1
|
Lin A, Miano JM, Fisher EA, Misra A. Chronic inflammation and vascular cell plasticity in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1408-1423. [PMID: 39653823 DOI: 10.1038/s44161-024-00569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Vascular smooth muscle cells, endothelial cells and macrophages undergo phenotypic conversions throughout atherosclerosis progression, both as a consequence of chronic inflammation and as subsequent drivers of it. The inflammatory hypothesis of atherosclerosis has been catapulted to the forefront of cardiovascular research as clinical trials have shown that anti-inflammatory therapy reduces adverse cardiovascular events. However, no current therapies have been specifically designed to target the phenotype of plaque cells. Fate mapping has revealed that plaque cells convert to detrimental and beneficial cell phenotypes during atherosclerosis, with cumulative evidence highlighting that vascular cell plasticity is intimately linked with plaque inflammation, ultimately impacting lesion stability. Here we review vascular cell plasticity during atherosclerosis in the context of the chronic inflammatory plaque microenvironment. We highlight the need to better understand how plaque cells behave during therapeutic intervention. We then propose modulating plaque cell phenotype as an unexplored therapeutic paradigm in the clinical setting.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ashish Misra
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Jung M, Nicholas N, Grindrod S, Dritschilo A. Dual-targeting class I HDAC inhibitor and ATM activator, SP-1-303, preferentially inhibits estrogen receptor positive breast cancer cell growth. PLoS One 2024; 19:e0306168. [PMID: 39008483 PMCID: PMC11249239 DOI: 10.1371/journal.pone.0306168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Dual-targeting chromatin regulation and DNA damage repair signaling presents a promising avenue for cancer therapy. Applying rational drug design, we synthesized a potent dual-targeting small molecule, SP-1-303. Here, we report SP-1-303 as a class I isoform selective histone deacetylase (HDAC) inhibitor and an activator of the ataxia-telangiectasia mutated protein (ATM). In vitro enzymatic assays demonstrated selective inhibition of HDAC1 and HDAC3. Cellular growth inhibition studies show that SP-1-303 differentially inhibits growth of estrogen receptor positive breast cancer (ER+ BC) cells with effective growth inhibition concentrations (EC50) for MCF-7 and T47D cells ranging from 0.32 to 0.34 μM, compared to 1.2-2.5 μM for triple negative breast cancer cells, and ~12 μM for normal breast epithelial cells. Western analysis reveals that SP-1-303 decreases estrogen receptor alpha (ER-α) expression and increases p53 protein expression, while inducing the phosphorylation of ATM and its substrates, BRCA1 and p53, in a time-dependent manner in ER+ BC cells. Pharmacokinetic evaluation demonstrates an area under the curve (AUC) of 5227.55 ng/ml × h with an elimination half-life of 1.26 h following intravenous administration in a rat model. Collectively, SP-1-303 emerges as a novel second generation class I (HDAC1 and HDAC3) selective HDAC inhibitor, and ATM activator, capable of modulating ER expression, and inhibiting growth of ER+ BC cells. Combined targeting of class I HDACs and ATM by SP-1-303 offers a promising therapeutic approach for treating ER+ breast cancers and supports further preclinical evaluation.
Collapse
Affiliation(s)
- Mira Jung
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Nicole Nicholas
- Department of Biochemistry & Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Scott Grindrod
- Shuttle Pharmaceuticals, Inc., Rockville, Maryland, United States of America
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
- Shuttle Pharmaceuticals, Inc., Rockville, Maryland, United States of America
| |
Collapse
|
4
|
Lee HY, Hsu MJ, Chang HH, Chang WC, Huang WC, Cho EC. Enhancing anti-cancer capacity: Novel class I/II HDAC inhibitors modulate EMT, cell cycle, and apoptosis pathways. Bioorg Med Chem 2024; 109:117792. [PMID: 38897139 DOI: 10.1016/j.bmc.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.
Collapse
Affiliation(s)
- Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Min-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Hao-Hsien Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Chiao Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Wan-Chen Huang
- Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan.
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Yang Y, Pu Y, Huang X, Liao M, Zhang Y. Discovering novel derivatives of STAT3 and HDAC inhibitors with anti-tumor activity. Chem Biol Drug Des 2024; 104:e14593. [PMID: 39056367 DOI: 10.1111/cbdd.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
In modern cancer therapy, blockage of more than one target is a standard approach, and there are already many dual-target drugs that can achieve multiple inhibition through a single molecule. Herein, we designed and synthesized a series of novel derivatives with signal transducer and activator of transcription 3 (STAT3) and histone deacetylase (HDAC) inhibitory activity through strategy of combining pharmacophore based on the STAT3 inhibitor E28 and HDAC inhibitor MS-275. Among them, compound 24 (IC50 = 8.22 ± 0.27 μM) showed better anti-tumor activity than the clinical Class I HDAC inhibitor MS-275 (IC50 = 14.65 ± 0.24 μM) in MCF-7 breast cancer cells. Furthermore, the dual inhibition to HDAC and STAT3 of compound 24 was validated by western blot analysis. The study provides new tool compounds for further exploration of STAT3-HDAC pathway inhibitor achieved with a single molecule.
Collapse
Affiliation(s)
- Yu Yang
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yamin Pu
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiaoli Huang
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Mengya Liao
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiwen Zhang
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
6
|
Schiedlauske K, Deipenbrock A, Pflieger M, Hamacher A, Hänsel J, Kassack MU, Kurz T, Teusch NE. Novel Histone Deacetylase (HDAC) Inhibitor Induces Apoptosis and Suppresses Invasion via E-Cadherin Upregulation in Pancreatic Ductal Adenocarcinoma (PDAC). Pharmaceuticals (Basel) 2024; 17:752. [PMID: 38931419 PMCID: PMC11206922 DOI: 10.3390/ph17060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-β (TGF β) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-β-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jan Hänsel
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nicole E. Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Das C, Bhattacharya A, Adhikari S, Mondal A, Mondal P, Adhikary S, Roy S, Ramos K, Yadav KK, Tainer JA, Pandita TK. A prismatic view of the epigenetic-metabolic regulatory axis in breast cancer therapy resistance. Oncogene 2024; 43:1727-1741. [PMID: 38719949 PMCID: PMC11161412 DOI: 10.1038/s41388-024-03054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Kenneth Ramos
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
| | - Kamlesh K Yadav
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
- School of Engineering Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, Jiang YZ. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol 2024; 17:37. [PMID: 38822399 PMCID: PMC11143662 DOI: 10.1186/s13045-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.
