1
|
Sanesi L, Mori G, Troiano G, Ballini A, Valzano F, Dioguardi M, Muzio LL, Magalhaes M, Caponio VCA. Salivary exosomal microRNA profile as biomonitoring tool for diagnosis and prognosis of patients with head and neck squamous cell carcinoma: a systematic review. Arch Oral Biol 2024; 165:106012. [PMID: 38879952 DOI: 10.1016/j.archoralbio.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Exosomes are extracellular vesicles found in saliva and other body fluids. These vesicles range in size from 30 to 150 nm and play a crucial role in intercellular communication, transporting different biomolecules, actively targeting cells. These vesicles regulate both physiological and pathological processes within recipient cells. MicroRNAs (miRs) are transported within exosomes and are delivered to target cells where they influence signaling pathways, taking on a crucial regulatory role in oncogenesis; for example, they are implicated in progression and infiltration of various cancers, such as head and neck squamous cell carcinoma (HNSCC). MATERIAL AND METHODS A systematic literature search based on specific keywords, according to the PRISMA guidelines, was carried out on PubMed, Web of Science, Scopus, and Google Scholar. Only original articles were selected during this review. The risk of bias was assessed by QUADAS-2. RESULTS At the end of the selection process 9 articles were included. In these studies, 41 miRs showed differential expression between healthy subjects and patient with HNSCC. The techniques varied among studies for the extraction and analysis of exosomal miRs. We presented also salivary exosomal miRs pathways, to give insights about pathogenetic mechanisms. CONCLUSIONS Exosomal microRNA are promising biomarkers for HNSCC detection. MiR-10b-5p, miR-486-5p, miR-24-3p, miR-412-3p, and miR-512-3p are the most promising markers applicable to diagnostics, while miR-1307-5p and miR-519c-3p resulted overexpressed and correlated to worse survival outcomes.
Collapse
Affiliation(s)
- Lorenzo Sanesi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Magalhaes
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1×3, Canada
| | | |
Collapse
|
2
|
Chakraborty S, Ghosh S. CCND1 Amplification in Pancreatic Ductal and Ampullary Adenocarcinoma and Its Impact on Patients' Survival: a Single-Center Observational Study. Indian J Surg Oncol 2024; 15:226-231. [PMID: 38817999 PMCID: PMC11133249 DOI: 10.1007/s13193-022-01685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Studies conducted worldwide in the last few decades have demonstrated that various high- and low-frequency inherited and somatic mutations play important roles in the pathogenesis of periampullary carcinoma. Owing to relatively inaccessible location and lack of specific early diagnostic signs, majority of periampullary tumors are difficult to manage. Limited chemotherapeutic options that are available are highly toxic and not very efficacious. CyclinD1, if found to be amplified in these malignancies, might become an important gene to be targeted for monoclonal antibody therapy. An analytical retrospective-prospective study was done on 35 patients of operable periampullary carcinoma, in Medical College, Kolkata from January 2019 to July 2020. After isolating DNA from tumor and corresponding normal tissue by Qiagen DNEasy kit, CyclinD1 amplification was assessed by RT-PCR using Taqman DNA copy number in the laboratory of Indian Statistical Institute. Survival analysis was done by Kaplan-Meier estimator and all statistical calculations performed through SPSS software. Six (17%) out of 35 patients were found to have > twofold amplifications of CyclinD1 gene. However, no positive correlation was found between CyclinD1 amplification and overall survival of the patients (p value 0.21). Positive correlation was not found in our study between CCND1 amplification and periampullary malignancy. However, a single large study conducted in Japan by Yamazaki showed reduced survival and higher metastasis in CyclinD1 positive periampullary carcinoma. So there is reasonable scope in future for large-scale population-based studies to establish similar association in our subcontinent as well.
Collapse
Affiliation(s)
- Shuchismita Chakraborty
- Department of General Surgery, Medical College Kolkata, 88, College Street, Kolkata, 700073 West Bengal India
- Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College Kolkata, 88, College Street, Kolkata, 700073 West Bengal India
| |
Collapse
|
3
|
Kinane DF, Gabert J, Xynopoulos G, Guzeldemir-Akcakanat E. Strategic approaches in oral squamous cell carcinoma diagnostics using liquid biopsy. Periodontol 2000 2024. [PMID: 38676371 DOI: 10.1111/prd.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Liquid biopsy is a noninvasive diagnostic technique used for monitoring cancer utilizing specific genetic biomarkers present in bodily fluids, such as blood, saliva, or urine. These analyses employ multiple biomolecular sources including circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes (that contain DNA fragments) to detect genetic biomarkers that can predict, disclose, and/or monitor cancers. Levels of these biomarkers can inform on the presence of cancer, its genetic characteristics, and its potential treatment response and also provide predictive genetic predisposition information for specific cancers including oral squamous cell carcinomas (OSCC). Liquid biopsies can aid cancer management as they offer real-time dynamic information on the response to say chemotherapy or radiotherapy and recurrence following surgical excision. Unlike traditional tissue biopsies, which are invasive with a degree of morbidity and require specific tumor location sampling, liquid biopsies are noninvasive and can be repeated frequently. For oral squamous cell carcinoma, on which this review focuses, liquid biopsy of blood or saliva can be valuable in predicting susceptibility, providing early detection, and monitoring the disease's progression and response to therapy. This review gives a general narrative overview of the technology, its current medical usage, and advantages and disadvantages compared with current techniques and discusses a range of current potential biomarkers for disclosing OSCC and predicting its risk. Oral squamous cell carcinoma is all too often detected in the late stages. In future, liquid biopsy may provide an effective screening process such that cancers including OSCC will be detected in the early stages rather than later when prognosis is poor and morbidity and debilitation are greater. In this screening process, periodontists and hygienists have a critical role in that they are adept in examining mucosa, they see patients with shared risk factors for periodontitis and OSCC, namely smoking and poor oral hygiene, and they see patients frequently such that OSCC examinations should be a routine part of the recall visit. With this additional screening manpower, oral medicine and oral surgery colleagues will detect OSCC earlier and this coupled with new techniques such as liquid biopsy may greatly decrease global morbidity in OSCC.
