1
|
He Y, Nan D, Wang H. Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases. Mol Neurobiol 2023; 60:6530-6541. [PMID: 37458988 DOI: 10.1007/s12035-023-03487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023]
Abstract
The non-receptor protein tyrosine phosphatase is a class of enzymes that catalyze the dephosphorylation of phosphotyrosines in protein molecules. They are involved in cellular signaling by regulating the phosphorylation status of a variety of receptors and signaling molecules within the cell, thereby influencing cellular physiological and pathological processes. In this article, we detail multiple non-receptor tyrosine phosphatase and non-receptor tyrosine phosphatase genes involved in the pathological process of brain disease. These include PTPN6, PTPN11, and PTPN13, which are involved in glioma signaling; PTPN1, PTPN5, and PTPN13, which are involved in the pathogenesis of Alzheimer's disease Tau protein lesions, PTPN23, which may be involved in the pathogenesis of Epilepsy and PTPN1, which is involved in the pathogenesis of Parkinson's disease. The role of mitochondrial tyrosine phosphatase in brain diseases was also discussed. Non-receptor tyrosine phosphatases have great potential for targeted therapies in brain diseases and are highly promising research areas.
Collapse
Affiliation(s)
- Yatong He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ding Nan
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
2
|
The Pivotal Role of Protein Phosphatase 2A (PP2A) in Brain Tumors. Int J Mol Sci 2022; 23:ijms232415717. [PMID: 36555359 PMCID: PMC9779694 DOI: 10.3390/ijms232415717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathology; interestingly, PP2A appears to be essential for controlling cell growth and may be involved in cancer development. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. To leverage the potential clinical utility of combination PP2A inhibition and radiotherapy treatment, it is vital that novel highly specific PP2A inhibitors be developed. In this review, the existing literature on the role of PP2A in brain tumors, especially in gliomas and glioblastoma (GBM), was analyzed. Interestingly, the review focused on the role of PP2A inhibitors, focusing on CIP2A inhibition, as CIP2A participated in tumor cell growth by stimulating cell-renewal survival, cellular proliferation, evasion of senescence and inhibition of apoptosis. This review suggested CIP2A inhibition as a promising strategy in oncology target therapy.
Collapse
|
3
|
Kashani E, Vassella E. Pleiotropy of PP2A Phosphatases in Cancer with a Focus on Glioblastoma IDH Wildtype. Cancers (Basel) 2022; 14:5227. [PMID: 36358647 PMCID: PMC9654311 DOI: 10.3390/cancers14215227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Serine/Threonine protein phosphatase 2A (PP2A) is a heterotrimeric (or occasionally, heterodimeric) phosphatase with pleiotropic functions and ubiquitous expression. Despite the fact that they all contribute to protein dephosphorylation, multiple PP2A complexes exist which differ considerably by their subcellular localization and their substrate specificity, suggesting diverse PP2A functions. PP2A complex formation is tightly regulated by means of gene expression regulation by transcription factors, microRNAs, and post-translational modifications. Furthermore, a constant competition between PP2A regulatory subunits is taking place dynamically and depending on the spatiotemporal circumstance; many of the integral subunits can outcompete the rest, subjecting them to proteolysis. PP2A modulation is especially important in the context of brain tumors due to its ability to modulate distinct glioma-promoting signal transduction pathways, such as PI3K/Akt, Wnt, Ras, NF-κb, etc. Furthermore, PP2A is also implicated in DNA repair and survival pathways that are activated upon treatment of glioma cells with chemo-radiation. Depending on the cancer cell type, preclinical studies have shown some promise in utilising PP2A activator or PP2A inhibitors to overcome therapy resistance. This review has a special focus on "glioblastoma, IDH wild-type" (GBM) tumors, for which the therapy options have limited efficacy, and tumor relapse is inevitable.