Collapse
Affiliation(s)
- Mu-Qi Shi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - De-Si Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Nakatake M, Kurosaki H, Nakamura T. Histone deacetylase inhibitor boosts anticancer potential of fusogenic oncolytic vaccinia virus by enhancing cell-cell fusion. Cancer Sci 2024; 115:600-610. [PMID: 38037288 PMCID: PMC10859623 DOI: 10.1111/cas.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Hajime Kurosaki
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Takafumi Nakamura
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
10
|
Park SJ, Lee N, Jeong CH. ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:83-91. [PMID: 38154967 PMCID: PMC10762487 DOI: 10.4196/kjpp.2024.28.1.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Seong-Jun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| | - Naeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| |
Collapse
|
11
|
El-Ashmawy NE, Khedr EG, Khedr NF, El-Adawy SA. Emerging therapeutic strategy for mitigating cancer progression through inhibition of sirtuin-1 and epithelial-mesenchymal transition. Pathol Res Pract 2023; 251:154907. [PMID: 37925819 DOI: 10.1016/j.prp.2023.154907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
With 8.8 million deaths worldwide, cancer is the major reason for the high rate of fatalities. Malignancy's commencement, progression, development, metastasis, and therapy resistance have all been correlated with the epithelial-to-mesenchymal transition (EMT) pathway. EMT promotes the cancer cells' metastatic spread and starts the development of treatment resistance. Sirtuin-1 (SIRT1) is a histone deacetylase that is important for signaling, cell persistence, and apoptosis. It does this by deacetylating important cell signaling molecules and proteins that are associated with apoptosis. The function of SIRT1 in EMT and cancer progression, as well as the emerging therapeutic strategy of treating cancer through the inhibition of SIRT1 and EMT will be discussed in detail.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Samar A El-Adawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
12
|
Wu SM, Jan YJ, Tsai SC, Pan HC, Shen CC, Yang CN, Lee SH, Liu SH, Shen LW, Chiu CS, Arbiser JL, Meng M, Sheu ML. Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer. Cell Biol Toxicol 2023; 39:1873-1896. [PMID: 34973135 PMCID: PMC10547655 DOI: 10.1007/s10565-021-09673-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Histone deacetylase (HDAC) inhibitors (HDIs) can modulate the epithelial-mesenchymal transition (EMT) progression and inhibit the migration and invasion of cancer cells. Emerging as a novel class of anti-cancer drugs, HDIs are attracted much attention in the field of drug discovery. This study aimed to discern the underlying mechanisms of Honokiol in preventing the metastatic dissemination of gastric cancer cells by inhibiting HDAC3 activity/expression. EXPERIMENTAL APPROACH Clinical pathological analysis was performed to determine the relationship between HDAC3 and tumor progression. The effects of Honokiol on pharmacological characterization, functional, transcriptional activities, organelle structure changes, and molecular signaling were analyzed using binding assays, differential scanning calorimetry, luciferase reporter assay, HDAC3 activity, ER stress response element activity, transmission electron microscopy, immune-blotting, and Wnt/β-catenin activity assays. The in vivo effects of Honokiol on peritoneal dissemination were determined by a mouse model and detected by PET/CT tomography. KEY RESULTS HDAC3 over-expression was correlated with poor prognosis. Honokiol significantly abolished HDAC3 activity (Y298) via inhibition of NFκBp65/CEBPβ signaling, which could be reversed by the over-expression of plasmids of NFκBp65/CEBPβ. Treatments with 4-phenylbutyric acid (a chemical chaperone) and calpain-2 gene silencing inhibited Honokiol-inhibited NFκBp65/CEBPβ activation. Honokiol increased ER stress markers and inhibited EMT-associated epithelial markers, but decreased Wnt/β-catenin activity. Suppression of HDAC3 by both Honokiol and HDAC3 gene silencing decreased cell migration and invasion in vitro and metastasis in vivo. CONCLUSIONS AND IMPLICATIONS Honokiol acts by suppressing HDAC3-mediated EMT and metastatic signaling. By prohibiting HDAC3, metastatic dissemination of gastric cancer may be blocked. Conceptual model showing the working hypothesis on the interaction among Honokiol, HDAC3, and ER stress in the peritoneal dissemination of gastric cancer. Honokiol targeting HDAC3 by ER stress cascade and mitigating the peritoneal spread of gastric cancer. Honokiol-induced ER stress-activated calpain activity targeted HDAC3 and blocked Tyr298 phosphorylation, subsequently blocked cooperating with EMT transcription factors and cancer progression. The present study provides evidence to demonstrate that HDAC3 is a positive regulator of EMT and metastatic growth of gastric cancer cells. The findings here imply that overexpressed HDAC3 is a potential therapeutic target for honokiol to reverse EMT and prevent gastric cancer migration, invasion, and metastatic dissemination. • Honokiol significantly abolished HDAC3 activity on catalytic tyrosine 298 residue site. In addition, Honokiol-induced ER stress markedly inhibited HDAC3 expression via inhibition of NFκBp65/CEBPβ signaling. • HDAC3, which is a positive regulator of metastatic gastric cancer cell growth, can be significantly inhibited by Honokiol. • Opportunities for HDAC3 inhibition may be a potential therapeutic target for preventing gastric cancer metastatic dissemination.
Collapse
Affiliation(s)
- Sheng-Mao Wu
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Road, 250, Taichung, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Chuan Tsai
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hua Lee
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Road, 250, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Li-Wei Shen
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Road, 250, Taichung, Taiwan
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Winship Cancer Institute, Atlanta Veterans Administration Health Center, Atlanta, GA, USA
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Road, 250, Taichung, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
13
|
Manou M, Kanakoglou DS, Loupis T, Vrachnos DM, Theocharis S, Papavassiliou AG, Piperi C. Role of Histone Deacetylases in the Pathogenesis of Salivary Gland Tumors and Therapeutic Targeting Options. Int J Mol Sci 2023; 24:10038. [PMID: 37373187 DOI: 10.3390/ijms241210038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Salivary gland tumors (SGTs) comprise a rare and heterogenous category of benign/malignant neoplasms with progressively increasing knowledge of the molecular mechanisms underpinning their pathogenesis, poor prognosis, and therapeutic treatment efficacy. Emerging data are pointing toward an interplay of genetic and epigenetic factors contributing to their heterogeneity and diverse clinical phenotypes. Post-translational histone modifications such as histone acetylation/deacetylation have been shown to actively participate in the pathobiology of SGTs, further suggesting that histone deacetylating factors (HDACs), selective or pan-HDAC inhibitors (HDACis), might present effective treatment options for these neoplasms. Herein, we describe the molecular and epigenetic mechanisms underlying the pathology of the different types of SGTs, focusing on histone acetylation/deacetylation effects on gene expression as well as the progress of HDACis in SGT therapy and the current status of relevant clinical trials.