Collapse
Affiliation(s)
- Denis F Kinane
- Department of Periodontology, Dental School, University Bern, Bern, Switzerland
- ExpressTest, Cignpost Diagnostics Ltd., Farnborough, United Kingdom
| | | | | | - Esra Guzeldemir-Akcakanat
- Department of Periodontology, Faculty of Dentistry, Kocaeli University, İzmit, Turkey
- College of Dental Medicine, QU Health, Qatar University, Qatar, Qatar
| |
Collapse
|
4
|
Ling X, Alexander GS, Molitoris J, Choi J, Schumaker L, Tran P, Mehra R, Gaykalova D, Ren L. Radiomic biomarkers of locoregional recurrence: prognostic insights from oral cavity squamous cell carcinoma preoperative CT scans. Front Oncol 2024; 14:1380599. [PMID: 38715772 PMCID: PMC11074368 DOI: 10.3389/fonc.2024.1380599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/15/2024] Open
Abstract
Introduction This study aimed to identify CT-based imaging biomarkers for locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients. Methods Computed tomography scans were collected from 78 patients with OSCC who underwent surgical treatment at a single medical center. We extracted 1,092 radiomic features from gross tumor volume in each patient's pre-treatment CT. Clinical characteristics were also obtained, including race, sex, age, tobacco and alcohol use, tumor staging, and treatment modality. A feature selection algorithm was used to eliminate the most redundant features, followed by a selection of the best subset of the Logistic regression model (LRM). The best LRM model was determined based on the best prediction accuracy in terms of the area under Receiver operating characteristic curve. Finally, significant radiomic features in the final LRM model were identified as imaging biomarkers. Results and discussion Two radiomics biomarkers, Large Dependence Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG σ=3), have demonstrated the capability to preoperatively distinguish patients with and without LR, exhibiting exceptional testing specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our understanding of using radiomics to predict OSCC progression, enabling personalized treatment plans to enhance patient survival.
Collapse
Affiliation(s)
- Xiao Ling
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gregory S. Alexander
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jinhyuk Choi
- Department of Breast Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Lisa Schumaker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Phuoc Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daria Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Ghosh SK, Man Y, Fraiwan A, Waters C, McKenzie C, Lu C, Pfau D, Kawsar H, Bhaskaran N, Pandiyan P, Jin G, Briggs F, Zender CC, Rezaee R, Panagakos F, Thuener JE, Wasman J, Tang A, Qari H, Wise-Draper T, McCormick TS, Madabhushi A, Gurkan UA, Weinberg A. Beta-defensin index: A functional biomarker for oral cancer detection. Cell Rep Med 2024; 5:101447. [PMID: 38442713 PMCID: PMC10983043 DOI: 10.1016/j.xcrm.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry. The proportion of hBD-3/hBD-2 levels in non-invasively collected lesional cells compared to contralateral normal cells, obtained by ELISA, generates the beta-defensin index (BDI). Proof-of-principle and blinded discovery studies demonstrate that BDI discriminates OSCC from benign lesions. A multi-center validation study shows sensitivity and specificity values of 98.2% (95% confidence interval [CI] 90.3-99.9) and 82.6% (95% CI 68.6-92.2), respectively. A proof-of-principle study shows that BDI is adaptable to a point-of-care assay using microfluidics. We propose that BDI may fulfill a major unmet need in low-socioeconomic countries where pathology services are lacking.
Collapse
Affiliation(s)
- Santosh K Ghosh
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA.
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, OH, USA
| | - Arwa Fraiwan
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, OH, USA
| | | | - Crist McKenzie
- Division of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Cheng Lu
- Center for Computational Imaging & Personalized Diagnostics, CWRU, Cleveland, OH, USA
| | - David Pfau
- School of Medicine, CWRU, Cleveland, OH, USA
| | - Hameem Kawsar
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Natarajan Bhaskaran
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Pushpa Pandiyan
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Ge Jin
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Farren Briggs
- Department of Population and Quantitative Health Sciences, CWRU, Cleveland, OH, USA
| | - Chad C Zender
- Department of Otolaryngology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Rod Rezaee
- Department of Otolaryngology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Fotinos Panagakos
- West Virginia University (WVU) School of Dentistry, Morgantown, WV, USA
| | - Jason E Thuener
- Department of Otolaryngology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Jay Wasman
- Department of Pathology, University Hospital of Cleveland, Cleveland, OH, USA
| | - Alice Tang
- Otolaryngology, Head & Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hiba Qari
- Department of Diagnostic Sciences, WVU School of Dentistry, Morgantown, WV, USA
| | - Trisha Wise-Draper
- Division of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, OH, USA
| | - Aaron Weinberg
- Biological Sciences, Case School of Dental Medicine, Cleveland, OH, USA; Case Western Reserve University (CWRU), Cleveland, OH, USA.
| |
Collapse
|
6
|
Ren L, Ling X, Alexander G, Molitoris J, Choi J, Schumaker L, Mehra R, Gaykalova D. Radiomic Biomarkers of Locoregional Recurrence: Prognostic Insights from Oral Cavity Squamous Cell Carcinoma preoperative CT scans. RESEARCH SQUARE 2024:rs.3.rs-3857391. [PMID: 38343846 PMCID: PMC10854303 DOI: 10.21203/rs.3.rs-3857391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This study aimed to identify CT-based imaging biomarkers for locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients. Our study involved a retrospective review of 78 patients with OSCC who underwent surgical treatment at a single medical center. An approach involving feature selection and statistical model diagnostics was utilized to identify biomarkers. Two radiomics biomarkers, Large Dependence Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG σ = 3), have demonstrated the capability to preoperatively distinguish patients with and without LR, exhibiting exceptional testing specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our understanding of using radiomics to predict OSCC progression, enabling personalized treatment plans to enhance patient survival.
