1
|
Zhang RN, Fan JG. Lipid metabolism-related long noncoding RNAs: A potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2024; 30:3799-3802. [PMID: 39351428 PMCID: PMC11438626 DOI: 10.3748/wjg.v30.i33.3799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The incidence rates of hepatocellular carcinoma (HCC) have increased in recent decades. Despite advancements in therapy and early diagnosis improving short-term prognosis, long-term outcomes remain poor. Long noncoding RNAs (lncRNAs) and lipid metabolism play crucial roles in the development and progression of HCC. Enhanced lipid synthesis promotes HCC progression, and lncRNAs can reprogram the expression of lipogenic enzymes. Consequently, lipid metabolism-related (LMR)-lncRNAs regulate lipid anabolism, accelerating the onset and progression of HCC. This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui-Nan Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
2
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Bucio-Ortiz L, Enriquez-Navarro K, Maldonado-Rodríguez A, Torres-Flores JM, Cevallos AM, Salcedo M, Lira R. Occult Hepatitis B Virus Infection in Hepatic Diseases and Its Significance for the WHO's Elimination Plan of Viral Hepatitis. Pathogens 2024; 13:662. [PMID: 39204261 PMCID: PMC11357063 DOI: 10.3390/pathogens13080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Liver damage can progress through different stages, resulting in cirrhosis or hepatocellular carcinoma (HCC), conditions that are often associated with viral infections. Globally, 42% and 21% of cirrhosis cases correlate with HBV and HCV, respectively. In the Americas, the prevalence ranges from 1% to 44%. The WHO has the goal to eliminate viral hepatitis, but it is important to consider occult HBV infection (OBI), a clinical condition characterized by the presence of HBV genomes despite negative surface antigen tests. This review aims to provide an overview of recent data on OBI, focusing on its role in the development of hepatic diseases and its significance in the WHO Viral Hepatitis Elimination Plan. Specific HBV gene mutations have been linked to HCC and other liver diseases. Factors related to the interactions between OBI and mutated viral proteins, which induce endoplasmic reticulum stress and oxidative DNA damage, and the potential role of HBV integration sites (such as the TERT promoter) have been identified in HCC/OBI patients. Health initiatives for OBI research in Latin American countries are crucial to achieving the WHO's goal of eradicating viral hepatitis by 2030, given the difficulty in diagnosing OBI and its unclear association with hepatic diseases.
Collapse
Affiliation(s)
- Leticia Bucio-Ortiz
- Medicina y Carcinogénesis Experimental, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de Mexico 09340, Mexico; (L.B.-O.); (K.E.-N.)
| | - Karina Enriquez-Navarro
- Medicina y Carcinogénesis Experimental, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de Mexico 09340, Mexico; (L.B.-O.); (K.E.-N.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de Mexico 06720, Mexico;
| | - Angélica Maldonado-Rodríguez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de Mexico 06720, Mexico;
| | - Jesús Miguel Torres-Flores
- Laboratorio Nacional de Vacunología y Virus Tropicales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11350, Mexico;
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
| | - Mauricio Salcedo
- Unidad de Investigación Biomédica Oncológica Genómica, Hospital de Gineco Pediatría 3-A, Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada (OOAD) Cd Mx Norte, Ciudad de Mexico 07760, Mexico;
| | - Rosalia Lira
- Unidad de Investigación Biomédica Oncológica Genómica, Hospital de Gineco Pediatría 3-A, Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada (OOAD) Cd Mx Norte, Ciudad de Mexico 07760, Mexico;
| |
Collapse
|
4
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Jung YY, Baek SH, Um JY, Ahn KS. Fangchinoline targets human renal cell carcinoma cells through modulation of apoptotic and non‑apoptotic cell deaths. Pathol Res Pract 2024; 260:155445. [PMID: 38996614 DOI: 10.1016/j.prp.2024.155445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
The process of apoptosis is one of the essential processes involved in maintenance of homeostasis in the human body. It can aid to remove misfolded proteins or cellular organelles. This sequence is especially necessary in cancer cells. However, specifically targeting already apoptotic pathways can induce drug resistance in cancer cells and hence drugs can induce cell death by alternative mechanism. We investigated whether fangchinoline (FCN) can target renal carcinoma cells by inducing multiple cell death mechanisms. Both paraptosis, autophagy, and apoptosis were induced by FCN through stimulation of diverse molecular signaling pathways. FCN induced ROS production with GSH/GSSG imbalance, and ER stress. In addition, formation of autophagosome and autophagy related markers were stimulated by FCN. Moreover, FCN induced cell cycle arrest and PARP cleavage. Except for blocking protein synthesis, these three cell death pathways were found to be complementarily working together with each other. FCN also exhibited synergistic effects with paclitaxel in inducing programmed cell death in RCC cells. Our data indicates that FCN could induce apoptotic cell death and non-apoptotic cell death pathways and can be con-tribute to development of novel cancer prevention or therapy.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, the Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
6
|
Kumar Saini S, Singh D. Mitochondrial mechanisms in Cerebral Ischemia-Reperfusion Injury: Unravelling the intricacies. Mitochondrion 2024; 77:101883. [PMID: 38631511 DOI: 10.1016/j.mito.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Cerebral ischemic stroke is a major contributor to physical impairments and premature death worldwide. The available reperfusion therapies for stroke in the form of mechanical thrombectomy and intravenous thrombolysis increase the risk of cerebral ischemia-reperfusion (I-R) injury due to sudden restoration of blood supply to the ischemic region. The injury is manifested by hemorrhagic transformation, worsening of neurological impairments, cerebral edema, and progression to infarction in surviving patients. A complex network of multiple pathological processes has been known to be involved in the pathogenesis of I-R injury. Primarily, 3 major contributors namely oxidative stress, neuroinflammation, and mitochondrial failure have been well studied in I-R injury. A transcription factor, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial defensive role in resisting the deleterious effects of I-R injury and potentiating the cellular protective mechanisms. In this review, we delve into the critical function of mitochondria and Nrf2 in the context of cerebral I-R injury. We summarized how oxidative stress, neuroinflammation, and mitochondrial anomaly contribute to the pathophysiology of I-R injury and further elaborated the role of Nrf2 as a pivotal guardian of cellular integrity. The review further highlighted Nrf2 as a putative therapeutic target for mitochondrial dysfunction in cerebral I-R injury management.
