1
|
Ríos-Hoyo A, Monzonís X, Vidal J, Linares J, Montagut C. Unveiling acquired resistance to anti-EGFR therapies in colorectal cancer: a long and winding road. Front Pharmacol 2024; 15:1398419. [PMID: 38711991 PMCID: PMC11070789 DOI: 10.3389/fphar.2024.1398419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Emergence of acquired resistance limits the efficacy of the anti-EGFR therapies cetuximab and panitumumab in metastatic colorectal cancer. In the last decade, preclinical and clinical cohort studies have uncovered genomic alterations that confer a selective advantage to tumor cells under EGFR blockade, mainly downstream re-activation of RAS-MEK signaling and mutations in the extracellular domain of EGFR (EGFR-ECD). Liquid biopsies (genotyping of ctDNA) have been established as an excellent tool to easily monitor the dynamics of genomic alterations resistance in the blood of patients and to select patients for rechallenge with anti-EGFR therapies. Accordingly, several clinical trials have shown clinical benefit of rechallenge with anti-EGFR therapy in genomically-selected patients using ctDNA. However, alternative mechanisms underpinning resistance beyond genomics -mainly related to the tumor microenvironment-have been unveiled, specifically relevant in patients receiving chemotherapy-based multi-drug treatment in first line. This review explores the complexity of the multifaceted mechanisms that mediate secondary resistance to anti-EGFR therapies and potential therapeutic strategies to circumvent acquired resistance.
Collapse
Affiliation(s)
- Alejandro Ríos-Hoyo
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Xavier Monzonís
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Joana Vidal
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Jenniffer Linares
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Clara Montagut
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| |
Collapse
|
2
|
Zhou J, Liu C, Tang Y, Li Z, Cao Y. Phenotypic switching as a non-genetic mechanism of resistance predicts antibody therapy regimens. iScience 2024; 27:109450. [PMID: 38544569 PMCID: PMC10966312 DOI: 10.1016/j.isci.2024.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 10/13/2024] Open
Abstract
Despite the specificity and effectiveness of antibody therapy, resistance to treatment remains a major barrier for their broad clinical applications. While genetic mutations are known to be critical, the impact of non-genetic mechanisms, such as epigenetic changes and phenotypic adaptations, on resistance to antibody-dependent cellular cytotoxicity (ADCC) is not fully understood. Our study investigated the non-genetic resistance mechanisms that colorectal cancer cells develop against cetuximab and the resulting ADCC pressure. Resistance clones exhibited decreased EGFR/HER2 expressions, enriched interferon-related pathways, and lower NK cell activation. Interestingly, these resistance clones regained sensitivity upon the withdrawal of therapeutic pressure, implying phenotypic plasticity and reversibility. To counter resistance, we developed a mathematical model recapitulating the phenotypic switching dynamics. The model predicted that intermittent dosing strategy outperforms continuous regimen in delaying treatment resistance. Our findings have implications for improving efficacy and circumventing resistance to targeted antibody therapies.