Collapse
Affiliation(s)
- Lei Ren
- University of Maryland School of Medicine
| | - Xiao Ling
- University of Maryland School of Medicine
| | | | | | | | | | | | - Daria Gaykalova
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center; Institute for Genome Sciences, U
| |
Collapse
|
7
|
Liu S, Shao F, Wang Y, Zhang Y, Yu H, Zhang N, He L, Kong Q, Jiang H, Dong Z. COX6C expression driven by copy amplification of 8q22.2 regulates cell proliferation via mediation of mitosis by ROS-AMPK signaling in lung adenocarcinoma. Cell Death Dis 2024; 15:74. [PMID: 38242874 PMCID: PMC10799076 DOI: 10.1038/s41419-024-06443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Shuanghui Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, P. R. China
| | - Fanggui Shao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yourong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Department of clinical laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, P. R. China
| | - Yurui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Hongjia Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Ningxin Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, 410013, P. R. China
| | - Qingran Kong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, P. R. China.
| | - Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China.
| |
Collapse
|
8
|
Kim S, Lee C, Kim H, Yoon SO. Genetic characteristics of advanced oral tongue squamous cell carcinoma in young patients. Oral Oncol 2023; 144:106466. [PMID: 37393663 DOI: 10.1016/j.oraloncology.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES We aimed to investigate genetic alterations in oral tongue squamous cell carcinoma (OTSCC) based on age and the clinical significance of these alterations in young OTSCC patients. MATERIALS AND METHODS We detected genetic alterations in 44 cases of advanced OTSCC through next-generation sequencing and analyzed and compared patients either younger or older than 45 years. Further analysis was conducted on a validation group of 96 OTSCC patients aged ≤ 45 years to examine the clinical and prognostic associations of TERT promoter (TERTp) mutations. RESULTS TP53 mutation was the most common genetic alteration in advanced OTSCC (88.6%), followed by TERTp mutation (59.1%), CDKN2A mutation (31.8%), FAT1 mutation (9.1%), NOTCH1 mutation (9.1%), EGFR amplification (18.2%), and CDKN2A homozygous deletion (4.5%). TERTp mutation was the only genetic alteration significantly enriched in young patients (81.3% in young versus 46.4% in older; P < 0.024). Within the validation group of young patients, TERTp mutation was identified in 30 cases (30/96, 31.3%) and tended to be related to both smoking and alcohol consumption (P = 0.072), higher stage (P = 0.002), more frequent perineural invasion (P = 0.094), and worse overall survival (P = 0.012) than wild type. CONCLUSION Our findings suggest that TERTp mutation is more frequent in young patients with advanced OTSCC and is associated with worse clinical outcomes. Therefore, TERTp mutation may serve as a prognostic biomarker for OTSCC in young patients. The findings of this study may help in developing personalized treatment strategies for OTSCC based on age and genetic alterations.
Collapse
Affiliation(s)
- Sehui Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea; Department of Pathology, Korea University Guro Hospital, Seoul, South Korea
| | - Chung Lee
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| | - Hyangmi Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea.
| |
Collapse
|
9
|
Patel A, Patel P, Mandlik D, Patel K, Malaviya P, Johar K, Swamy KBS, Patel S, Tanavde V. A novel 3-miRNA network regulates tumour progression in oral squamous cell carcinoma. Biomark Res 2023; 11:64. [PMID: 37316916 PMCID: PMC10268489 DOI: 10.1186/s40364-023-00505-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Late diagnosis is one of the major confounders in oral squamous cell carcinoma (OSCC). Despite recent advances in molecular diagnostics, no disease-specific biomarkers are clinically available for early risk prediction of OSCC. Therefore, it is important to identify robust biomarkers that are detectable using non-invasive liquid biopsy techniques to facilitate the early diagnosis of oral cancer. This study identified potential salivary exosome-derived miRNA biomarkers and crucial miRNA-mRNA networks/underlying mechanisms responsible for OSCC progression. METHODS Small RNASeq (n = 23) was performed in order to identify potential miRNA biomarkers in both tissue and salivary exosomes derived from OSCC patients. Further, integrated analysis of The Cancer Genome Atlas (TCGA) datasets (n = 114), qPCR validation on larger patient cohorts (n = 70) and statistical analysis with various clinicopathological parameters was conducted to assess the effectiveness of the identified miRNA signature. miRNA-mRNA networks and pathway analysis was conducted by integrating the transcriptome sequencing and TCGA data. The OECM-1 cell line was transfected with the identified miRNA signature in order to observe its effect on various functional mechanisms such as cell proliferation, cell cycle, apoptosis, invasive as well as migratory potential and the downstream signaling pathways regulated by these miRNA-mRNA networks. RESULTS Small RNASeq and TCGA data identified 12 differentially expressed miRNAs in OSCC patients compared to controls. On validating these findings in a larger cohort of patients, miR-140-5p, miR-143-5p, and miR-145-5p were found to be significantly downregulated. This 3-miRNA signature demonstrated higher efficacy in predicting disease progression and clinically correlated with poor prognosis (p < 0.05). Transcriptome, TCGA, and miRNA-mRNA network analysis identified HIF1a, CDH1, CD44, EGFR, and CCND1 as hub genes regulated by the miRNA signature. Further, transfection-mediated upregulation of the 3-miRNA signature significantly decreased cell proliferation, induced apoptosis, resulted in G2/M phase cell cycle arrest and reduced the invasive and migratory potential by reversing the EMT process in the OECM-1 cell line. CONCLUSIONS Thus, this study identifies a 3-miRNA signature that can be utilized as a potential biomarker for predicting disease progression of OSCC and uncovers the underlying mechanisms responsible for converting a normal epithelial cell into a malignant phenotype.