Collapse
Affiliation(s)
- Maria Manou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios S Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Loupis
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Dimitrios M Vrachnos
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Laure A, Rigutto A, Kirschner MB, Opitz L, Grob L, Opitz I, Felley-Bosco E, Hiltbrunner S, Curioni-Fontecedro A. Genomic and Transcriptomic Analyses of Malignant Pleural Mesothelioma (MPM) Samples Reveal Crucial Insights for Preclinical Testing. Cancers (Basel) 2023; 15:2813. [PMID: 37345150 DOI: 10.3390/cancers15102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Cell lines are extensively used to study cancer biology. However, the use of highly passaged commercial cell lines has to be questioned, as they do not closely resemble the originating tumor. To understand the reliability of preclinical models for Malignant pleural mesothelioma (MPM) studies, we have performed whole transcriptome and whole exome analyses of fresh frozen MPM tumors and compared them to cell lines generated from these tumors, as well as commercial cell lines and a preclinical MPM mouse model. Patient-derived cell lines were generated from digested fresh tumors and whole exome sequencing was performed on DNA isolated from formalin-fixed, paraffin-embedded (FFPE) tumor samples, corresponding patient-derived cell lines, and normal tissue. RNA sequencing libraries were prepared from 10 fresh frozen tumor samples, the 10 corresponding patient-derived cell lines, and 7 commercial cell lines. Our results identified alterations in tumor suppressor genes such as FBXW7, CDKN2A, CDKN2B, and MTAP, all known to drive MPM tumorigenesis. Patient-derived cell lines correlate to a high degree with their originating tumor. Gene expressions involved in multiple pathways such as EMT, apoptosis, myogenesis, and angiogenesis are upregulated in tumor samples when compared to patient-derived cell lines; however, they are downregulated in commercial cell lines compared to patient-derived cell lines, indicating significant differences between the two model systems. Our results show that the genome and transcriptome of tumors correlate to a higher degree with patient-derived cell lines rather than commercial cell lines. These results are of major relevance for the scientific community in regard to using cell lines as an appropriate model, resembling the pathway of interest to avoid misleading results for clinical applications.
Collapse
Affiliation(s)
- Alexander Laure
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
| | - Angelica Rigutto
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
| | - Michaela B Kirschner
- Department of Thoracic Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Linda Grob
- NEXUS Personalized Health Technologies, ETH Zurich, CH-8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Isabelle Opitz
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
- Department of Thoracic Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Faculty of Science, University of Zurich, CH-8006 Zurich, Switzerland
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Stefanie Hiltbrunner
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Medical Oncology and Haematology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Alessandra Curioni-Fontecedro
- Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Medical Oncology and Haematology, University Hospital Zurich, CH-8091 Zurich, Switzerland
- Department of Oncology, HFR Fribourg-Hôpital Cantonal, CH-1708 Fribourg, Switzerland
| |
Collapse
|
15
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
16
|
Kumar D, Kumar H, Kumar V, Deep A, Sharma A, Marwaha MG, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Lim JS, Kyung SY, Jeon Y, Kim IS, Kwak JH, Kim HS. Anticancer effects of the HDAC inhibitor, 3β,6β‑dihydroxyurs‑12‑en‑27‑oic acid, in MCF‑7 breast cancer cells via the inhibition of Akt/mTOR pathways. Oncol Rep 2023; 49:43. [PMID: 36633143 PMCID: PMC9868892 DOI: 10.3892/or.2023.8480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023] Open
Abstract
Astilbe chinensis (A. chinensis) is a perennial herb that is used to treat chronic bronchitis and pain. The anticancer activity of 3β,6β‑dihydroxyurs‑12‑en‑27‑oic acid (ACT‑3), a major component isolated from A. chinensis, has not yet been investigated in detail. The purpose of the present study was to investigate the histone deacetylase (HDAC) inhibitory and anticancer activities of ACT‑3 compared with suberoylanilide hydroxamic acid (SAHA) in MCF‑7 human breast cancer cells. The purity of ACT‑3 was determined using high‑performance liquid chromatography. In the present study, the effects of ACT‑3 on anticancer effects of MCF‑7 cells were determined by measuring the level of apoptotic cell death and cell cycle regulator using flow cytometry analysis and western blot analysis, respectively. The effects of ACT‑3 on HDAC enzyme activity were measured using assay kits. ACT‑3 and SAHA increased the levels of acetylated histone H3 and reduced the levels of HDAC1 and HDAC3 in MCF‑7 cells. ACT‑3 significantly decreased the cell viability in a concentration‑dependent manner and induced different morphological changes at high concentrations. ACT‑3 and SAHA significantly inhibited the colony formation in MCF‑7 cells. ACT‑3 inhibited total HDAC activity in a dose‑dependent manner. ACT‑3 significantly reduced the expression levels of cyclin D1 and cyclin‑dependent kinase 4, and upregulated the expression levels of p21WAF1 and p53. A significant increase in the G1 phase cell population was observed in MCF‑7 cells and ACT‑3 induced apoptosis by reducing the ratio of B‑cell lymphoma‑2 (Bcl‑2)/Bcl‑2‑associated X (Bax) and releasing cleaved caspase 9. Additionally, ACT‑3 significantly increased autophagic cell death by inhibiting the serine‑threonine kinase/mammalian target of the rapamycin pathway. Autophagy induction was confirmed via acridine orange staining. ACT‑3 significantly increased the pERK1/2 and p21 in MCF‑7 cells. Thus, the activated ERK pathway played an important role in cell cycle arrest and apoptosis via ERK‑dependent induction of p21 in MCF‑7 cells. These data indicated that ACT‑3 can be used as a promising anticancer agent to overcome the limitations and reduce the side effects of conventional anticancer drugs.