Collapse
Affiliation(s)
- Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhongbo Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Eradication of KRAS mutant colorectal adenocarcinoma by PEGylated gold nanoparticles-cetuximab conjugates through ROS-dependent apoptosis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
4
|
Lin J, Zhang J, Wang K, Guo S, Yang W. Zwitterionic polymer coated sorafenib-loaded Fe 3O 4 composite nanoparticles induced ferroptosis for cancer therapy. J Mater Chem B 2022; 10:5784-5795. [PMID: 35861050 DOI: 10.1039/d2tb01242a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Ferroptosis, as a form of cell death different from apoptosis, is very promising for the treatment of cancer in nonapoptotic systems. Since iron is a key component in the induction of ferroptosis in cells, the use of iron-based nanomaterials in treating cancer through ferroptosis is of great significance. Therefore, in this study, magnetic nanoparticles (MNP) were coated with the zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and then loaded with sorafenib (SRF) to obtain drug-loaded composite nanoparticles MNP@PMPC-SRF. Fe3O4 provided a large number of ferric/ferrous ions as an iron source, releasing Fe2+ for the regulation of the ferroptosis process and enhancing the effect of the induced cellular ferroptosis on the treatment of colon cancer with SRF. The zwitterionic polymer PMPC effectively extended the blood circulation time, resulting in an enhanced tumor accumulation of the nanodrug. MNP@PMPC-SRF exhibited good biocompatibility for in vivo application and showed an excellent tumor inhibitory effect on HCT116 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Jingbo Lin
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Jiaxin Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Kuang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Shengdi Guo
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| |
Collapse
|
5
|
Wang Y, Yin X, Chen L, Yin Z, Zuo Z. Discovery and evaluation of cytisine n-isoflavones as novel egfr/her2 dual inhibitors. Bioorg Chem 2022; 127:105868. [DOI: 10.1016/j.bioorg.2022.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
|
6
|
Gomes INF, da Silva-Oliveira RJ, da Silva LS, Martinho O, Evangelista AF, van Helvoort Lengert A, Leal LF, Silva VAO, dos Santos SP, Nascimento FC, Lopes Carvalho A, Reis RM. Comprehensive Molecular Landscape of Cetuximab Resistance in Head and Neck Cancer Cell Lines. Cells 2022; 11:154. [PMID: 35011716 PMCID: PMC8750399 DOI: 10.3390/cells11010154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.
Collapse
Affiliation(s)
- Izabela N. F. Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Renato J. da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos 14785-002, Brazil
| | - Luciane Sussuchi da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; (O.M.); (F.C.N.)
| | - Adriane F. Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - André van Helvoort Lengert
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos 14785-002, Brazil
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | | | - Flávia Caroline Nascimento
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; (O.M.); (F.C.N.)
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (R.J.d.S.-O.); (L.S.d.S.); (A.F.E.); (A.v.H.L.); (L.F.L.); (V.A.O.S.); (A.L.C.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal; (O.M.); (F.C.N.)
- Laboratory of Molecular Diagnosis, Barretos Cancer Hospital, Barretos 14784-400, Brazil;
- 3ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
9
|
Zulkifli A, Tan FH, Areeb Z, Stuart SF, Gomez J, Paradiso L, Luwor RB. Carfilzomib Promotes the Unfolded Protein Response and Apoptosis in Cetuximab-Resistant Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22137114. [PMID: 34281166 PMCID: PMC8269417 DOI: 10.3390/ijms22137114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.
Collapse
Affiliation(s)
- Ahmad Zulkifli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Fiona H. Tan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Zammam Areeb
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Sarah F. Stuart
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Juliana Gomez
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Lucia Paradiso
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
| | - Rodney B. Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Clinical Sciences Building, Parkville, VIC 3050, Australia; (A.Z.); (F.H.T.); (Z.A.); (S.F.S.); (J.G.); (L.P.)
- Fiona Elsey Cancer Research Institute, Federation University Australia, Ballarat, VIC 3350, Australia
- Correspondence: ; Tel.: +61-3-8344-3027; Fax: +61-3-9347-6488
| |
Collapse
|
10
|
Al-Taie Z, Liu D, Mitchem JB, Papageorgiou C, Kaifi JT, Warren WC, Shyu CR. Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. J Biomed Inform 2021; 118:103792. [PMID: 33915273 DOI: 10.1016/j.jbi.2021.103792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Danlu Liu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Jonathan B Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Wesley C Warren
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
11
|
Stepath M, Zülch B, Maghnouj A, Schork K, Turewicz M, Eisenacher M, Hahn S, Sitek B, Bracht T. Systematic Comparison of Label-Free, SILAC, and TMT Techniques to Study Early Adaption toward Inhibition of EGFR Signaling in the Colorectal Cancer Cell Line DiFi. J Proteome Res 2019; 19:926-937. [DOI: 10.1021/acs.jproteome.9b00701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Birgit Zülch
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum 44892, Germany
| | | | | | | | | | | | | | | |
Collapse
|