Collapse
Affiliation(s)
- Shiv Kumar Saini
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
8
|
Direito R, Barbalho SM, Sepodes B, Figueira ME. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024; 16:577. [PMID: 38794239 PMCID: PMC11124874 DOI: 10.3390/pharmaceutics16050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing trend among consumers to seek out natural foods and products with natural ingredients. This shift in consumer preferences had a direct impact on both food and pharmaceutical industries, leading to a focus of scientific research and commercial efforts to meet these new demands. The aim of this work is to review recent available scientific data on foods of interest, such as the artichoke, gooseberry, and polygonoideae plants, as well as olive oil and red raspberries. Interestingly, the urgency of solutions to the climate change emergency has brought new attention to by-products of grapevine bunch stem and cane, which have been found to contain bioactive compounds with potential health benefits. There is a pressing need for a faster process of translating scientific knowledge from the laboratory to real-world applications, especially in the face of the increasing societal burden associated with non-communicable diseases (NCDs), environmental crises, the post-pandemic world, and ongoing violent conflicts around the world.
Collapse
Affiliation(s)
- Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Bruno Sepodes
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
9
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Heidari-Kalvani N, Alizadeh-Fanalou S, Yarahmadi S, Fallah S, Alipourfard I, Farahmandian N, Barjesteh F, Bahreini E. Investigation of the effects of catharanthine and Q10 on Nrf2 and its association with MMP-9, MRP1, and Bcl-2 and apoptosis in a model of hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2507-2522. [PMID: 37855932 DOI: 10.1007/s00210-023-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Since the role of Nrf2 in cancer cell survival has been highlighted, the pharmacological modulation of the Nrf2-Keap1 pathway may provide new opportunities for cancer treatment. This study purposed to use ubiquinone (Q10) as an antioxidant and catharanthine alkaloid as a cAMP inducer suppressing HepG2 cells by reducing Nrf2 level. The effects of Q10 and catharanthine on HepG2 cells in terms of viability were analyzed by MTT test. MTT results were used to determine the effective concentration of both drugs for the subsequent treatment and analysis. Subsequently, the effects of Q10 and catharanthine in a single and combined manner on oxidant/antioxidant status, apoptosis, metastasis, and drug resistance of HepG2 cells were investigated by related methods. Both Q10 and catharanthine decreased the level of oxidative stress products and increased antioxidant capacity in HepG2 cells. Nrf2 gene expression decreased by Q10, but catharanthine unexpectedly increased it. Following Nrf2 alterations, the expression levels of MMP-9 and MRP1 involved in metastasis and drug resistance were significantly and dose-dependently decreased by Q10, while catharanthine slightly increased both. However, both drugs increased caspase 3/7 activity and apoptosis rate, and the effect of Q10 on apoptosis was stronger than that of catharanthine. Most of the effects of the combination treatments were similar to those of the Q10 single treatment and indicated the dominant effect over the catharanthine component. Despite the antioxidant and apoptotic properties of both agents, Q10 was better than catharanthine in inducing apoptosis, counteracting drug resistance, and metastasis in HepG2 cells.
Collapse
Affiliation(s)
- Nafiseh Heidari-Kalvani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sudabeh Fallah
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Navid Farahmandian
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Man S, Bi J, Liu F, Xie W, Ma L. Vitamin C Inhibited Pulmonary Metastasis through Activating Nrf2/HO-1 Pathway. Mol Nutr Food Res 2024; 68:e2300706. [PMID: 38419398 DOI: 10.1002/mnfr.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/12/2023] [Indexed: 03/02/2024]
Abstract
As an important nutritional component, vitamin C (Vc) shows good antitumor activity in a variety of cancer, but there are few studies in pulmonary metastasis. In order to verify its anticancer and antimetastatic effect, the study sets up H22 pulmonary metastasis mouse model. The results show that intraperitoneal injection of Vc inhibits pulmonary metastasis through up-regulating the expression of Nrf2, HO-1, cleaved caspases 3 and 9, and causing DNA damage and apoptosis which is similar to the pro-oxidant effect of Vc in p53 null cells (H1299 cells). Meanwhile, oral administration of Vc up-regulates the expression of p53, directly activates Nrf2/HO-1 pathway, increases expression of cleaved caspases 3 and 9, and ultimately inhibits pulmonary metastasis, which is the same as the antioxidant result of Vc in p53 wild-type cells. In addition, Vc inhibits the proliferation and migration of lung cancer cells in a concentration-dependent manner and has little cytotoxic effects on normal cells. Notably, the experiment further illustrates that besides intravenous Vc, oral Vc significantly inhibits the pulmonary metastasis in mice. All in all, these findings provide new clues for Vc-treated pulmonary metastasis in clinical research.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jingxian Bi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Furui Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenwen Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
12
|
Li C, Liang G, Yan K, Wang Y. NRF2 mutation enhances the immune escape of hepatocellular carcinoma by reducing STING activation. Biochem Biophys Res Commun 2024; 698:149536. [PMID: 38271834 DOI: 10.1016/j.bbrc.2024.149536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor usually hyperactivated in hepatocellular carcinoma (HCC). In addition, about 14 % of HCC patients carry mutation in NRF2 or Kelch-like ECH-associated protein 1 (Keap1), a NRF2 inhibitor, both of which lead to constitutive activation of NRF2. It has been widely reported that NRF2 plays important roles in the proliferation, differentiation and metastasis of tumor cells. But as an important gene involved in antioxidation and anti-inflammation, little studies have focused on its role in tumor immune escape. Here we found that NRF2 gain-of-function mutation leads to reduced expression of STING and decreased infiltration of peripheral immune cells through which way it helps the tumor cells to evade from immune surveillance. This phenomenon can be reversed by STING overexpression. Our study also revealed that NRF2 mutation greatly reduced the effect of STING activating based immunotherapy. It is important to simultaneously inhibit the activity of NRF2 when using STING agonist for the treatment of HCC patients carrying NRF2 mutation.