Collapse
Affiliation(s)
- Jong Seung Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea,Correspondence to: Professor Hyung Sik Kim or Dr Jong Hwan Kwak, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, Gyeonggi-do 16419, Republic of Korea, E-mail:
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea,Correspondence to: Professor Hyung Sik Kim or Dr Jong Hwan Kwak, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, Gyeonggi-do 16419, Republic of Korea, E-mail:
| |
Collapse
|
18
|
Moore PC, Henderson KW, Classon M. The epigenome and the many facets of cancer drug tolerance. Adv Cancer Res 2023; 158:1-39. [PMID: 36990531 DOI: 10.1016/bs.acr.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The use of chemotherapeutic agents and the development of new cancer therapies over the past few decades has consequently led to the emergence of myriad therapeutic resistance mechanisms. Once thought to be explicitly driven by genetics, the coupling of reversible sensitivity and absence of pre-existing mutations in some tumors opened the way for discovery of drug-tolerant persisters (DTPs): slow-cycling subpopulations of tumor cells that exhibit reversible sensitivity to therapy. These cells confer multi-drug tolerance, to targeted and chemotherapies alike, until the residual disease can establish a stable, drug-resistant state. The DTP state can exploit a multitude of distinct, yet interlaced, mechanisms to survive otherwise lethal drug exposures. Here, we categorize these multi-faceted defense mechanisms into unique Hallmarks of Cancer Drug Tolerance. At the highest level, these are comprised of heterogeneity, signaling plasticity, differentiation, proliferation/metabolism, stress management, genomic integrity, crosstalk with the tumor microenvironment, immune escape, and epigenetic regulatory mechanisms. Of these, epigenetics was both one of the first proposed means of non-genetic resistance and one of the first discovered. As we describe in this review, epigenetic regulatory factors are involved in most facets of DTP biology, positioning this hallmark as an overarching mediator of drug tolerance and a potential avenue to novel therapies.
Collapse
|
19
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
20
|
ZEB1: Catalyst of immune escape during tumor metastasis. Biomed Pharmacother 2022; 153:113490. [DOI: 10.1016/j.biopha.2022.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
|
21
|
Singh T, Kaur P, Singh P, Singh S, Munshi A. Differential molecular mechanistic behavior of HDACs in cancer progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:171. [PMID: 35972597 DOI: 10.1007/s12032-022-01770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs' role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
22
|
A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development. Nat Cell Biol 2022; 24:1265-1277. [PMID: 35941369 DOI: 10.1038/s41556-022-00971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.
Collapse
|
23
|
Jaguva Vasudevan AA, Hoffmann MJ, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G. Proteomic and transcriptomic profiles of human urothelial cancer cells with histone deacetylase 5 overexpression. Sci Data 2022; 9:240. [PMID: 35624179 PMCID: PMC9142574 DOI: 10.1038/s41597-022-01319-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Urothelial carcinoma (UC) of the urinary bladder is a prevalent cancer worldwide. Because histone deacetylases (HDACs) are important factors in cancer, targeting these epigenetic regulators is considered an attractive strategy to develop novel anticancer drugs. Whereas HDAC1 and HDAC2 promote UC, HDAC5 is often downregulated and only weakly expressed in UC cell lines, suggesting a tumor-suppressive function. We studied the effect of stable lentiviral-mediated HDAC5 overexpression in four UC cell lines with different phenotypes (RT112, VM-Cub-1, SW1710, and UM-UC-3, each with vector controls). In particular, comprehensive proteomics and RNA-seq transcriptomics analyses were performed on the four cell line pairs, which are described here. For comparison, the immortalized benign urothelial cell line HBLAK was included. These datasets will be a useful resource for researchers studying UC, and especially the influence of HDAC5 on epithelial-mesenchymal transition (EMT). Moreover, these data will inform studies on HDAC5 as a less studied member of the HDAC family in other cell types and diseases, especially fibrosis.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany. .,Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, 27709, USA.
| | - Michèle J Hoffmann
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
24
|
Micropillar-based phenotypic screening platform uncovers involvement of HDAC2 in nuclear deformability. Biomaterials 2022; 286:121564. [DOI: 10.1016/j.biomaterials.2022.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
|
25
|
Wawruszak A, Luszczki J, Czerwonka A, Okon E, Stepulak A. Assessment of Pharmacological Interactions between SIRT2 Inhibitor AGK2 and Paclitaxel in Different Molecular Subtypes of Breast Cancer Cells. Cells 2022; 11:1211. [PMID: 35406775 PMCID: PMC8998062 DOI: 10.3390/cells11071211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| | - Jarogniew Luszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (E.O.); (A.S.)
| |
Collapse
|
26
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
27
|
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S, Mego M. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci 2022; 23:ijms23010488. [PMID: 35008915 PMCID: PMC8745082 DOI: 10.3390/ijms23010488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Nikola Izoldova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Barbora Kasperova
- Department of Oncohematology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| |
Collapse
|
28
|
Discovery of potent HDAC2 inhibitors based on virtual screening in combination with drug repurposing. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Decourtye-Espiard L, Bougen-Zhukov N, Godwin T, Brew T, Schulpen E, Black MA, Guilford P. E-Cadherin-Deficient Epithelial Cells Are Sensitive to HDAC Inhibitors. Cancers (Basel) 2021; 14:cancers14010175. [PMID: 35008338 PMCID: PMC8749989 DOI: 10.3390/cancers14010175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Inactivating germline mutations in the CDH1 gene (encoding the E-cadherin protein) are the genetic hallmark of hereditary diffuse gastric cancer (HDGC), and somatic CDH1 mutations are an early event in the development of sporadic diffuse gastric cancer (DGC) and lobular breast cancer (LBC). In this study, histone deacetylase (HDAC) inhibitors were tested for their ability to preferentially inhibit the growth of human cell lines (MCF10A and NCI-N87) and murine organoids lacking CDH1 expression. CDH1-/- breast and gastric cells were more sensitive to the pan-HDAC inhibitors entinostat, pracinostat, mocetinostat and vorinostat than wild-type cells, with an elevated growth inhibition that was, in part, attributable to increased apoptosis. CDH1-null cells were also sensitive to more class-specific HDAC inhibitors, but compared to the pan-inhibitors, these effects were less robust to genetic background. Increased sensitivity to entinostat was also observed in gastric organoids with both Cdh1 and Tp53 deletions. However, the deletion of Tp53 largely abrogated the sensitivity of the Cdh1-null organoids to pracinostat and mocetinostat. Finally, entinostat enhanced Cdh1 expression in heterozygous Cdh1+/- murine organoids. In conclusion, entinostat is a promising drug for the chemoprevention and/or treatment of HDGC and may also be beneficial for the treatment of sporadic CDH1-deficient cancers.
