bmi-1 was also able to regulate the migration, invasion, proliferation, colony-formation ability and chemosensitivity of GC cells through the same pathway. Finally, the in vivo test showed similar results, whereby the knockdown of the Bmi-1 gene led to the inhibition of tumor growth, metastasis and chemoresistance through miR-27a and miR-155. CONCLUSIONS Bmi-1 was proven to induce the expression of miR-27a and miR-155 and thus promote tumor metastasis and chemoresistance by targeting RKIP in GC. Overall, miR-27a and miR-155 might be promising targets for the screening, diagnosis, prognosis, treatment and disease monitoring of GC.
Collapse
Affiliation(s)
- Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shangxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Xuanna Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|
26
|
Penas C, Apraiz A, Muñoa I, Arroyo-Berdugo Y, Rasero J, Ezkurra PA, Velasco V, Subiran N, Bosserhoff AK, Alonso S, Asumendi A, Boyano MD. RKIP Regulates Differentiation-Related Features in Melanocytic Cells. Cancers (Basel) 2020; 12:cancers12061451. [PMID: 32503139 PMCID: PMC7352799 DOI: 10.3390/cancers12061451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Raf Kinase Inhibitor Protein (RKIP) has been extensively reported as an inhibitor of key signaling pathways involved in the aggressive tumor phenotype and shows decreased expression in several types of cancers. However, little is known about RKIP in melanoma or regarding its function in normal cells. We examined the role of RKIP in both primary melanocytes and malignant melanoma cells and evaluated its diagnostic and prognostic value. IHC analysis revealed a significantly higher expression of RKIP in nevi compared with early-stage (stage I–II, AJCC 8th) melanoma biopsies. Proliferation, wound healing, and collagen-coated transwell assays uncovered the implication of RKIP on the motility but not on the proliferative capacity of melanoma cells as RKIP protein levels were inversely correlated with the migration capacity of both primary and metastatic melanoma cells but did not alter other parameters. As shown by RNA sequencing, endogenous RKIP knockdown in primary melanocytes triggered the deregulation of cellular differentiation-related processes, including genes (i.e., ZEB1, THY-1) closely related to the EMT. Interestingly, NANOG was identified as a putative transcriptional regulator of many of the deregulated genes, and RKIP was able to decrease the activation of the NANOG promoter. As a whole, our data support the utility of RKIP as a diagnostic marker for early-stage melanomas. In addition, these findings indicate its participation in the maintenance of a differentiated state of melanocytic cells by modulating genes intimately linked to the cellular motility and explain the progressive decrease of RKIP often described in tumors.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Iraia Muñoa
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA 15213, USA
| | - Pilar A. Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Veronica Velasco
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Maria D. Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Correspondence: ; Tel.: +34-946015689
| |
Collapse
|
27
|
Endo T. Dominant-negative antagonists of the Ras-ERK pathway: DA-Raf and its related proteins generated by alternative splicing of Raf. Exp Cell Res 2019; 387:111775. [PMID: 31843497 DOI: 10.1016/j.yexcr.2019.111775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras-ERK pathway regulates a variety of cellular and physiological responses, including cell proliferation, differentiation, morphogenesis during animal development, and homeostasis in adults. Deregulated activation of this pathway leads to cellular transformation and tumorigenesis as well as RASopathies. Several negative regulators of this pathway have been documented. Each of these proteins acts at particular points of the pathway, and they exert specific cellular and physiological functions. Among them, DA-Raf1 (DA-Raf), which is a splicing isoform of A-Raf and contains the Ras-binding domain but lacks the kinase domain, antagonizes the Ras-ERK pathway in a dominant-negative manner. DA-Raf induces apoptosis, skeletal myocyte differentiation, lung alveolarization, and fulfills tumor suppressor functions by interfering with the Ras-ERK pathway. After the findings of DA-Raf, several kinase-domain-truncated splicing variants of Raf proteins have also been reported. The family of these truncated proteins represents the concept that alternative splicing can generate antagonistic proteins to their full-length counterparts.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
28
|
Gabriela-Freitas M, Pinheiro J, Raquel-Cunha A, Cardoso-Carneiro D, Martinho O. RKIP as an Inflammatory and Immune System Modulator: Implications in Cancer. Biomolecules 2019; 9:biom9120769. [PMID: 31766768 PMCID: PMC6995551 DOI: 10.3390/biom9120769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP), an important modulator of intracellular signalling pathways, is commonly downregulated in multiple cancers. This reduction, or loss of expression, is correlated not only with the presence of metastasis, contributing to RKIP’s classification as a metastasis suppressor, but also with tumour aggressiveness and poor prognosis. Recent findings suggest a strong involvement of RKIP in the modulation of tumour microenvironment components, particularly by controlling the infiltration of specific immune cells and secretion of pro-metastatic factors. Additionally, RKIP interaction with multiple signalling molecules seems to potentiate its function as a regulator of inflammatory processes, mainly through stimulation of anti- or pro-inflammatory cytokines. Furthermore, RKIP is involved in the modulation of immunotherapeutic drugs response, through diverse mechanisms that sensitize cells to apoptosis. In the present review, we will provide updated information about the role of RKIP as an inflammatory and immune modulator and its potential implications in cancer will be addressed.
Collapse
Affiliation(s)
- Maria Gabriela-Freitas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil
- Correspondence: ; Tel.: +351-253604868
| |
Collapse
|
29
|
Raquel-Cunha A, Cardoso-Carneiro D, Reis RM, Martinho O. Current Status of Raf Kinase Inhibitor Protein (RKIP) in Lung Cancer: Behind RTK Signaling. Cells 2019; 8:cells8050442. [PMID: 31083461 PMCID: PMC6562953 DOI: 10.3390/cells8050442] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most deadly neoplasm with the highest incidence in both genders, with non-small cell lung cancer (NSCLC) being the most frequent subtype. Somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are key drivers of NSCLC progression, with EGFR inhibitors being particularly beneficial for patients carrying the so-called “EGFR-sensitizing mutations”. However, patients eventually acquire resistance to these EGFR inhibitors, and a better knowledge of other driven and targetable proteins will allow the design of increasingly accurate drugs against patients’ specific molecular aberrations. Raf kinase inhibitory protein (RKIP) is an important modulator of relevant intracellular signaling pathways, including those controlled by EGFR, such as MAPK. It has been reported that it has metastasis suppressor activity and a prognostic role in several solid tumors, including lung cancer. In the present review, the potential use of RKIP in the clinic as a prognostic biomarker and predictor of therapy response in lung cancer is addressed.
Collapse
Affiliation(s)
- Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil.
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil.
| |
Collapse
|