Collapse
Affiliation(s)
- Cheng Li
- Department of Oncological Surgery, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China
| | - Gang Liang
- Department of General Surgery, NO.215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, China
| | - Ke Yan
- Department of Oncological Surgery, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China
| | - Yongheng Wang
- Department of Oncological Surgery, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
13
|
Bu Q, Deng Y, Wang Q, Deng R, Hu S, Pei Z, Zhang Y. STC2 is a potential biomarker of hepatocellular carcinoma with its expression being upregulated in Nrf1α-deficient cells, but downregulated in Nrf2-deficient cells. Int J Biol Macromol 2023; 253:127575. [PMID: 37866563 DOI: 10.1016/j.ijbiomac.2023.127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Nrf1 (encoded by Nfe2l1) and Nrf2 (encoded by Nfe2l2), as two key members of the CNC-bZIP transcription factor, exhibit significant functional differences in their pathophysiology. Our previous findings demonstrated that loss of Nrf1α (i.e., a full-length isoform of Nrf1) promotes HepG2-derived tumor growth in xenograft mice, but malgrowth of the xenograft tumor is significantly suppressed by knockout of Nrf2. To gain insights into the mechanism underlying such marked distinctions in their pathologic phenotypes, we mined transcriptome data from liver cancer in the TCGA database to establish a prognostic model and calculate predicted risk scores for each cell line. The results revealed that knockout of Nrf1α markedly increased the risk score in HepG2 cells, whereas the risk score was reduced by knockout of Nrf2. Notably, stanniocalcin 2 (STC2), a biomarker associated with liver cancer, that is upexpressed in hepatocellular carcinoma (HCC) tissues with a reduction in the overall survival ratio of those patients. We observed increased expression levels of STC2 in Nrf1α-/- cells but decreased expression in Nrf2-/- cells. These findings suggested that STC2 may play a role in mediating the distinction between Nrf1α-/- and Nrf2-/-. Such potential function of STC2 was further corroborated through a series of experiments combined with transcriptomic sequencing. The results revealed that STC2 functions as a dominant tumor-promoter, because the STC2-leading increases in clonogenicity of hepatoma cells and malgrowth of relevant xenograft tumor were almost completely abolished in STC2-/- cells. Together, these demonstrate that STC2 could be paved as a potential therapeutic target, albeit as a diagnostic marker, for HCC.
Collapse
Affiliation(s)
- Qiqi Bu
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yangxu Deng
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Qing Wang
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Rongzhen Deng
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Zhigang Pei
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
14
|
Kalantari L, Ghotbabadi ZR, Gholipour A, Ehymayed HM, Najafiyan B, Amirlou P, Yasamineh S, Gholizadeh O, Emtiazi N. A state-of-the-art review on the NRF2 in Hepatitis virus-associated liver cancer. Cell Commun Signal 2023; 21:318. [PMID: 37946175 PMCID: PMC10633941 DOI: 10.1186/s12964-023-01351-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
According to a paper released and submitted to WHO by IARC scientists, there would be 905,700 new cases of liver cancer diagnosed globally in 2020, with 830,200 deaths expected as a direct result. Hepatitis B virus (HBV) hepatitis C virus (HCV), and hepatitis D virus (HDV) all play critical roles in the pathogenesis of hepatocellular carcinoma (HCC), despite the rising prevalence of HCC due to non-infectious causes. Liver cirrhosis and HCC are devastating consequences of HBV and HCV infections, which are widespread worldwide. Associated with a high mortality rate, these infections cause about 1.3 million deaths annually and are the primary cause of HCC globally. In addition to causing insertional mutations due to viral gene integration, epigenetic alterations and inducing chronic immunological dysfunction are all methods by which these viruses turn hepatocytes into cancerous ones. While expanding our knowledge of the illness, identifying these pathways also give possibilities for novel diagnostic and treatment methods. Nuclear factor erythroid 2-related factor 2 (NRF2) activation is gaining popularity as a treatment option for oxidative stress (OS), inflammation, and metabolic abnormalities. Numerous studies have shown that elevated Nrf2 expression is linked to HCC, providing more evidence that Nrf2 is a critical factor in HCC. This aberrant Nrf2 signaling drives cell proliferation, initiates angiogenesis and invasion, and imparts drug resistance. As a result, this master regulator may be a promising treatment target for HCC. In addition, the activation of Nrf2 is a common viral effect that contributes to the pathogenesis, development, and chronicity of virus infection. However, certain viruses suppress Nrf2 activity, which is helpful to the virus in maintaining cellular homeostasis. In this paper, we discussed the influence of Nrf2 deregulation on the viral life cycle and the pathogenesis associated with HBV and HCV. We summed up the mechanisms for the modulation of Nrf2 that are deregulated by these viruses. Moreover, we describe the molecular mechanism by which Nrf2 is modulated in liver cancer, liver cancer stem cells (LCSCs), and liver cancer caused by HBV and HCV. Video Abstract.