Collapse
|
30
|
Tang S, Lian X, Cheng H, Guo J, Ni D, Huang C, Gu X, Meng H, Jiang J, Li X. Bacterial Lipopolysaccharide Augmented Malignant Transformation and Promoted the Stemness in Prostate Cancer Epithelial Cells. J Inflamm Res 2021; 14:5849-5862. [PMID: 34785925 PMCID: PMC8590462 DOI: 10.2147/jir.s332943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose To study bacterial lipopolysaccharide (LPS)-induced cancer stem-like transformation and to investigate the inhibitory effect of Trichostatin A (TSA) on the malignant transformation through targeting p-Stat3 signaling. Methods 2D, 3D, and serum-free suspension culture system were used to study LPS-induced malignant transformation in series malignant grade of prostate cancer (PCa) epithelial cells. Flow cytometry assay and RT-PCR were utilized to evaluate the CD44+CD133+ stem cell population, the expression of inflammatory cytokines and series tumor stemness biomarkers. Meanwhile, Western blot was used to analyze the alteration of cell signaling associated-molecules by treatment with TSA, an original antifungal antibiotic and a panel inhibitor of histone deacetylase. Results Our study found that LPS promoted the migration, invasion and stem-like tumoroshpere forming in multiple PCa cell lines including DU145, PC3, 22RV1, LNCaP. LPS also enriched CD44+CD133+ stem cell population and increased the expression of series tumor stemness biomarkers (e.g., CD44, CD133, SOX-2, α-intergrin, Nestin, etc.). TSA was found to prevent tumor cell migration, invasion and tumorosphere forming in DU145 and PC3 cells with increasing tumor suppressive Maspin and reducing both phosphorylation of Stat3 (p-Stat3) and pro-oncogene c-Myc expression in LPS-treated DU145 cells. Furthermore, blocking Stat3 signaling pathway by treatment with TSA and/or small molecule compound Stattic of an p-Stat3 inhibitor effectively abrogated LPS-induced tumorosphere forming with decrease of IL-6, IL-8 and stemness biomarkers CD44, SOX-2 expression. Conclusion Our data demonstrated that the inflammatory agent of bacterial LPS augmented malignant transformation and promoted the cancerous stemness in PCa epithelial cells. TSA could prevent, at least in part, the LPS-induced malignant transformation by targeting p-Stat3/c-Myc signaling pathway and reducing inflammatory IL-6, IL-8. In addition, the assay of LPS-induced tumorosphere forming could serve as a simple and an easy handling method for targeting cancer stem cells drug screening in vitro in clinical practice.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China.,Department of Urology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xueqi Lian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Jiaqian Guo
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Daguang Ni
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Can Huang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xiang Gu
- Department of Urology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, 48201, USA
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xiaohua Li
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd, Hefei, 230088, People's Republic of China.,National Center for Gene Testing Technology Application & Demonstration (Anhui), Hefei, 230088, People's Republic of China
| |
Collapse
|
31
|
Halasa M, Adamczuk K, Adamczuk G, Afshan S, Stepulak A, Cybulski M, Wawruszak A. Deacetylation of Transcription Factors in Carcinogenesis. Int J Mol Sci 2021; 22:11810. [PMID: 34769241 PMCID: PMC8583941 DOI: 10.3390/ijms222111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins' properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.
Collapse
Affiliation(s)
- Marta Halasa
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Kamila Adamczuk
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Kazimierza Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Andrzej Stepulak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Marek Cybulski
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Anna Wawruszak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| |
Collapse
|
32
|
Wawruszak A, Borkiewicz L, Okon E, Kukula-Koch W, Afshan S, Halasa M. Vorinostat (SAHA) and Breast Cancer: An Overview. Cancers (Basel) 2021; 13:4700. [PMID: 34572928 PMCID: PMC8468501 DOI: 10.3390/cancers13184700] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20521 Turku, Finland;
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| |
Collapse
|
33
|
Derivation and Characterization of EGFP-Labeled Rabbit Limbal Mesenchymal Stem Cells and Their Potential for Research in Regenerative Ophthalmology. Biomedicines 2021; 9:biomedicines9091134. [PMID: 34572321 PMCID: PMC8465718 DOI: 10.3390/biomedicines9091134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.
Collapse
|
34
|
Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:9203. [PMID: 34502112 PMCID: PMC8431224 DOI: 10.3390/ijms22179203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide range of molecular pathways, causing direct changes in cells. The aim of this study is to assess the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species (ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC activity were measured. Additionally, mitochondrial membrane potential was measured to assess the direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the metabolism of breast cancer cells and trigger several pathways related to metastasis.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Szymon Porębski
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
35
|
Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol 2021; 73:116-133. [DOI: 10.1016/j.semcancer.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
36
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
37
|
Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic Acid and Breast Cancer: State of the Art in 2021. Cancers (Basel) 2021; 13:3409. [PMID: 34298623 PMCID: PMC8306563 DOI: 10.3390/cancers13143409] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Valproic acid (2-propylpentanoic acid, VPA) is a short-chain fatty acid, a member of the group of histone deacetylase inhibitors (HDIs). VPA has been successfully used in the treatment of epilepsy, bipolar disorders, and schizophrenia for over 50 years. Numerous in vitro and in vivo pre-clinical studies suggest that this well-known anticonvulsant drug significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. Breast cancer (BC) is the most common malignancy affecting women worldwide. Despite significant progress in the treatment of BC, serious adverse effects, high toxicity to normal cells, and the occurrence of multi-drug resistance (MDR) still limit the effective therapy of BC patients. Thus, new agents which improve the effectiveness of currently used methods, decrease the emergence of MDR, and increase disease-free survival are highly needed. This review focuses on in vitro and in vivo experimental data on VPA, applied individually or in combination with other anti-cancer agents, in the treatment of different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| |
Collapse
|
38
|
Tang L, Ji M, Liang X, Chen D, Liu A, Yang G, Shi L, Fu Z, Shao C. Downregulated F-Box/LRR-Repeat Protein 7 Facilitates Pancreatic Cancer Metastasis by Regulating Snail1 for Proteasomal Degradation. Front Genet 2021; 12:650090. [PMID: 34249081 PMCID: PMC8264591 DOI: 10.3389/fgene.2021.650090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PCa) is one of the most aggressive lethal malignancies, and cancer metastasis is the major cause of PCa-associated death. F-box/LRR-repeat protein 7 (FBXL7) regulates cancer metastasis and the chemosensitivity of human pancreatic cancer. However, the clinical significance and biological role of FBXL7 in PCa have been rarely studied. In this study, we found that the expression of FBXL7 was down-regulated in PCa tissues compared with tumor-adjacent tissues, and the low expression of FBXL7 was positively associated with cancer metastasis. Functionally, overexpression of FBXL7 attenuated PANC1 cell invasion, whereas FBXL7 silencing promoted BxPC-3 cell invasion. Forced expression of FBXL7 upregulated the expression of epithelial markers (e.g., E-cadherin) and repressed the expression of mesenchymal markers (e.g., N-cadherin and Vimentin), indicating that FBXL7 negatively regulated the epithelial-mesenchymal transition (EMT) of PCa cells. Furthermore, we identified that FBXL7 repressed the expression of Snail1, a crucial transcription factor of EMT. Mechanistically, FBXL7 bound to Snail1 and promoted its ubiquitination and proteasomal degradation. In vivo studies demonstrated that FBXL7 inhibition promotes PCa metastasis. Taken together, our findings demonstrate that FBXL7 knockdown could efficiently enhance PCa metastasis by regulating Snail1-dependent EMT.