Collapse
Affiliation(s)
- Aditi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Parina Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Dushyant Mandlik
- Department of Head and Neck Oncology, HCG Cancer Centre, Ahmedabad, Gujarat, India
| | - Kaustubh Patel
- Department of Head and Neck Oncology, HCG Cancer Centre, Ahmedabad, Gujarat, India
| | - Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Kaid Johar
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Krishna B S Swamy
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Shanaya Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
| | - Vivek Tanavde
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
10
|
Qu Y, He Y, Ruan H, Qin L, Han Z. Abnormal downregulation of 10-formyltetrahydrofolate dehydrogenase promotes the progression of oral squamous cell carcinoma by activating PI3K/Akt/Rb pathway. Cancer Med 2023; 12:5781-5797. [PMID: 36336972 PMCID: PMC10028165 DOI: 10.1002/cam4.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) is a major folate enzyme, which is usually underexpressed in malignant tumors and competes with tumors for the same folate substrate. However, the specific role and mechanisms of ALDH1L1 in oral squamous cell carcinoma (OSCC) remainsobscure. METHODS The expression level of ALDH1L1 in paired OSCC tissues and adjacent noncancerous tissues were detected by quantitative realtime PCR, Western blot and immunohistochemistry. The relationship between ALDH1L1 expression and clinical characteristics was analyzed. Besides, CCK8, EdU staining, colony formation, wound healing, transwell invasion, apoptosis, cell cycle assays and nude mice tumor bearing experiments were employed to assess the role of ALDH1L1 in OSCC. To explore the underlying mechanisms of these effects, cell cycle-related markers were examined. RESULTS In this study, we revealed that ALDH1L1 expression was significantly reduced in OSCC, and its downregulation was associated with the malignancy of the tumor and poor prognosis of patients. In vivo and in vitro experiments, downregulation of ALDH1L1 in OSCC significantly inhibited the occurrence of NADP+ -dependent catalytic reactions and facilitated tumor cell growth, migration, invasion, survival, cell cycle progression, and xenograft tumor growth. On the contrary, re-expression of ALDH1L1 plays a similar role to anti-folate therapy, promoting NADPH production and suppressing the progression of OSCC. Furthermore, ALDH1L1 overexpressing obviously inhibited the expression of PI3K, p-Akt, CDK2, CDK6, Cyclin D1, Cyclin D3, and Rb in OSCC cells, and promoted the expression of p27. LY294002 and 740 Y-P were used to confirm the inhibitory effects of ALDH1L1 on OSCC progression through PI3K/Akt/Rb pathway. CONCLUSION Our findings highlight the clinical value of ALDH1L1 as a prognostic marker and the potential of a new target for anti-folate therapy.
Collapse
Affiliation(s)
- Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying He
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hanjin Ruan
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
12
|
Li R, Gao R, Zhao Y, Zhang F, Wang X, Li B, Wang L, Ma L, Du J. pH-responsive graphene oxide loaded with targeted peptide and anticancer drug for OSCC therapy. Front Oncol 2022; 12:930920. [PMID: 35992794 PMCID: PMC9382286 DOI: 10.3389/fonc.2022.930920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of cancer occurring in the oral and maxillofacial regions. Despite of the advances in the diagnosis and treatment, the overall 5-year survival rate has remained about 40%–50% in the past decades. Various nanotechnology-based carrier systems have been investigated for their potentials in the OSCC treatment. However, because of the lack of active targeting of tumors, their application is limited. Studies have shown that gastrin-releasing peptide receptors (GRPRs) are overexpressed on many human cancers, including head and neck squamous cell carcinoma. Herein, we aimed to develop a GRPR-targeted nano-graphene oxide (NGO) nanoprobe drug delivery system for OSCC therapy. DOX@NGO-BBN-AF750 was synthesized by the non-covalent bonding method to couple carboxylated NGO with BBN-AF750 (bombesin antagonist peptides conjugated to Alexa Fluor 750) and DOX (doxorubicin) through π-π and hydrogen bonding. Internalization and antitumor activities were carried out in human HSC-3 cancer cells. The tumor pH microenvironment was simulated to study the release of antitumor drug DOX from the DOX@NGO-ant BBN-AF750 complex under different pH conditions. DOX@NGO-BBN-AF750 showed internalization into HSC-3 cells. The IC50 (50% inhibitory concentration) was 5 µg/ml for DOX@NGO-BBN-AF750 in HSC-3 cells. Furthermore, DOX@NGO-BBN-AF750 showed a pH-sensitive drug release rate, and a dose-dependent and pH-responsive cytotoxicity in HSC-3 cells. DOX@NGO-BBN-AF750 presents the characteristics ensuring a slow release of DOX from the nanoprobe, thereby protecting the drug from degradation and prolonging the half-life of the drug. This report provides a versatile strategy to achieving targeted and imaging-guided therapy of OSCC.