Collapse
Affiliation(s)
- Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Arsalan Gholipour
- Nanotechnology Research Institute, School of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | | - Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
16
|
Hao Y, Han L, Wu A, Bochkis IM. Pioneer Factor Foxa2 Mediates Chromatin Conformation Changes for Activation of Bile Acid Targets of FXR. Cell Mol Gastroenterol Hepatol 2023; 17:237-249. [PMID: 37879405 PMCID: PMC10765059 DOI: 10.1016/j.jcmgh.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Transcription factors regulate gene expression that orchestrates liver physiology. Many bind at distal enhancers and chromatin looping is required to activate their targets. Chromatin architecture has been linked to essential functions of the liver, including metabolism and sexually dimorphic gene expression. We have previously shown that pioneer factor Foxa2 opens chromatin for binding of nuclear receptors farnesoid X receptor (FXR) and liver X receptor-α during acute ligand activation. FXR is activated by bile acids and deletion of Foxa2 in the liver results in intrahepatic cholestasis. We hypothesized that Foxa2 also enables chromatin conformational changes during ligand activation and performed genome-wide studies to test this hypothesis. METHODS We performed Foxa2 HiChIP (Hi-C and ChIP) to assess Foxa2-dependent long-range interactions in mouse livers treated with either vehicle control or FXR agonist GW4064. RESULTS HiChIP contact analysis shows that global chromatin interactions are dramatically increased during FXR activation. Ligand-treated livers exhibit extensive redistribution of topological associated domains and substantial increase in Foxa2-anchored loops, suggesting Foxa2 is involved in dynamic chromatin conformational changes. We demonstrate that chromatin conformation, including genome-wide interactions, topological associated domains, and intrachromosomal and interchromosomal Foxa2-anchored loops, drastically changes on addition of FXR agonist. Additional Foxa2 binding in ligand-activated state leads to formation of Foxa2-anchored loops, leading to distal interactions and activation of gene expression of FXR targets. CONCLUSIONS Ligand activation of FXR, and likely of related receptors, requires global changes in chromatin architecture. We determine a novel role for Foxa2 in enabling these conformational changes, extending its function in bile acid metabolism.
Collapse
Affiliation(s)
- Yi Hao
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Lu Han
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Anqi Wu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Irina M Bochkis
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
17
|
Lin L, Wu Q, Lu F, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Ning Z, She T, Hu M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol 2023; 13:1184079. [PMID: 37810967 PMCID: PMC10559910 DOI: 10.3389/fonc.2023.1184079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
18
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
19
|
Sin SQ, Mohan CD, Goh RMWJ, You M, Nayak SC, Chen L, Sethi G, Rangappa KS, Wang L. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities. Cancer Metastasis Rev 2023; 42:741-764. [PMID: 36547748 DOI: 10.1007/s10555-022-10071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.
Collapse
Affiliation(s)
- Shant Qinxiang Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Institute, Hangzhou, 31002, China
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 31002, China
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Lee W, Mun Y, Lee KY, Park JM, Chang TS, Choi YJ, Lee BH. Mefenamic Acid-Upregulated Nrf2/SQSTM1 Protects Hepatocytes against Oxidative Stress-Induced Cell Damage. TOXICS 2023; 11:735. [PMID: 37755745 PMCID: PMC10536671 DOI: 10.3390/toxics11090735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Mefenamic acid (MFA) is a commonly prescribed non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory and analgesic properties. MFA is known to have potent antioxidant properties and a neuroprotective effect against oxidative stress. However, its impact on the liver is unclear. This study aimed to elucidate the antioxidative effects of MFA and their underlying mechanisms. We observed that MFA treatment upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Treatment with various anthranilic acid derivative-class NSAIDs, including MFA, increased the expression of sequestosome 1 (SQSTM1) in HepG2 cells. MFA disrupted the interaction between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2, activating the Nrf2 signaling pathway. SQTM1 knockdown experiments revealed that the effect of MFA on the Nrf2 pathway was masked in the absence of SQSTM1. To assess the cytoprotective effect of MFA, we employed tert-Butyl hydroperoxide (tBHP) as a ROS inducer. Notably, MFA exhibited a protective effect against tBHP-induced cytotoxicity in HepG2 cells. This cytoprotective effect was abolished when SQSTM1 was knocked down, suggesting the involvement of SQSTM1 in mediating the protective effect of MFA against tBHP-induced toxicity. In conclusion, this study demonstrated that MFA exhibits cytoprotective effects by upregulating SQSTM1 and activating the Nrf2 pathway. These findings improve our understanding of the pharmacological actions of MFA and highlight its potential as a therapeutic agent for oxidative stress-related conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (W.L.); (Y.M.); (K.-Y.L.); (J.-M.P.); (T.-S.C.)
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (W.L.); (Y.M.); (K.-Y.L.); (J.-M.P.); (T.-S.C.)
| |
Collapse
|
21
|
Narożna M, Krajka-Kuźniak V, Bednarczyk-Cwynar B, Baer-Dubowska W. Unlocking the Potential: Novel NSAIDs Hybrids Unleash Chemopreventive Power toward Liver Cancer Cells through Nrf2, NF-κB, and MAPK Signaling Pathways. Molecules 2023; 28:5759. [PMID: 37570726 PMCID: PMC10420225 DOI: 10.3390/molecules28155759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
HCC is a highly aggressive malignancy with limited treatment options. In this study, novel conjugates of non-steroidal anti-inflammatory drugs (NSAIDs)-Ibuprofen and Ketoprofen-with oleanolic acid oximes derivatives (OAO) were synthesized, and their activity as modulators of signaling pathways involved in HCC pathogenesis was evaluated in normal THLE-2 liver cells, and HCC-derived HepG2 cells. The results demonstrated that conjugation with OAO derivatives reduces the cytotoxicity of parent compounds in both cell lines. In THLE-2 cells, treatment with conjugates resulted in increased activation of the Nrf2-ARE pathway. An opposite effect was observed in HepG2 cells. In the later reduction of NF-κB, it was observed along with modulation of MAPK signaling pathways (AKT, ERK, p38, p70S6K, and JNK). Moreover, STAT3, STAT5, and CREB transcription factors on protein levels were significantly reduced as a result of treatment with IBU- and KET-OAO derivatives conjugates. The most active were conjugates with OAO-morpholide. Overall, the findings of this study demonstrate that IBU-OAO and KET-OAO derivative conjugates modulate the key signaling pathways involved in hepatic cancer development. Their effect on specific signaling pathways varied depending on the structure of the conjugate. Since the conjugation of IBU and KET with OAO derivatives reduced their cytotoxicity, the conjugates may be considered good candidates for the prevention of liver cancer.