Collapse
Affiliation(s)
- Elham Kashani
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
4
|
Nian Q, Zeng J, He L, Chen Y, Zhang Z, Rodrigues-Lima F, Zhao L, Feng X, Shi J. A small molecule inhibitor targeting SHP2 mutations for the lung carcinoma. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Dal Corso A, Arosio S, Arrighetti N, Perego P, Belvisi L, Pignataro L, Gennari C. A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chem Commun (Camb) 2021; 57:7778-7781. [PMID: 34263896 DOI: 10.1039/d1cc02895b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cyclative cleavage of an amine-carbamate self-immolative spacer to deliver a hydroxyl cargo was inhibited by spacer derivatisation with a phosphate monoester handle. This trifunctional spacer was installed in a model anticancer prodrug that showed fast drug release only when incubated with both a protease and a phosphatase enzyme.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Simone Arosio
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Noemi Arrighetti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| |
Collapse
|
6
|
Mitra R, Ayyannan SR. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview. ChemMedChem 2020; 16:777-787. [PMID: 33210828 DOI: 10.1002/cmdc.202000706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a dreadful cancer characterised by poor prognosis, low survival rate and difficult clinical correlations. Several signalling pathways and molecular mediators are known to precipitate GBM, and small-molecular targets of these mediators have become a favoured thrust area for researchers to develop potent anti-GBM drugs. Shp2, an important phosphatase of the nonreceptor type protein tyrosine phosphatase (PTPN) subfamily is responsible for master regulation of several such signalling pathways in normal and glioma cells. Thus, inhibition of Shp2 is a logical strategy for the design and development of anti-neoplastic drugs against GBM. Though tapping the full potential of Shp2 binding sites has been challenging, nevertheless, many synthetic and natural scaffolds have been documented as possessing potent and selective anti-Shp2 activities in biochemical and cellular assays, through either active-site or allosteric binding. Most of these scaffolds share a few common pharmacophoric features, a thorough study of which is useful in paving the way for the design and development of improved Shp2 inhibitors. This minireview summarizes the current scenario of potent small-molecule Shp2 inhibitors and emphasizes the anti-GBM potential of some important scaffolds that have shown promising GBM-specific activity in in vitro and in vivo models, thus proving their efficacy in GBM therapy. This review could guide researchers to design new and improved anti-Shp2 pharmacophores and develop them as anti-GBM agents by employing GBM-centric drug-discovery protocols.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Enhanced Malignant Phenotypes of Glioblastoma Cells Surviving NPe6-Mediated Photodynamic Therapy are Regulated via ERK1/2 Activation. Cancers (Basel) 2020; 12:cancers12123641. [PMID: 33291680 PMCID: PMC7761910 DOI: 10.3390/cancers12123641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
To manage refractory and invasive glioblastomas (GBM)s, photodynamic therapy (PDT) using talaporfin sodium (NPe6) (NPe6-PDT) was recently approved in clinical practice. However, the molecular machineries regulating resistance against NPe6-PDT in GBMs and mechanisms underlying the changes in GBM phenotypes following NPe6-PDT remain unknown. Herein, we established an in vitro NPe6-mediated PDT model using human GBM cell lines. NPe6-PDT induced GBM cell death in a NPe6 dose-dependent manner. However, this NPe6-PDT-induced GBM cell death was not completely blocked by the pan-caspase inhibitor, suggesting NPe6-PDT induces both caspase-dependent and -independent cell death. Moreover, treatment with poly (ADP-ribose) polymerase inhibitor blocked NPe6-PDT-triggered caspase-independent GBM cell death. Next, it was also revealed resistance to re-NPe6-PDT of GBM cells and GBM stem cells survived following NPe6-PDT (NPe6-PDT-R cells), as well as migration and invasion of NPe6-PDT-R cells were enhanced. Immunoblotting of NPe6-PDT-R cells to assess the behavior of the proteins that are known to be stress-induced revealed that only ERK1/2 activation exhibited the same trend as migration. Importantly, treatment with the MEK1/2 inhibitor trametinib reversed resistance against re-NPe6-PDT and suppressed the enhanced migration and invasion of NPe6-PDT-R cells. Overall, enhanced ERK1/2 activation is suggested as a key regulator of elevated malignant phenotypes of GBM cells surviving NPe6-PDT and is therefore considered as a potential therapeutic target against GBM.