Collapse
Affiliation(s)
- Liang Tang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Ji
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Liang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danlei Chen
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anan Liu
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guang Yang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ligang Shi
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiping Fu
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenghao Shao
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Gumbarewicz E, Tylżanowski P, Łuszczki J, Kałafut J, Czerwonka A, Szumiło J, Wawruszak A, Kupisz K, Polberg K, Smok-Kalwat J, Stepulak A. Differential molecular response of larynx cancer cell lines to combined VPA/CDDP treatment. Am J Cancer Res 2021; 11:2821-2837. [PMID: 34249430 PMCID: PMC8263637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
Successful treatment of advanced larynx squamous cell carcinoma (LSCC) remains a challenge, mainly due to limited response to chemotherapy and the phenomenon of the drug resistance. Therefore, new chemotherapeutic solutions are needed. The aim of this study was to explore benefit of combined cisplatin (CDDP) and valproic acid (VPA) therapy in patients' derived LSCC cell lines. Cell viability assay was used to establish cellular response to the drug by isobolography followed by RNA sequencing (RNAseq) analysis. Danio rerio were used for in vivo studies. Depending on the cell line, we found that the combinations of drugs resulted in synergistic or antagonistic pharmacological interaction, which was accompanied by significant changes in genes expression profiles. The presented therapeutic scheme efficiently blocked tumor growth in an in vivo model, corresponding to the in vitro performed studies. Interestingly the RK5 cell line, upon the combined treatment acquired a molecular profile typically associated with epithelial to mesenchymal transition (EMT). Hence, our studies demonstrates that patient-specific personalized therapy of larynx cancer should be considered and the combination of cisplatin and valproic acid should be explored as a potential therapeutic strategy in the treatment of larynx cancer.
Collapse
Affiliation(s)
- Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Przemko Tylżanowski
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
- Laboratory for Developmental and Stem Cell Biology, Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, University of LeuvenLeuven, Belgium
| | | | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of LublinLublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Krzysztof Kupisz
- Department of Otolaryngology and Laryngeal Oncology, Medical University of LublinLublin, Poland
- Department of Otolaryngology, Center of Oncology of The Lublin RegionLublin, Poland
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| |
Collapse
|
40
|
Wawruszak A, Luszczki J, Halasa M, Okon E, Landor S, Sahlgren C, Rivero-Muller A, Stepulak A. Sensitization of MCF7 Cells with High Notch1 Activity by Cisplatin and Histone Deacetylase Inhibitors Applied Together. Int J Mol Sci 2021; 22:5184. [PMID: 34068438 PMCID: PMC8153599 DOI: 10.3390/ijms22105184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are promising anti-cancer agents that inhibit proliferation of many types of cancer cells including breast carcinoma (BC) cells. In the present study, we investigated the influence of the Notch1 activity level on the pharmacological interaction between cisplatin (CDDP) and two HDIs, valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), in luminal-like BC cells. The type of drug-drug interaction between CDDP and HDIs was determined by isobolographic analysis. MCF7 cells were genetically modified to express differential levels of Notch1 activity. The cytotoxic effect of SAHA or VPA was higher on cells with decreased Notch1 activity and lower for cells with increased Notch1 activity than native BC cells. The isobolographic analysis demonstrated that combinations of CDDP with SAHA or VPA at a fixed ratio of 1:1 exerted additive or additive with tendency toward synergism interactions. Therefore, treatment of CDDP with HDIs could be used to optimize a combined therapy based on CDDP against Notch1-altered luminal BC. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of luminal-type BC with altered Notch1 activity.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.R.-M.); (A.S.)
| | - Jarogniew Luszczki
- Department of Pathophysiology, Medical University, 20-090 Lublin, Poland;
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.R.-M.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.R.-M.); (A.S.)
| | - Sebastian Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; (S.L.); (C.S.)
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; (S.L.); (C.S.)
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20500 Turku, Finland
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands
| | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.R.-M.); (A.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.R.-M.); (A.S.)
| |
Collapse
|
41
|
Shi F, Ma M, Zhai R, Ren Y, Li K, Wang H, Xu C, Huang X, Wang N, Zhou F, Yao W. Overexpression of heat shock protein 70 inhibits epithelial-mesenchymal transition and cell migration induced by transforming growth factor-β in A549 cells. Cell Stress Chaperones 2021; 26:505-513. [PMID: 33598875 PMCID: PMC8065086 DOI: 10.1007/s12192-021-01196-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/07/2023] Open
Abstract
Heat shock protein 70 (HSP70) is a key member of the HSP family that contributes to a pre-cancerous environment; however, its role in lung cancer remains poorly understood. The present study used geranylgeranylacetone (GGA) to induce HSP70 expression, and transforming growth factor-β (TGF-β) was used to construct an epithelial-mesenchymal transition (EMT) model by stimulating A549 cells in vitro. Western Blot was performed to detect protein levels of NADPH oxidase 4 (NOX4) and the EMT-associated proteins E-cadherin and vimentin both before and after HSP70 expression. Cell morphological changes were observed, and the effect of HSP70 on cell migration ability was detected via the wound healing. The results demonstrated that GGA at 50 and 200 μmol/L could significantly induce HSP70 expression in A549 cells (P < 0.05). Furthermore, HSP70 induced by 200 μmol/L GGA significantly inhibited the changes of E-cadherin, vimentin, and cell morphology induced by TGF-β (P < 0.05), while HSP70 induced by 50 μmol/L GGA did not. The results of the wound healing assay indicated that 200 μmol/L GGA significantly inhibited A549 cell migration induced by TGF-β. Taken together, the results of the present study demonstrated that overexpression of HSP70 inhibited the TGF-β induced EMT process and changed the cell morphology and migratory ability induced by TGF-β in A549 cells.