Collapse
Affiliation(s)
- Maria Narożna
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825, NE 13th Street, Oklahoma City, OK 73104, USA;
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland;
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, 6, Grunwaldzka Street, 60-780 Poznań, Poland;
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcicki Street, 60-781 Poznań, Poland;
| |
Collapse
|
22
|
Elkateb AS, Nofal S, Ali SA, Atya HB. Camptothecin Sensitizes Hepatocellular Carcinoma Cells to Sorafenib- Induced Ferroptosis Via Suppression of Nrf2. Inflammation 2023:10.1007/s10753-023-01823-4. [PMID: 37171695 PMCID: PMC10359394 DOI: 10.1007/s10753-023-01823-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Sorafenib is a potent inducer of ferroptosis used to manage hepatocellular carcinoma (HCC). The ferroptosis induced by sorafenib activates the p62-Keap1-Nrf2 pathway. Abnormal activation of Nrf2 reduces sorafenib's efficiency and ferroptosis action and induces sorafenib's resistance. Consequently, our study tried to study the effect of a novel combination of sorafenib and Camptothecin (CPT, Nrf2 inhibitor) to improve sorafenib's ferroptosis action and reduce sorafenib resistance in the treatment of HCC. We evaluated the efficacy of sorafenib and/or CPT using HepG2 and Huh7 cell lines. MTT assay evaluated the anti-proliferation effects. The combination index (CI) and dose reduction index (DRI) were calculated using Isobologram analysis. Malondialdehyde (MDA), total antioxidant capacity (TAC), iron concentration, glutathione peroxidase (GPX4), and glutathione reductase (GR) activity assays were used to determine the ferroptosis action of drugs. Western blot was used to investigate the expression of the implicated proteins. Bioinformatics tools were used to determine the correlation between these proteins. Finally, the HPLC technique is used to measure cellular drug uptake. Our results revealed a strong synergism between sorafenib and CPT. The synergetic combination significantly increases lipid peroxidation and iron concentration, decreases TAC, GPX4 and GR activity, and reduces the expression of both Nrf2 and SLC7A11. The downregulation of Nrf2 expression has a vital role in the reduction of resistance mediators to sorafenib against HCC cells like (p62, MT1G, and ABCG2) and improves the cellular uptake of sorafenib. The current study provided evidence that Nrf2 inhibition by CPT improves sorafenib's sensitivity and reduces sorafenib's resistance via the augmentation of sorafenib's ferroptosis action.
Collapse
Affiliation(s)
- Ahmed S Elkateb
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Sahar A Ali
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Hanaa B Atya
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| |
Collapse
|
23
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
24
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Sethi G, Rath P, Chauhan A, Ranjan A, Choudhary R, Ramniwas S, Sak K, Aggarwal D, Rani I, Tuli HS. Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements. Pharmaceutics 2023; 15:712. [PMID: 36840034 PMCID: PMC9960374 DOI: 10.3390/pharmaceutics15020712] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Due to rising incidence rates of liver cancer and worries about the toxicity of current chemotherapeutic medicines, the hunt for further alternative methods to treat this malignancy has escalated. Compared to chemotherapy, quercetin, a flavonoid, is relatively less harmful to normal cells and is regarded as an excellent free-radical scavenger. Apoptotic cell death of cancer cells caused by quercetin has been demonstrated by many prior studies. It is present in many fruits, vegetables, and herbs. Quercetin targets apoptosis, by upregulating Bax, caspase-3, and p21 while downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, and Bcl-2. Additionally, it has been reported to increase STAT3 protein degradation in liver cancer cells while decreasing STAT3 activation. Quercetin has a potential future in chemoprevention, based on substantial research on its anticancer effects. The current review discusses quercetin's mechanisms of action, nanodelivery strategies, and other potential cellular effects in liver cancer.
Collapse
Affiliation(s)
- Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| |
Collapse
|
26
|
Shi Y, Zhang J, Luo K, Pan S, Shi H, Xiong L, Du S. The Roles of Iron and Ferroptosis in Human Chronic Diseases. Biochemistry 2023. [DOI: 10.5772/intechopen.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. A growing number of studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in different diseases. As a double-edged sword, activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. Therefore, the development of more efficacious ferroptosis agonists or inhibitors remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics or cardiovascular and cerebrovascular diseases and neurodegenerative diseases therapeutics.
Collapse
|
27
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
28
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
29
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2023; 97:103-120. [PMID: 36443493 DOI: 10.1007/s00204-022-03421-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, PGIMER, Chandigarh, 160012, India
| | | | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.,Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Tejveer Singh
- Translanatal Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura, 140401, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
31
|
Siswanto FM, Handayani MDN, Firmasyah RD, Oguro A, Imaoka S. Nrf2 Regulates the Expression of CYP2D6 by Inhibiting the Activity of Krüppel-Like Factor 9 (KLF9). Curr Drug Metab 2023; 24:667-681. [PMID: 37916628 DOI: 10.2174/0113892002271342231013095255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
AIMS The aim of the present study is to gain insight into the biology of Parkinson's disease (PD) and cancer to drive translational advances enabling more effective prevention and/or potential treatments. BACKGROUND The expression of Cytochrome P450 2D6 (CYP2D6) is correlated with various diseases such as PD and cancer; therefore, exploring its regulatory mechanism at transcriptional levels is of interest. NF-E2-related factor 2 (Nrf2) has been known to be responsible for regulating phase II and phase III drug-metabolizing genes. OBJECTIVES The objectives of this study are to investigate the transcriptional regulation of CYP2D6 by Nrf2 and to analyze its role in PD and cancer. METHODS Nrf2 was transiently expressed in human hepatoma Hep3B cells, and the expression of CYP2D6 was examined by RT-qPCR. The promoter activity of CYP2D6 and the DNA binding of Nrf2 were examined by luciferase and ChIP assay, respectively. We then investigated the expression and correlation of Nrf2 and CYP2D6 in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. RESULTS In the present study, we demonstrated that Nrf2 down-regulated CYP2D6 mRNA expression in hepatoma Hep3B cells. Mechanistically, Nrf2 binds to the antioxidant responsive element (ARE) in the proximity of krüppel- like factor 9 (KLF9)-binding site within the -550/+51 of CYP2D6 promoter. The inhibition and activation of Nrf2 enhanced and suppressed KLF9 effects on CYP2D6 expression, respectively. The expression levels of Nrf2 and CYP2D6 were upregulated and downregulated in the PD patient GEO datasets compared to the healthy control tissues, and Nrf2 was negatively correlated with CYP2D6. In liver cancer patients, decreased CYP2D6 levels were apparent and associated with a lower probability of survival. CONCLUSION Our work revealed the inhibitory role of Nrf2 in regulating CYP2D6 expression. Moreover, Nrf2- dependent regulation of CYP2D6 can be used as a prognostic factor and therapeutic strategy in PD and liver cancer.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Maria Dara Novi Handayani
