1
|
He X, Zai G, Zhou L, Chen S, Wang G. Identification of VRK1 as a Novel Potential Biomarker for Prognosis and Immunotherapy in Hepatocellular Carcinoma. J Inflamm Res 2024; 17:1671-1683. [PMID: 38504696 PMCID: PMC10948335 DOI: 10.2147/jir.s452505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Background Research has indicated that VRK1 is essential for the tumor cell cycle. However, its prognostic and immunotherapeutic predictive significance has not been documented in hepatocellular carcinoma (HCC). Methods The TCGA, ICGC, and GSE14520 datasets were used to investigate VRK1 expression and its predictive significance of survival outcomes. The qRT-PCR and immunohistochemistry (IHC) were used to confirm the findings. The immunotherapeutic response of VRK1 was anticipated by the IMvigor210 cohort. Lastly, the association between immune infiltration, m6A modification, and functional enrichment of differentially expressed genes (DEGs) was investigated in connection to VRK1 expression. Results VRK1 expression was markedly elevated on both the mRNA and protein levels in HCC. In HCC patients, a high expression of VRK1 was linked to a poor prognosis. Furthermore, there was a substantial positive correlation seen between increased VRK1 expression and the response rate to anti-PD-L1 immunotherapy. Relationships between VRK1 and m6A-related genes as well as different immune cells were shown by correlation studies. Lastly, enrichment analysis revealed a tight relationship between VRK1 and important biological functions, including DNA replication, cell cycle control, and fatty acid metabolism. Conclusion Our research reveals the potential of VRK1 as a novel biomarker for prognosis and immunotherapy response in HCC patients.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Pathology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guozhen Zai
- Department of Pathology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Lidan Zhou
- Department of Radiology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shengyang Chen
- Department of Hepatobiliary Pancreatic Surgery, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guizhi Wang
- Department of Pathology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
2
|
Wang N, Mo Z, Pan L, Zhou M, Ye X, Liu X, Cai X, Qian C, Chen F, Xiong Y, Fan F, Li W. Dual PI3K/HDAC Inhibitor BEBT-908 Exhibits Potent Efficacy as Monotherapy for Primary Central Nervous System Lymphoma. Target Oncol 2023; 18:941-952. [PMID: 37855991 DOI: 10.1007/s11523-023-01006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The efficacy of systemic treatment for primary central nervous system lymphoma (PCNSL) is limited because of the blood-brain barrier (BBB) and the ineffectiveness of chemotherapy. The dual PI3K/HDAC inhibitor BEBT-908 has exhibited favorable in vivo distribution and activity in various cancers. OBJECTIVES The aims of this study were to assess the efficacy of BEBT-908 in brain orthotopic mouse models of hematological malignancies, to investigate its pharmacologic properties, and to elucidate the underlying mechanism of action. METHODS We evaluated the anticancer activity of BEBT-908 in various hematological malignancies through cell viability assays. The impact of BEBT-908 on c-Myc expression and ferroptosis signaling pathways was assessed using Western blotting, qPCR, ROS detection, GSH/GSSG detection, and IHC. Pharmacokinetic and pharmacodynamic profiles were assessed through LC-MS/MS and Western blotting. The effects of BEBT-908 in vivo were examined using xenografts and brain orthotopic mouse models. RESULTS Our findings demonstrate that BEBT-908 exhibits promising anti-tumor activity in vitro and in vivo across multiple subtypes of hematological malignancies. Furthermore, BEBT-908 exhibits excellent BBB penetration and inhibits tumor growth in a brain orthotopic lymphoma model with prolonged survival of host mice. Mechanistically, BEBT-908 downregulated c-Myc expression, which contributed to ferroptosis, ultimately leading to tumor shrinkage. CONCLUSION Our study provides robust evidence for the dual PI3K/HDAC inhibitor BEBT-908 as an effective anti-cancer agent for PCNSL.