Collapse
Affiliation(s)
- Ran Li
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| | - Ruifang Gao
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Yingjiao Zhao
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiangyu Wang
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| | - Jie Du
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| |
Collapse
|
13
|
Chinchilla-Tábora LM, Sayagués JM, González-Morais I, Rodríguez M, Ludeña MD. Prognostic Impact of EGFR Amplification and Visceral Pleural Invasion in Early Stage Pulmonary Squamous Cell Carcinomas Patients after Surgical Resection of Primary Tumor. Cancers (Basel) 2022; 14:cancers14092174. [PMID: 35565304 PMCID: PMC9101408 DOI: 10.3390/cancers14092174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Over the last few decades, an increasing amount of information has been accumulated on biomarkers in non-small cell lung cancer (NSCLC). Despite these advances, most biomarkers have been identified in the adenocarcinoma histological subtype (AC). However, the application of molecular-targeted therapies in the prognosis and treatment of SCC in the clinical setting is very limited, becoming one of the main focus areas in research. Here, we prospectively analyzed the frequency of numerical/structural abnormalities of chromosomes 5, 7, 8, 9, 13 and 22 with FISH in 48 pulmonary SCC patients. From a total of 12 probes, only abnormalities of the 7p12 and 22q12 chromosomal regions were identified as unique genetic variables associated with the prognosis of the disease. The study for these two chromosomal regions was extended to 108 patients with SCC. Overall, chromosome losses were observed more frequently than chromosome gains, i.e., 61% versus 19% of all the chromosome abnormalities detected. The highest levels of genetic amplification were detected for the 5p15.2, 7p12, 8q24 and 22q11 chromosome bands, of which several genes are potentially involved in the pathogenesis of SCC, among others, include the EGFR gene at chromosome 7p12. Patients who displayed EGFR amplification (n = 13; 12%) were mostly older than 65 years (p = 0.07) and exclusively patients in early T-primary tumor stage (pT1−pT2; p = 0.03) with a significantly shortened overall survival (OS) (p ≤ 0.001). Regarding prognosis, the clinical, biological, and histopathologic characteristics of the disease that displayed a significant adverse influence on OS in the univariate analysis included patients older than 65 years (p = 0.02), the presence of lymph node involvement (p = 0.005), metastasis (p = 0.01) and, visceral pleural invasion (VPI) at diagnosis (p = 0.04). EGFR amplification also conferred an adverse impact on patient OS in the whole series (p = 0.02) and especially in patients in early stages (pT1−pT2; p = 0.01). A multivariate analysis of the prognostic factors for OS showed that the most informative combination of independent variables to predict an adverse outcome was the presence of VPI and/or EGFR amplification (p < 0.001). Based on these two variables, a scoring system was built to stratify patients into low- (no adverse features: score 0; n = 69), intermediate- (one adverse feature: score 1; n = 29) and high-risk (two adverse features: score 2; n = 5) groups, with significantly different (p = 0.001) OS rates at 50 months, which were as following: 32%, 28% and 0%, respectively. In the present study, we show that the presence of a high level of 7p12 (EGFR) amplification, exclusively detected in early stage SCC (pT1−pT2), is an independent adverse prognostic factor for OS. The identification of the EGFR gene copy number using FISH techniques may provide a more accurate diagnosis of high-risk populations after the complete resection of the primary tumor. When combined with VPI, three groups of pulmonary SCC were clearly identified that show the extent of the disease. This is of such importance that further prospective studies are necessary in larger series of SCC patients to be classified at the time of diagnosis. This could be achieved with the combined assessment of 7p12 amplification and VPI in primary tumor samples.
Collapse
|
14
|
Balogun TA, Ige OM, Alausa AO, Onyeani CO, Tiamiyu ZA, Omoboyowa DA, Saibu OA, Abdullateef OT. Receptor tyrosine kinases as a therapeutic target by natural compounds in cancer treatment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Receptor tyrosine kinases (RTKs) are single-pass transmembrane proteins that play significant roles in regulating cellular processes, including cell division and growth. Overexpression and mutations of RTKs have been found in clinical manifestations of different forms of cancer. Therefore, RTKs have received considerable interest as a therapeutic biomarker in the treatment of cancer cells.
Main body of the abstract
Comprehensive data on RTKs, pharmacological and biological properties of natural compounds were systematically searched up to 2021 using relevant keywords from various databases, such as Google Scholar, PubMed, Web of Science, and Scopus. The scientific search by various standard electronic resources and databases unveils the effectiveness of medicinal plants in the treatment of various cancers. In vitro and in vivo studies suggested that bioactive compounds such as flavonoids, phenols, alkaloids, and many others can be used pharmacologically as RTKs inhibitors (RTKI) either by competing with ATP at the ATP binding site of the tyrosine kinase domain or competing for the receptor extracellular domain. Additionally, studies conducted on animal models indicated that inhibition of RTKs catalytic activity by natural compounds is one of the most effective ways to block the activation of RTKs signaling cascades, thereby hampering the proliferation of cancer cells. Furthermore, various pharmacological experiments, transcriptomic, and proteomic data also reported that cancer cells treated with different plants extracts or isolated phytochemicals exhibited better anticancer properties with minimal side effects than synthetic drugs. Clinically, natural compounds have demonstrated significant anti-proliferative effect via induction of cell apoptosis in cancer cell lines.
Short conclusion
An in-depth knowledge of the mechanism of inhibition and structural characterization of RTKs is important to the design of novel and selective RTKIs. This review focuses on the molecular mechanisms and structures of natural compounds RTKI targeting vascular endothelial growth factor, epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor while also giving future directions to ameliorate the scientific burden of cancer.
Graphic abstract
Collapse
|
15
|
Current Aspects and Future Considerations of EGFR Inhibition in Locally Advanced and Recurrent Metastatic Squamous Cell Carcinoma of the Head and Neck. Cancers (Basel) 2021; 13:cancers13143545. [PMID: 34298761 PMCID: PMC8306284 DOI: 10.3390/cancers13143545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Squamous cell carcinoma of the head and neck (SCCHN) is a debilitating disease that affects hundreds of thousands of individuals worldwide and has a high mortality rate. Mainstay treatment largely consists of surgery, radiation, and chemotherapy which has been met with significant morbidity. The epidermal growth factor receptor is one that which plays a major role in cell signaling and has been extensively studied in locally advanced (LA) and recurrent metastatic (RM) SCCHN. This review paper details the major roles of the epidermal growth factor receptor (EGFR), previous and current EGFR inhibition therapeutics, resistance mechanisms, and the possible integration of immunotherapy and EGFR inhibition in this disease process. Abstract Recurrent metastatic (RM) and locally advanced (LA) squamous cell carcinoma of the head and neck (SCCHN) are devasting disease states with limited therapeutic options and poor overall survival. Targeting the epidermal growth factor receptor (EGFR) is one area that has helped improve outcomes in this disease. Anti-EGFR based therapies have been shown to improve overall survival and mitigate the significant toxicities incurred from standard radiation, chemotherapy, and/or surgical options. Cetuximab, the most well-studied anti-EGFR monoclonal antibody, has demonstrated a positive impact on outcomes for RM and LA SCCHN. However, the development of early resistance to cetuximab highlights the need for a wider arsenal of therapy for RM and LA diseases. The use of immune checkpoint inhibitors has recently transformed the treatment of recurrent SCCHN. Drugs such as pembrolizumab and nivolumab have demonstrated success in recent clinical trials and have been approved for the treatment of advanced disease. Given the positive results of both EGFR targeted agents and immune checkpoint inhibitors, ongoing trials are studying their synergistic effects.