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Rita Dewi Firmasyah
- Department of Chemistry and Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
32
|
Tuli HS, Rath P, Chauhan A, Ranjan A, Ramniwas S, Sak K, Aggarwal D, Kumar M, Dhama K, Lee EHC, Yap KCY, Capinpin SM, Kumar AP. Cucurbitacins as Potent Chemo-Preventive Agents: Mechanistic Insight and Recent Trends. Biomolecules 2022; 13:biom13010057. [PMID: 36671442 PMCID: PMC9855938 DOI: 10.3390/biom13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cucurbitacins constitute a group of cucumber-derived dietary lipids, highly oxidized tetracyclic triterpenoids, with potential medical uses. These compounds are known to interact with a variety of recognized cellular targets to impede the growth of cancer cells. Accumulating evidence has suggested that inhibition of tumor cell growth via induction of apoptosis, cell-cycle arrest, anti-metastasis and anti-angiogenesis are major promising chemo-preventive actions of cucurbitacins. Cucurbitacins may be a potential choice for investigations of synergism with other drugs to reverse cancer cells' treatment resistance. The detailed molecular mechanisms underlying these effects include interactions between cucurbitacins and numerous cellular targets (Bcl-2/Bax, caspases, STAT3, cyclins, NF-κB, COX-2, MMP-9, VEGF/R, etc.) as well as control of a variety of intracellular signal transduction pathways. The current study is focused on the efforts undertaken to find possible molecular targets for cucurbitacins in suppressing diverse malignant processes. The review is distinctive since it presents all potential molecular targets of cucurbitacins in cancer on one common podium.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
- Correspondence: (H.S.T.); (A.P.K.)
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 134007, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Kenneth Chun-Yong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Sharah Mae Capinpin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Correspondence: (H.S.T.); (A.P.K.)
| |
Collapse
|
33
|
Targeting PCSK9 in Liver Cancer Cells Triggers Metabolic Exhaustion and Cell Death by Ferroptosis. Cells 2022; 12:cells12010062. [PMID: 36611859 PMCID: PMC9818499 DOI: 10.3390/cells12010062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Deregulated lipid metabolism is a common feature of liver cancers needed to sustain tumor cell growth and survival. We aim at taking advantage of this vulnerability and rewiring the oncogenic metabolic hub by targeting the key metabolic player pro-protein convertase subtilisin/kexin type 9 (PCSK9). We assessed the effect of PCSK9 inhibition using the three hepatoma cell lines Huh6, Huh7 and HepG2 and validated the results using the zebrafish in vivo model. PCSK9 deficiency led to strong inhibition of cell proliferation in all cell lines. At the lipid metabolic level, PCSK9 inhibition was translated by an increase in intracellular neutral lipids, phospholipids and polyunsaturated fatty acids as well as a higher accumulation of lipid hydroperoxide. Molecular signaling analysis involved the disruption of the sequestome 1/Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (p62/Keap1/Nrf2) antioxidative axis, leading to ferroptosis, for which morphological features were confirmed by electron and confocal microscopies. The anti-tumoral effects of PCSK9 deficiency were validated using xenograft experiments in zebrafish. The inhibition of PCSK9 was effective in disrupting the oncometabolic process, inducing metabolic exhaustion and enhancing the vulnerability of cancer cells to iron-triggered lipid peroxidation. We provide strong evidence supporting the drug repositioning of anti-PCSK9 approaches to treat liver cancers.
Collapse
|
34
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
35
|
Jung YY, Um JY, Sethi G, Ahn KS. Fangchinoline abrogates growth and survival of hepatocellular carcinoma by negative regulation of c-met/HGF and its associated downstream signaling pathways. Phytother Res 2022; 36:4542-4557. [PMID: 35867025 DOI: 10.1002/ptr.7573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 12/13/2022]
Abstract
Among all cancers, hepatocellular carcinoma (HCC) remains a lethal disease with limited treatment options. In this study, we have analyzed the possible inhibitory effects of Fangchinoline (FCN) on c-Met, a protein known to regulate the rapid phosphorylation of downstream signals, as well as mediate aberrant growth, metastasis, survival, and motility in cancer. FCN inhibited the activation of c-Met and its downstream signals PI3K, AKT, mTOR, MEK, and ERK under in vitro settings. Moreover, c-Met gene silencing lead to suppression of PI3K/AKT/mTOR and MEK/ERK signaling pathways, and induced apoptotic cell death upon exposure to FCN. In addition, FCN markedly inhibited the expression of the various oncogenic proteins such as Bcl-2/xl, survivin, IAP-1/2, cyclin D1, and COX-2. In vivo studies in HepG2 cells xenograft mouse model showed that FCN could significantly attenuate the tumor volume and weight, without affecting significant loss in the body weight. Similar to in vitro studies, expression level of c-Met and PI3K/AKT/mTOR, MEK/ERK signals was also suppressed by FCN in the tissues obtained from mice. Therefore, the novel findings of this study suggest that FCN can potentially function as a potent anticancer agent against HCC.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
36
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
37
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
38
|
Salama OAM, Moawed FSM, Moustafa EM, Kandil EI. Attenuation of N-Nitrosodiethylamine -Induced Hepatocellular Carcinoma by Piceatannol and/or Cisplatin: The Interplay between Nuclear Factor (Erythroid Derived 2)-like 2 and Redox Status. Asian Pac J Cancer Prev 2022; 23:3895-3903. [PMID: 36444603 PMCID: PMC9930969 DOI: 10.31557/apjcp.2022.23.11.3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The natural compound's alternative and complementary uses have increased hopes for hepatocellular cancer treatment (HCC). OBJECTS The goal of this study was to see if Piceatannol (PIC) in combination with cisplatin has a synergistic effect on N, N-nitrosodiethylamine (DEN)-induced HCC in rats. METHODS Tissue antioxidant enzymes, malondialdehyde (MDA), and nuclear factor erythroid 2 related factors 2 (Nrf2) and tumor necrosis factor α (TNF-α) gene expression were all measured. Nuclear Factor Kabba B (NF-κB) was also tested, as well as hepatic caspase 3 and NAD (P) H quinone oxidoreductase 1 (NQO1). Liver specimens were subjected to histopathological analysis. RESULTS When compared to the HCC group, piceatannol and/or cisplatin caused a significant improvement in liver function tests, as well as a significant modulation in Nrf2 gene expression and antioxidant enzyme activities, as well as a significant decrease in tissue MDA, TNF-α, NF-κB levels, NQO1 activity, and prompt and caspase-3 activities. When the PIC and/or cisplatin combination was compared to each of these compounds alone, the results were substantial. CONCLUSION PIC in combination with cisplatin has been shown to have a synergistic anticancer impact through modulating Nrf2 and redox state. In addition, adding PIC to an HCC therapy plan that includes chemotherapeutic medicines may boost the efficacy of cisplatin while reducing its negative effects.