Collapse
|
8
|
Tiwari A, Tashiro K, Dixit A, Soni A, Vogel K, Hall B, Shafqat I, Slaughter J, Param N, Le A, Saunders E, Paithane U, Garcia G, Campos AR, Zettervall J, Carlson M, Starr TK, Marahrens Y, Deshpande AJ, Commisso C, Provenzano PP, Bagchi A. Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis. Gastroenterology 2020; 159:1882-1897.e5. [PMID: 32768595 PMCID: PMC7680408 DOI: 10.1053/j.gastro.2020.07.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice. METHODS We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas. RESULTS EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166. CONCLUSIONS HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Kojiro Tashiro
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,These authors contributed equally
| | - Ajay Dixit
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN,These authors contributed equally
| | - Aditi Soni
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Keianna Vogel
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bryan Hall
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Iram Shafqat
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | - Nesteen Param
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - An Le
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Emily Saunders
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Utkarsha Paithane
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Guillermina Garcia
- Histology Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | | | - Jon Zettervall
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Marjorie Carlson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Timothy K. Starr
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN
| | - York Marahrens
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Cosimo Commisso
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
9
|
Relationship between the Levels of mRNA Expression for Protein Phosphatase 1B and Proteins Involved in Cytoskeleton Remodeling in Squamous Cell Carcinoma of the Larynx and Hypopharynx. Bull Exp Biol Med 2020; 169:504-507. [PMID: 32915364 DOI: 10.1007/s10517-020-04918-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 10/23/2022]
Abstract
We analyzed the expression of genes encoding proteins involved in cytoskeleton remodeling (RND3, SNAI1, vimentin, cofilin, adenylate cyclase-associated protein 1, ezrin, and profilin) depending on the level of expression of protein phosphatase 1B (PPM1B) mRNA on the example of squamous cell carcinoma of the larynx and hypopharynx. Against the background of a high level of PPM1B expression, a significantly high level of profilin expression was noted. Metastasis correlated with the level of snai1 expression, while relapse after combination treatment was negatively associated with the level of vimentin expression. The obtained new data can reflect molecular peculiarities of the tumor growth in squamous cell carcinoma of the larynx and hypopharynx.
Collapse
|
10
|
Merisaari J, Denisova OV, Doroszko M, Le Joncour V, Johansson P, Leenders WPJ, Kastrinsky DB, Zaware N, Narla G, Laakkonen P, Nelander S, Ohlmeyer M, Westermarck J. Monotherapy efficacy of blood-brain barrier permeable small molecule reactivators of protein phosphatase 2A in glioblastoma. Brain Commun 2020; 2:fcaa002. [PMID: 32954276 PMCID: PMC7425423 DOI: 10.1093/braincomms/fcaa002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood–brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood–brain barrier—permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.
Collapse
Affiliation(s)
- Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Oxana V Denisova
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Milena Doroszko
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Patrik Johansson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen 6525, The Netherlands
| | - David B Kastrinsky
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nilesh Zaware
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5624, USA
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.,Laboratory Animal Centre, Helsinki Institute of Life Science - HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Atux Iskay LLC, Plainsboro, NJ 08536, USA
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| |
Collapse
|
11
|
Tabatabai G, Wakimoto H. Glioblastoma: State of the Art and Future Perspectives. Cancers (Basel) 2019; 11:cancers11081091. [PMID: 31370300 PMCID: PMC6721299 DOI: 10.3390/cancers11081091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Accepted: 01/01/1970] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Valles SL, Iradi A, Aldasoro M, Vila JM, Aldasoro C, de la Torre J, Campos-Campos J, Jorda A. Function of Glia in Aging and the Brain Diseases. Int J Med Sci 2019; 16:1473-1479. [PMID: 31673239 PMCID: PMC6818212 DOI: 10.7150/ijms.37769] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglia cells during aging, neurodegeneration and neuroinflammation show different morphological and transcriptional profiles (related to axonal direction and cell adhesion). Furthermore, expressions of the receptors on the surface and actin formation compared to young are also different. This review delves into the role of glia during aging and the development of the diseases. The susceptibility of different regions of the brain to disease are linked to the overstimulation of signals related to the immune system during aging, as well as the damaging impact of these cascades on the functionality of different populations of microglia present in each region of the brain. Furthermore, a decrease in microglial phagocytosis has been related to many diseases and also has been detected during aging. In this paper we also describe the role of glia in different illness, such as AD, ALS, pain related disorders, cancer, developmental disorders and the problems produced by opening of the blood brain barrier. Future studies will clarify many points planted by this review.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Jose M Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | | | - Juan Campos-Campos
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| |
Collapse
|