Collapse
|
16
|
Molecular Landscape of Vulvar Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22137069. [PMID: 34209172 PMCID: PMC8269046 DOI: 10.3390/ijms22137069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with dual pathogenesis, Human papillomavirus (HPV)-associated and HPV-independent, with a poorly explored molecular landscape. We aimed to summarize the findings of the series analyzing molecular hallmarks of this neoplasm. In January 2021, we conducted a comprehensive literature search using Pubmed Medline and Scopus to identify publications focused on genomic profiling of VSCC. Observational studies, including both prospective and retrospective designs, evaluating molecular alterations in VSCC were deemed eligible. A total of 14 studies analyzing 749 VSCC were identified. The study series were heterogeneous in HPV testing and sequencing strategies, included small sets of tumors and cancer genes, and commonly lacked survival analysis. Only one extensive targeted next-generation sequencing-based study comprised a large cohort of 280 VSCC. The mutated genes, their number, and frequencies were highly variable between the series. Overall, TP53 and CDKN2A, followed by PIK3CA, HRAS, and PTEN, were the most frequently studied and mutated genes. Mutations involved in the PI3K/AKT/mTOR pathway, including TP53, HRAS, KRAS, and PIK3CA, have been consistently reported across the studies. However, the role of individual mutations or pathways in the development of VSCC remains unclear. In conclusion, heterogeneity and the small sample size of available molecular series contribute to a limited view of the molecular landscape of VSCC. Large-scale genome- or exome-wide studies with robust HPV testing are necessary to improve the molecular characterization of VSCC.
Collapse
|
17
|
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, Sidransky D, Ganesh MS, Ray JG, Gowda H, Chatterjee A. Whole-Exome Sequencing Analysis of Oral Squamous Cell Carcinoma Delineated by Tobacco Usage Habits. Front Oncol 2021; 11:660696. [PMID: 34136393 PMCID: PMC8200776 DOI: 10.3389/fonc.2021.660696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the oral cavity in India. Cigarette smoking and chewing tobacco are known risk factors associated with OSCC. However, genomic alterations in OSCC with varied tobacco consumption history are not well-characterized. In this study, we carried out whole-exome sequencing to characterize the mutational landscape of OSCC tumors from subjects with different tobacco consumption habits. We identified several frequently mutated genes, including TP53, NOTCH1, CASP8, RYR2, LRP2, CDKN2A, and ATM. TP53 and HRAS exhibited mutually exclusive mutation patterns. We identified recurrent amplifications in the 1q31, 7q35, 14q11, 22q11, and 22q13 regions and observed amplification of EGFR in 25% of samples with tobacco consumption history. We observed genomic alterations in several genes associated with PTK6 signaling. We observed alterations in clinically actionable targets including ERBB4, HRAS, EGFR, NOTCH1, NOTCH4, and NOTCH3. We observed enrichment of signature 29 in 40% of OSCC samples from tobacco chewers. Signature 15 associated with defective DNA mismatch repair was enriched in 80% of OSCC samples. NOTCH1 was mutated in 36% of samples and harbored truncating as well as missense variants. We observed copy number alterations in 67% of OSCC samples. Several genes associated with non-receptor tyrosine kinase signaling were affected in OSCC. These molecules can serve as potential candidates for therapeutic targeting in OSCC.
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
18
|
Fan WL, Yang LY, Hsieh JCH, Lin TC, Lu MYJ, Liao CT. Prognostic Genetic Biomarkers Based on Oncogenic Signaling Pathways for Outcome Prediction in Patients with Oral Cavity Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13112709. [PMID: 34070941 PMCID: PMC8199274 DOI: 10.3390/cancers13112709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary A comprehensive analysis based on mutational signatures and oncogenic signaling pathways to identify a specific subgroup of patients that had a significantly negative impact on both disease-free and overall survival in oral cavity squamous cell carcinoma (OCSCC) from whole exome-sequencing data. This analysis has revealed a variety of biologically relevant candidate target genes. Thirty percent of 165 tumors had multiple targetable alterations in multiple pathways. This suggests the complex interplay and crosstalk of oncogenic signaling pathways play an important role on the outcome of patients with OCSCC, and the candidate genes and pathways identified may include prognostic genetic biomarkers or therapeutic targets for OCSCC. Abstract Mutational profiling of patients’ tumors has suggested that the development of oral cavity squamous cell carcinoma (OCSCC) is driven by multiple genes in multiple pathways. This study aimed to examine the association between genomic alterations and clinical outcomes in patients with advanced stages OCSCC to facilitate prognostic stratification. We re-analyzed our previous whole-exome sequencing data from 165 long-term follow-ups of stages III and IV patients with OCSCC. Their frequent mutations were mapped to 10 oncogenic signaling pathways. Clinicopathological risk factors, relapse, and survival were analyzed to identify the genetic factors associated with advanced OCSCC. Frequent genetic alterations included point mutations in TP53, FAT1, NOTCH1, CASP8, CDKN2A, HRAS, PIK3CA, KMT2B (also known as MLL4), and LINC00273; amplified segments in CCND1, EGFR, CTTN, and FGFR1; and lost segments in CDKN2A, ADAM3A, and CFHR1/CFHR4. Comprehensive analysis of genetic alterations revealed that subgroups based on mutational signatures had a significant negative impact on disease-free survival (p = 0.0005) and overall survival (p = 0.0024). Several important signaling pathways were identified to be frequently genetically altered in our cohort. A specific subgroup of patients with alterations in NOTCH, RTK/RAS/MAPK, and TGF-beta pathways that had a significantly negative impact on disease-free survival (p = 0.0009). Thirty percent of samples had multiple targetable mutations in multiple pathways, indicating opportunities for novel therapy.