Collapse
Affiliation(s)
- Omnia AM Salama
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Fatma SM Moawed
- Department of Health Radiation Research, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt. ,For Correspondence:
| | - Enas M Moustafa
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Eman I Kandil
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
39
|
Jayaprakash S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Lee EHC, Yap KCH, Sethi G, Kumar AP, Kunnumakkara AB. Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. Int J Mol Sci 2022; 23:ijms231810952. [PMID: 36142861 PMCID: PMC9501100 DOI: 10.3390/ijms231810952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal cancer (EC), an aggressive and poorly understood disease, is one of the top causes of cancer-related fatalities. GLOBOCAN 2020 reports that there are 544,076 deaths and 604,100 new cases expected worldwide. Even though there are various advancements in treatment procedures, this cancer has been reported as one of the most difficult cancers to cure, and to increase patient survival; treatment targets still need to be established. Nuclear receptors (NRs) are a type of transcription factor, which has a key role in several biological processes such as reproduction, development, cellular differentiation, stress response, immunity, metabolism, lipids, and drugs, and are essential regulators of several diseases, including cancer. Numerous studies have demonstrated the importance of NRs in tumor immunology and proved the well-known roles of multiple NRs in modulating proliferation, differentiation, and apoptosis. There are surplus of studies conducted on NRs and their implications in EC, but only a few studies have demonstrated the diagnostic and prognostic potential of NRs. Therefore, there is still a paucity of the role of NRs and different ways to target them in EC cells to stop them from spreading malignancy. This review emphasizes the significance of NRs in EC by discussing their diverse agonists as well as antagonists and their response to tumor progression. Additionally, we emphasize NRs’ potential to serve as a novel therapeutic target and their capacity to treat and prevent EC.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - E. Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (A.P.K.); (A.B.K.)
| |
Collapse
|
40
|
Banerjee B, Olajide OJ, Bortolussi G, Muro AF. Activation of Alternative Bilirubin Clearance Pathways Partially Reduces Hyperbilirubinemia in a Mouse Model Lacking Functional Ugt1a1 Activity. Int J Mol Sci 2022; 23:ijms231810703. [PMID: 36142606 PMCID: PMC9505366 DOI: 10.3390/ijms231810703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
Bilirubin is a heme catabolite and Ugt1a1 is the only enzyme involved in the biological elimination of bilirubin. Partially functional or non-functional Ugt1a1 may result in neuronal damage and death due to the accumulation of unconjugated bilirubin in the brain. The understanding of the role of alternative bilirubin detoxification mechanisms that can reduce bilirubin toxicity risk is crucial for developing novel therapeutic strategies. To provide a proof-of-principle showing whether activation of alternative detoxification pathways could lead to life-compatible bilirubin levels in the absence of Ugt1a1 activity, we used Ugt1−/− hyperbilirubinemic mice devoid of bilirubin glucuronidation activity. We treated adult Ugt1−/− mice with TCPOBOP, a strong agonist of the constitutive androstane receptor (CAR). TCPOBOP treatment decreased plasma and liver tissue bilirubin levels by about 38%, and resulted in the transcriptional activation of a vast array of genes involved in bilirubin transport and metabolism. However, brain bilirubin level was unaltered. We observed ~40% degradation of bilirubin in the liver microsomes from TCPOBOP treated Ugt1−/− mice. Our findings suggest that, in the absence of Ugt1a1, the activation of alternative bilirubin clearance pathways can partially improve hyperbilirubinemic conditions. This therapeutic approach may only be considered in a combinatorial manner along with other treatments.
Collapse
|
41
|
Aslaminabad R, Rahimianshahreza N, Hosseini SA, Armagan G, Khan AK, Özbolat G, Ahmed OS, Mardi Azar A, Adili A, Dağcı T, Konyalıoğlu S, Özgönül AM. Regulation of Nrf2 and Nrf2-related proteins by ganoderma lucidum ın hepatocellular carcinoma. Mol Biol Rep 2022; 49:9605-9612. [PMID: 36038810 DOI: 10.1007/s11033-022-07862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND HCC is among the most common cancer. Ganoderma lucidum (G.lucidum) has been essential in preventing and treating cancer. The Nrf2 signaling cascade is a cell protective mechanism against further damage, such as cancer development. This signaling pathway upregulates the cytoprotective genes and is vital in eliminating xenobiotics and reactive oxygen. This study aimed to show the potential cytotoxic activity of G. lucidum aqueous extract in HCC. METHODS AND RESULTS MTT assay was used to detect cell viability. Nrf2-related proteins were measured by western blotting, and the flow cytometry method assayed cell population in different cycle phases. Cell viability was 49% and 47% following G. lucidum extract at 100 µg/ml at 24 and 48 h treatments, respectively. G. lucidum extract (aqueous, 100 or 50 µg/ml) treatments for 24, 48, or 72 h were able to significantly change the cytoplasmic/nuclear amount of Nrf2 and HO-1, NQO1 protein levels. Moreover, at both concentrations, arrest of the G0/G1 cell cycle was stimulated in HCC. CONCLUSIONS The activation of the Nrf2 signaling pathways seems to be among the mechanisms underlining the protective and therapeutic action of G. lucidum against HCC.