Collapse
Affiliation(s)
- Fengxian Shi
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mingze Ma
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ruonan Zhai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanan Ren
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ke Li
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hang Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chunyan Xu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaowen Huang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Na Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Zhou
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
42
|
Wang X, Xue B, Zhang Y, Guo G, Duan X, Dou D. Up-regulated circBACH2 contributes to cell proliferation, invasion, and migration of triple-negative breast cancer. Cell Death Dis 2021; 12:412. [PMID: 33875646 PMCID: PMC8055688 DOI: 10.1038/s41419-021-03684-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
An increasing amount of evidence has proven the vital role of circular RNAs (circRNAs) in cancer progression. However, there remains a dearth of knowledge on the function of circRNAs in triple-negative breast cancer (TNBC). Utilizing a circRNA microarray dataset, four circRNAs were identified to be abnormally expressed in TNBC. Among them, circBACH2 was most significantly elevated in TNBC cancerous tissues and its high expression was positively correlated to the malignant progression of TNBC patients. In normal human mammary gland cell line, the overexpression of circBACH2 facilitated epithelial to mesenchymal transition and cell proliferation. In TNBC cell lines, circBACH2 knockdown suppressed the malignant progression of TNBC cells. Mechanistically, circBACH2 sponged miR-186-5p and miR-548c-3p, thus releasing the C-X-C chemokine receptor type 4 (CXCR4) expression. The interference of miR-186-5p/miR-548c-3p efficiently promoted the cell proliferation, migration, and invasion suppressed by circBACH2 knockdown in the TNBC cell lines. Finally, circBACH2 knockdown repressed the growth and lung metastasis of TNBC xenografts in nude mice. In summary, circBACH2 functions as an oncogenic circRNA in TNBC through a novel miR-186-5p/miR-548c-3p/CXCR4 axis.
Collapse
Affiliation(s)
- Xinxing Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Erqi District, Zhengzhou, Henan Province, People's Republic of China
| | - Bingjian Xue
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Erqi District, Zhengzhou, Henan Province, People's Republic of China
| | - Yujie Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Erqi District, Zhengzhou, Henan Province, People's Republic of China
| | - Guangcheng Guo
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Erqi District, Zhengzhou, Henan Province, People's Republic of China
| | - Xin Duan
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Erqi District, Zhengzhou, Henan Province, People's Republic of China
| | - Dongwei Dou
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Erqi District, Zhengzhou, Henan Province, People's Republic of China.
| |
Collapse
|
43
|
Geng HW, Yin FY, Zhang ZF, Gong X, Yang Y. Butyrate Suppresses Glucose Metabolism of Colorectal Cancer Cells via GPR109a-AKT Signaling Pathway and Enhances Chemotherapy. Front Mol Biosci 2021; 8:634874. [PMID: 33855046 PMCID: PMC8039130 DOI: 10.3389/fmolb.2021.634874] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Glycolysis inhibitors are promising therapeutic drugs for tumor treatment, which target the uniquely elevated glucose metabolism of cancer cells. Butyrate is a critical product of beneficial microbes in the colon, which exerts extraordinary anti-cancer activities. In particular, butyrate shows biased inhibitory effects on the cell growth of cancerous colonocytes, whereas it is the major energy source for normal colonocytes. Besides its roles as the histone deacetylases (HDACs) inhibitor and the ligand for G-protein coupled receptor (GPR) 109a, the influence of butyrate on the glucose metabolism of cancerous colonocytes and the underlying molecular mechanism are not fully understood. Here, we show that butyrate markedly inhibited glucose transport and glycolysis of colorectal cancer cells, through reducing the abundance of membrane GLUT1 and cytoplasmic G6PD, which was regulated by the GPR109a-AKT signaling pathway. Moreover, butyrate significantly promoted the chemotherapeutical efficacy of 5-fluorouracil (5-FU) on cancerous colonocytes, with exacerbated impairment of DNA synthesis efficiency. Our findings provide useful information to better understand the molecular basis for the impact of butyrate on the glucose metabolism of colorectal cancer cells, which would promote the development of beneficial metabolites of gut microbiota as therapeutical or adjuvant anti-cancer drugs.
Collapse
Affiliation(s)
- Hong-Wei Geng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Feng-Yi Yin
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhi-Fa Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xu Gong
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yun Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
44
|
Stockhammer P, Okumus Ö, Hegedus L, Rittler D, Ploenes T, Herold T, Kalbourtzis S, Bankfalvi A, Sucker A, Kimmig R, Aigner C, Hegedus B. HDAC Inhibition Induces Cell Cycle Arrest and Mesenchymal-Epithelial Transition in a Novel Pleural-Effusion Derived Uterine Carcinosarcoma Cell Line. Pathol Oncol Res 2021; 27:636088. [PMID: 34257602 PMCID: PMC8262245 DOI: 10.3389/pore.2021.636088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Objective: Uterine carcinosarcoma (UCS) is a rare but highly aggressive malignancy with biphasic growth pattern. This morphology can be attributed to epithelial-mesenchymal transition (EMT) that often associates with tumor invasion and metastasis. Accordingly, we analyzed a novel patient-derived preclinical model to explore whether EMT is a potential target in UCS. Methods: A novel UCS cell line (PF338) was established from the malignant pleural effusion of a 59-year-old patient at time of disease progression. Immunohistochemistry was performed in primary and metastatic tumor lesions. Oncogenic mutations were identified by next-generation sequencing. Viability assays and cell cycle analyses were used to test in vitro sensitivity to different standard and novel treatments. E-cadherin, β-catenin and pSMAD2 expressions were measured by immunoblot. Results: Whereas immunohistochemistry of the metastatic tumor showed a predominantly sarcomatous vimentin positive tumor that has lost E-cadherin expression, PF338 cells demonstrated biphasic growth and carried mutations in KRAS, PIK3CA, PTEN and ARID1A. PF338 tumor cells were resistant to MEK- and TGF-β signaling-inhibition but sensitive to PIK3CA- and PARP-inhibition and first-line chemotherapeutics. Strikingly, histone deacetylase (HDAC) inhibition markedly reduced cell viability by inducing a dose-dependent G0/1 arrest and led to mesenchymal-epithelial transition as evidenced by morphological change and increased E-cadherin and β-catenin expression. Conclusions: Our data suggest that HDAC inhibition is effective in a novel UCS cell line by interfering with both viability and differentiation. These findings emphasize the dynamic manner of EMT/MET and epigenetics and the importance of molecular profiling to pave the way for novel therapies in UCS.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Özlem Okumus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Luca Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dominika Rittler
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stavros Kalbourtzis
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Pouloudi D, Manou M, Sarantis P, Tsoukalas N, Tsourouflis G, Dana E, Karamouzis MV, Klijanienko J, Theocharis S. Clinical Significance of Histone Deacetylase (HDAC)-1, -2, -4 and -6 Expression in Salivary Gland Tumors. Diagnostics (Basel) 2021; 11:diagnostics11030517. [PMID: 33799478 PMCID: PMC8000873 DOI: 10.3390/diagnostics11030517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Salivary gland tumors (SGTs) comprise a group of rare neoplasms. Locally aggressive, recurrent and/or metastatic SGTs are notorious for their resistance to systemic therapy, making the need for carefully designed, prospective and randomized trials with useful predictive markers mandatory to define new effective therapeutic protocols. Histone Deacetylases (HDACs), are thought to play a crucial role in carcinogenesis. They affect the DNA structure, being also able to regulate its transcription, repair, and replication. This study aimed to evaluate-to our knowledge for the first time-the HDAC-1, -2, -4 and -6 immunohistochemical expression in SGTs and their potential use as prognostic biomarkers. Medical records and archival histopathological material of 58 (36 benign and 22 malignant) SGT patients were included in this study. The H-score was statistically correlated with the clinicopathological characteristics for all cases and patients' survival rate in malignant SGTs. HDAC-2 positivity was significantly associated with more prolonged overall survival (OS) of patients with malignant SGTs (p = 0.028), while HDAC-2 positivity and no HDAC-6 expression were associated with prolonged OS of patients with HG malignant SGT (p = 0.003 and p = 0.043, respectively). Additionally, a high HDAC-2 H-score was significantly associated with longer OS for HG malignant SGT patients (p = 0.027). In our study, HDAC-2 expression is a marker for good prognosis, whereas HDAC-6 expression indicated poor prognosis; thus, an inhibitor of HDAC-6 may be used to improve patients' survival.