Collapse
Affiliation(s)
- Wen-Lang Fan
- Genomic Medicine Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan 33382, Taiwan; (W.-L.F.); (T.-C.L.)
| | - Lan-Yan Yang
- Clinical Trial Center, Biostatistics and Informatics Unit, Linkou Chang Gung Memorial Hospital, Taoyuan 33382, Taiwan;
| | - Jason Chia-Hsun Hsieh
- Department of Internal Medicine, Division of Hematology-Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236043, Taiwan;
- Medical Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33382, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
| | - Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan 33382, Taiwan; (W.-L.F.); (T.-C.L.)
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33382, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Assessment of multiple pathways involved in the inhibitory effect of HCG22 on oral squamous cell carcinoma progression. Mol Cell Biochem 2021; 476:2561-2571. [PMID: 33649984 DOI: 10.1007/s11010-021-04091-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022]
Abstract
LncRNAs have been proposed to be associated with the tumorigenesis and progression of oral squamous cell carcinoma (OSCC). LncRNA HLA complex group 22 (HCG22) was reported to be lowly expressed and associated with poor prognosis in head and neck squamous cell carcinoma (HNSCC). However, the biological role and related mechanism of HCG22 in OSCC have not been characterized. HCG22 expression in OSCC cells was detected by qRT-PCR. Cell proliferation, invasion, and apoptosis were evaluated by Bromodeoxyuridine (BrdU) proliferation assay, Transwell invasion assay, and flow cytometry analysis, respectively. The protein levels of proliferating cell nuclear antigen (PCNA), E-cadherin, Vimentin, Bcl-2, Bax, protein kinase B (Akt), phosphorylated Akt (p-Akt), mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), and β-catenin were detected by western blot. Cell growth evaluation was performed using in vitro colony formation assay and in vivo tumor xenograft assay. We found that HCG22 was weakly expressed in OSCC cells. HCG22 overexpression inhibited cell proliferation and invasion and induced apoptosis in OSCC cells. The levels of PCNA, Vimentin, and Bcl-2 were decreased and E-cadherin and Bax expression was elevated in OSCC cells after HCG22 overexpression. Additionally, HCG22 overexpression inhibited the Akt, mTOR and Wnt/β-catenin pathways. Activation of Akt, mTOR, and Wnt/β-catenin pathways attenuated the anti-tumor property of HCG22 in OSCC cells. Furthermore, HCG22 overexpression inhibited the growth of OSCC cells in vitro and in vivo. In conclusion, HCG22 exerted anti-tumor property in OSCC by inhibiting the Akt, mTOR, and Wnt/β-catenin pathways.
Collapse
|
20
|
Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020; 9:cells9122648. [PMID: 33317149 PMCID: PMC7763888 DOI: 10.3390/cells9122648] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-984-496204
| |
Collapse
|
21
|
Karatas OF, Capik O, Barlak N, Aydin Karatas E. Comprehensive in silico analysis for identification of novel candidate target genes, including DHX36, OPA1, and SENP2, located on chromosome 3q in head and neck cancers. Head Neck 2020; 43:288-302. [PMID: 33006201 DOI: 10.1002/hed.26493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Major milestones of head and neck carcinogenesis have been associated with various genetic abnormalities; however, a clear picture of the molecular networks deregulated during the carcinogenesis of head and neck squamous cell carcinoma (HNSC) has not yet completely revealed. METHODS In this study, we used in silico tools and online data sets to evaluate the underlying reasons for the expressional changes of genes residing within the chromosome 3q and to help understanding their contributions to HNSC carcinogenesis. RESULTS We found that 13 of 20 most upregulated genes in HNSC are localized to 3q. Further analysis revealed a gene signature consisting of DHX36, OPA1, and SENP2, which showed significant correlation in HNSC samples and potentially be deregulated through similar mechanisms including DNA amplification, transcriptional, and posttranscriptional regulation. CONCLUSIONS Considering our findings, we suggest DHX36, OPA1, and SENP2 genes as overexpressed in HNSC tumors and that might be concurrently involved in HNSC carcinogenesis, tumor progression, and induction of angiogenic pathways.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Elanur Aydin Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
22
|
Zhang S, Cai Y, Zhang J, Liu X, He L, Cheng L, Hua K, Hui W, Zhu J, Wan Y, Cui Y. Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: simultaneous visual detection of both alleles. NANOSCALE 2020; 12:10098-10105. [PMID: 32350488 DOI: 10.1039/d0nr00360c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rapid and simple detection of single nucleotide polymorphism (SNP) is vital for individualized diagnosis and eventual treatment in the current clinical setting. In this study, we developed a tetra-primer ARMS-PCR combined lateral flow assay (T-ARMS-PCR-LFA) method for simultaneous visual detection of two alleles. By using four primers labeled with digoxin, biotin and Cy5 separately in one PCR reaction, the amplified allele-specific products could be captured by streptavidin and the anti-Cy5 antibody on two separated test lines of a LFA strip, which allows the presentation of both alleles within the single LFA strip. Both DNA and whole blood can be used as templates in this genotyping method in which the whole detection process is completed within 75 minutes. The performance assay of T-ARMS-PCR-LFA demonstrates the accuracy, specificity and sensitivity of this method. One hundred human whole blood samples were used for MTHFR C677T genotyping in T-ARMS-PCR-LFA. The concordance rate of the results detected was up to 100% when compared with that of the sequencing results. Collectively, this newly developed method is highly applicable for SNP screening in clinical practices.