Collapse
Affiliation(s)
- Ramin Aslaminabad
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | - Negin Rahimianshahreza
- Department of Pharmacology and Toxicology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Amirhossein Hosseini
- Department of Genetics, Faculty of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Kashif Khan
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | | | - Omar Saad Ahmed
- Department of Physical Education and Sports Sciences, Al-Turath University College, Baghdad, Iraq
| | - Amir Mardi Azar
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA.,Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taner Dağcı
- Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sibel Konyalıoğlu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
42
|
Non-coding RNAs in EMT regulation: Association with tumor progression and therapy response. Eur J Pharmacol 2022; 932:175212. [DOI: 10.1016/j.ejphar.2022.175212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
|
43
|
Ashrafizadeh M, Rabiee N, Kumar AP, Sethi G, Zarrabi A, Wang Y. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today 2022; 27:2181-2198. [PMID: 35589014 DOI: 10.1016/j.drudis.2022.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules involved in gene regulation at transcriptional, post-transcriptional, and epigenetic levels. LncRNAs participate in regulating apoptosis and autophagy in pancreatic cancer (PCa) and can promote and/or decrease the proliferation rate of tumor cells. The metastasis of PCa cells is tightly regulated by lncRNAs and they can affect the mechanism of epithelial-mesenchymal transition (EMT) to modulate metastasis. The drug resistance of PCa cells, especially to gemcitabine, can be affected by lncRNAs. In addition, lncRNAs enriched in exosomes can be transferred among tumor cells to regulate their proliferation and metastasis. Antitumor compounds, such as curcumin and ginsenosides, can regulate lncRNA expression in PCa therapy. As we discuss here, the expression level of lncRNAs can be considered as both a diagnostic and prognostic tool in patients with PCa.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea; School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey.
| | - Yuzhuo Wang
- Department of Urological Sciences, Vancouver, BC V6H3Z6, Canada; Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| |
Collapse
|
44
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
45
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Bonura A, Giacomarra M, Montana G. The Keap1 signaling in the regulation of HSP90 pathway. Cell Stress Chaperones 2022; 27:197-204. [PMID: 35362892 PMCID: PMC9106781 DOI: 10.1007/s12192-022-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
The Keap1 protein is the master modulator of Nrf2 pathway; moreover, it is the hub of such important processes as cancer, cell stress, inflammation, and chemio- and radio-resistance. That is why Keap1 has become an intriguing pharmacological target. Many recent data show that Keap1 interacts with HSP90 protein. In this study, we use ferulic acid (FA) as antioxidant and anti-inflammatory agent, able to relieve inflammatory response. It is known that treatment with 100 μg of FA can significantly decrease the oxidative stress, so it turns to be useful to study the antioxidant regulation. The RAW 264.7 cells transfected with si-Keap1 and LPS treated are the in vitro model used to study the effects of Keap1 silencing on HSP90 activities and the FA antioxidant modulation. Immunoblot data and qPCR analysis show that Keap1 is involved in HSP90 modulation and on anti-oxidative response. Keap1 silencing affects negatively COX2 activation; in fact western blot and qPCR analysis conducted on RAW 264.7 cells Keap1silenced highlight that LPS treatment does not induce COX2 activation. In addition, the FA anti-oxidative and modulatory effect is abolished in COX2 pathway. The same results are point out using human A549 cell line with an allelic mutation on Keap1 gene, and the protein results are partially inactive. This preliminary study points out that Keap1protein is involved in HSP90 and anti-oxidative pathway regulation.
Collapse
Affiliation(s)
- Angela Bonura
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Roma, Italy
| | - Miriam Giacomarra
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giovanna Montana
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Ricerca e Innovazione Biomedica, Via Ugo La Malfa 153, 90146, Palermo, Italy.
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Roma, Italy.
| |
Collapse
|
47
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Regulation of apoptosis and autophagy by albendazole in human colon adenocarcinoma cells. Biochimie 2022; 198:155-166. [DOI: 10.1016/j.biochi.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022]
|
49
|
Bano I, Horky P, Abbas SQ, Majid M, Bilal AHM, Ali F, Behl T, Hassan SSU, Bungau S. Ferroptosis: A New Road towards Cancer Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072129. [PMID: 35408533 PMCID: PMC9000380 DOI: 10.3390/molecules27072129] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently described programmed cell death mechanism that is characterized by the buildup of iron (Fe)-dependent lipid peroxides in cells and is morphologically, biochemically, and genetically distinct from other forms of cell death, having emerged to play an important role in cancer biology. Ferroptosis has significant importance during cancer treatment because of the combination of factors, including suppression of the glutathione peroxidase 4 (Gpx4), cysteine deficiency, and arachidonoyl (AA) peroxidation, which cause cells to undergo ferroptosis. However, the physiological significance of ferroptosis throughout development is still not fully understood. This current review is focused on the factors and molecular mechanisms with the diagrammatic illustrations of ferroptosis that have a role in the initiation and sensitivity of ferroptosis in various malignancies. This knowledge will open a new road for research in oncology and cancer management.
Collapse
Affiliation(s)
- Iqra Bano
- Faculty of Bio-Sciences, SBBUVAS, Sakrand 67210, Pakistan
- Correspondence: (I.B.); (S.S.u.H.); (S.B.)
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan;
| | - Muhammad Majid
- Department of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Akram Hafiz Muhammad Bilal
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (I.B.); (S.S.u.H.); (S.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (I.B.); (S.S.u.H.); (S.B.)
| |
Collapse
|
50
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|