Collapse
Affiliation(s)
- Despoina Pouloudi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Maria Manou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Nikolaos Tsoukalas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Gerasimos Tsourouflis
- 2nd Department of Propedeutic Surgery, School of Medicine, National and Kapodistrian, University of Athens, 115 27 Athens, Greece;
| | - Eougken Dana
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.P.); (M.M.); (P.S.); (N.T.); (E.D.)
- Department of Pathology, Institut Curie, 75248 Paris, France;
- Correspondence: or ; Tel.: +30-210-7462116; Fax: +30-210-7462157
| |
Collapse
|
46
|
Trichostatin A augments esophageal squamous cell carcinoma cells migration by inducing acetylation of RelA at K310 leading epithelia-mesenchymal transition. Anticancer Drugs 2021; 31:567-574. [PMID: 32282366 DOI: 10.1097/cad.0000000000000927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein acetylation modification controlled by acetyltransferases (HATs) and histone deacetylases (HDACs) regulates multiple biologic processes including cell proliferation and migration. HDAC inhibitors (HDACi) are currently used as a promising epigenetic-based therapy for cancer treatment. Of the anticancer activity, accumulating evidence has shown that HDACi can enhance cell migration in subset of cancer cells. Thus, there is a critical need to identify such counter anticancer activity to HDACi in different cancer cell types and elucidate the rational in order to develop appropriate combination therapies in cancer treatment. In seeking to address the effect of HDACi on esophageal squamous cell carcinoma (ESCC) cells migration, trichostatin A (TSA), a canonical HDACi targeting class I and class II HDACs, was used. Here, we report the discovery that TSA augmented ESCC cells migration by increasing the acetylation of nuclear factor-κB/RelA at lysine 310 (K310). To elucidate the mechanism by which TSA promotes the migration of ESCC cells, plasmid of RelA K310R, a mutant precluding acetylation at K310, was transfected into ESCC cells. Blocking acetylation of RelA at K310 significantly arrogated TSA-induced cell migration. Mechanistic investigations revealed that TSA increased the level of acetylated RelA at K310 (RelA K310ac), thereby increasing the level of epithelia-mesenchymal transition (EMT) transcription factor slug mRNA, which in turn induced EMT. Overall, this study indicates that TSA promotes ESCC cells migration by RelA K310ac-slug-EMT pathway. Our findings provide a strategy to eradicate HDACi-induced ESCC cells migration by targeting RelA as a combination therapy with nonspecific HDACi in ESCC treatment.
Collapse
|
47
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
48
|
Chen Y, Zhou Y, Yin H. Recent advances in biosensor for histone acetyltransferase detection. Biosens Bioelectron 2021; 175:112880. [DOI: 10.1016/j.bios.2020.112880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
|
49
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
50
|
Epigenetic Modulation of SPCA2 Reverses Epithelial to Mesenchymal Transition in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13020259. [PMID: 33445642 PMCID: PMC7827456 DOI: 10.3390/cancers13020259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The triple receptor negative breast cancer subtype, or TNBC, currently has no tailored treatment options. TNBC is highly metastatic, associated with high patient mortality, and disproportionately occurs in Black/African American women where it contributes to racial disparities in health outcomes. Therefore, we focused on new therapeutic approaches to TNBC. We discovered that levels of the Calcium-ATPase SPCA2 are abnormally low in TNBC and that these low levels correlate with poor survival prognosis in patients. Previously, we showed that recombinant SPCA2 prevented TNBC cells from acquiring aggressive “mesenchymal” properties associated with metastasis both in vitro and in vivo. These findings motivated us to search for drugs that turn the SPCA2 gene back on in TNBC cells. In this study, we show that histone deacetylase inhibitors increase SPCA2 levels, activate Ca2+ signaling and convert cancer cells to a less aggressive “epithelial” state. These findings could lead to new treatment options for TNBC. Abstract The secretory pathway Ca2+-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca2+ signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo. In this study, we examined the effect of histone deacetylase inhibitors (HDACi) in TNBC cell lines. We show that the pan-HDACi vorinostat and the class I HDACi romidepsin induce dose-dependent upregulation of SPCA2 transcript with concurrent downregulation of mesenchymal markers and tumor cell migration characteristic of epithelial phenotype. Silencing SPCA2 abolished the ability of HDACi to reverse epithelial to mesenchymal transition (EMT). Independent of ATPase activity, SPCA2 elevated resting Ca2+ levels to activate downstream components of non-canonical Wnt/Ca2+ signaling. HDACi treatment led to SPCA2-dependent phosphorylation of CAMKII and β-catenin, turning Wnt signaling off. We conclude that SPCA2 mediates the efficacy of HDACi in reversing EMT in TNBC by a novel mode of non-canonical Wnt/Ca2+ signaling. Our findings provide incentive for screening epigenetic modulators that exploit Ca2+ signaling pathways to reverse EMT in breast tumors.
Collapse
|