Collapse
Affiliation(s)
- Sinong Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang G, Yang Y, Tang H, Yang K. Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Sci 2020; 111:1542-1554. [PMID: 32086839 PMCID: PMC7226219 DOI: 10.1111/cas.14362] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
Current studies have shown that the clock gene Period 1 (Per1) is downregulated in various tumors and plays an important role in promoting tumor progression. However, the biological functions and mechanism of Per1 in tumors remain largely unknown. In this study, 86 specimens of oral squamous cell carcinoma (OSCC) tissues and adjacent noncancerous tissues were collected to determine the Per1 expression level and the clinical significance of Per1 expression. Per1 was stably inhibited or overexpressed in OSCC cells to investigate its function and mechanism in vitro and in vivo. We found that Per1 was remarkably downregulated in OSCC and that low Per1 expression was significantly associated with TNM clinical stage and poor prognosis of OSCC patients. Per1 overexpression in SCC15 OSCC cells (Per1-OE SCC15 cells) significantly promoted autophagy and apoptosis while inhibiting proliferation and the AKT/mTOR pathway. However, the results obtained in Per1-silenced TSCCA OSCC cells were opposite those obtained in Per1-OE SCC15 cells. After addition of the AKT activator SC79 to Per1-OE SCC15 cells, the increased autophagy and apoptosis as well as decreased proliferation were remarkably rescued. Furthermore, increased apoptosis was significantly rescued in Per1-OE SCC15 cells treated with the autophagy inhibitor autophinib. In vivo tumorigenicity assays also confirmed that Per1 overexpression suppressed tumor growth. Taken together, our findings demonstrate for the first time that Per1 promotes OSCC progression by inhibiting autophagy-mediated cell apoptosis and enhancing cell proliferation in an AKT/mTOR pathway-dependent manner, and Per1 could be used as a valuable therapeutic target for OSCC.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Isoliquiritigenin Suppressed Esophageal Squamous Carcinoma Growth by Blocking EGFR Activation and Inducing Cell Cycle Arrest. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9259852. [PMID: 32190688 PMCID: PMC7063883 DOI: 10.1155/2020/9259852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Isoliquiritigenin (ILQ) is a natural product isolated from licorice root which has served as traditional Chinese medicine for a long time. Recently, the antitumor effects of ILQ have been widely studied in various cancers, but the role and related mechanisms of ILQ in esophageal squamous carcinoma cells (ESCC) are still poorly understood. In our studies, ILQ showed profound antitumor activities in ESCC cells. In vitro, ILQ substantially inhibited cell proliferation and anchorage-independent growth in a panel of human ESCC cells. Mechanism studies showed that EGFR signaling pathway played an important role for ILQ to exert its antitumor activity in ESCC. Exposure to isoliquiritigenin substantially decreased EGF-induced EGFR activation and its downstream Akt and ERK1/2 signaling pathway. EGFR knockdown with shRNA in ESCC cell significantly reduced the sensitivity of cancer cells to ILQ. Moreover, it was found that ILQ had a significantly inhibitory effect on AP-1 family, the protein of Jun and Fos subfamilies was substantially downregulated, and the transcriptional activity of AP-1 family was dramatically suppressed by ILQ. By reducing the expression of cyclin D1, ESCC cells were induced G0/G1 arrest, and cell division was substantially blocked. Finally, the antitumor potency of ILQ was validated in xenograft models and the tumor growth was prominently restrained by ILQ. Briefly, our study showed that ILQ, or its analogue, appeared to be a promising new therapeutic agent for ESCC management.
Collapse
|
25
|
Pérez Sayáns M, Chamorro Petronacci CM, Lorenzo Pouso AI, Padín Iruegas E, Blanco Carrión A, Suárez Peñaranda JM, García García A. Comprehensive Genomic Review of TCGA Head and Neck Squamous Cell Carcinomas (HNSCC). J Clin Med 2019; 8:jcm8111896. [PMID: 31703248 PMCID: PMC6912350 DOI: 10.3390/jcm8111896] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this present study was to comprehensively describe somatic DNA alterations and transcriptional alterations in the last extension of the HNSCC subsets in TCGA, encompassing a total of 528 tumours. In order to achieve this goal, transcriptional analysis, functional enrichment assays, survival analysis, somatic copy number alteration analysis and somatic alteration analysis were carried out. A total of 3491 deregulated genes were found in HNSCC patients, and the functional analysis carried out determined that tissue development and cell differentiation were the most relevant signalling pathways in upregulated and downregulated genes, respectively. Somatic copy number alteration analysis showed a “top five” altered HNSCC genes: CDKN2A (deleted in 32.03% of patients), CDKN2B (deleted in 28.34% of patients), PPFIA1 (amplified in 26.02% of patients), FADD (amplified in 25.63% of patients) and ANO1 (amplified in 25.44% of patients). Somatic mutations analysis revealed TP53 mutation in 72% of the tumour samples followed by TTN (39%), FAT1 (23%) and MUC16 (19%). Another interesting result is the mutual exclusivity pattern that was discovered between the TP53 and PIK3CA mutations, and the co-occurrence of CDKN2A with the TP53 and FAT1 alterations. On analysis to relate differential expression genes and somatic copy number alterations, some genes were overexpressed and amplified, for example, FOXL2, but other deleted genes also showed overexpression, such as CDKN2A. Survival analysis revealed that overexpression of some oncogenes, such as EGFR, CDK6 or CDK4 were associated with poorer prognosis tumours. These new findings help us to develop new therapies and programs for the prevention of HNSCC.
Collapse
Affiliation(s)
- Mario Pérez Sayáns
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
- Correspondence: ; Tel.: +34-346-6101-1815; Fax: +34-349-8629-5424
| | - Cintia Micaela Chamorro Petronacci
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| | - Alejandro Ismael Lorenzo Pouso
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| | - Elena Padín Iruegas
- Area of Human Anatomy and Embryology, Faculty of Physiotherapy, Department of Functional Biology and Health Sciences, University of Vigo, 36310 Vigo, Pontevedra, Spain;
| | - Andrés Blanco Carrión
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| | - José Manuel Suárez Peñaranda
- Pathological Anatomy Service, University Hospital Complex of Santiago (CHUS), C.P. 15782 Santiago de Compostela, Spain;
| | - Abel García García
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| |
Collapse
|