Collapse
Affiliation(s)
- Ning Wang
- Guangdong Provincial People's Hospital Affiliated to Southern Medical University, Guangdong Academy of Medical Sciences, No. 123 Huifu West Road, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenxian Mo
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
- College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Lu Pan
- Guangdong Provincial People's Hospital Affiliated to Southern Medical University, Guangdong Academy of Medical Sciences, No. 123 Huifu West Road, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Minhua Zhou
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
| | - Xiaolan Ye
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
| | - Xinjian Liu
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
| | - Xiong Cai
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
- Curis, Inc., Lexington, MA, USA
| | - Changgeng Qian
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
- Curis, Inc., Lexington, MA, USA
| | - Feili Chen
- Guangdong Provincial People's Hospital Affiliated to Southern Medical University, Guangdong Academy of Medical Sciences, No. 123 Huifu West Road, Guangzhou, 510080, Guangdong, China
| | - Yan Xiong
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China
| | - Fushun Fan
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China.
- Guangzhou BeBetter Med Inc., No. 25 Yayingshi Road, Guangzhou, 510660, Guangdong, China.
| | - Wenyu Li
- Guangdong Provincial People's Hospital Affiliated to Southern Medical University, Guangdong Academy of Medical Sciences, No. 123 Huifu West Road, Guangzhou, 510080, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Sneyers F, Kerkhofs M, Speelman-Rooms F, Welkenhuyzen K, La Rovere R, Shemy A, Voet A, Eelen G, Dewerchin M, Tait SWG, Ghesquière B, Bootman MD, Bultynck G. Intracellular BAPTA directly inhibits PFKFB3, thereby impeding mTORC1-driven Mcl-1 translation and killing MCL-1-addicted cancer cells. Cell Death Dis 2023; 14:600. [PMID: 37684238 PMCID: PMC10491774 DOI: 10.1038/s41419-023-06120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Intracellular Ca2+ signals control several physiological and pathophysiological processes. The main tool to chelate intracellular Ca2+ is intracellular BAPTA (BAPTAi), usually introduced into cells as a membrane-permeant acetoxymethyl ester (BAPTA-AM). Previously, we demonstrated that BAPTAi enhanced apoptosis induced by venetoclax, a BCL-2 antagonist, in diffuse large B-cell lymphoma (DLBCL). This finding implied a novel interplay between intracellular Ca2+ signaling and anti-apoptotic BCL-2 function. Hence, we set out to identify the underlying mechanisms by which BAPTAi enhances cell death in B-cell cancers. In this study, we discovered that BAPTAi alone induced apoptosis in hematological cancer cell lines that were highly sensitive to S63845, an MCL-1 antagonist. BAPTAi provoked a rapid decline in MCL-1-protein levels by inhibiting mTORC1-driven Mcl-1 translation. These events were not a consequence of cell death, as BAX/BAK-deficient cancer cells exhibited similar downregulation of mTORC1 activity and MCL-1-protein levels. Next, we investigated how BAPTAi diminished mTORC1 activity and identified its ability to impair glycolysis by directly inhibiting 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) activity, a previously unknown effect of BAPTAi. Notably, these effects were also induced by a BAPTAi analog with low affinity for Ca2+. Consequently, our findings uncover PFKFB3 inhibition as an Ca2+-independent mechanism through which BAPTAi impairs cellular metabolism and ultimately compromises the survival of MCL-1-dependent cancer cells. These findings hold two important implications. Firstly, the direct inhibition of PFKFB3 emerges as a key regulator of mTORC1 activity and a promising target in MCL-1-dependent cancers. Secondly, cellular effects caused by BAPTAi are not necessarily related to Ca2+ signaling. Our data support the need for a reassessment of the role of Ca2+ in cellular processes when findings were based on the use of BAPTAi.
Collapse
Affiliation(s)
- Flore Sneyers
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
- KU Leuven, Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I bis, Herestraat 49 box 901, 3000, Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Rita La Rovere
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Ahmed Shemy
- KU Leuven, Laboratory for Biomolecular Modelling and Design, Department of Chemistry, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Arnout Voet
- KU Leuven, Laboratory for Biomolecular Modelling and Design, Department of Chemistry, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Guy Eelen
- KU Leuven, Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven, Belgium
- VIB-KU Leuven, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Campus Gasthuisberg O&N4, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Mieke Dewerchin
- KU Leuven, Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven, Belgium
- VIB-KU Leuven, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Campus Gasthuisberg O&N4, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Bart Ghesquière
- KU Leuven, Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Leuven, Belgium - VIB, Metabolomics Core Facility Leuven, Center for Cancer Biology, Leuven, Belgium, Herestraat 49 box 912, 3000, Leuven, Belgium
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I, Herestraat 49 box 802, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
De Pascale M, Bissegger L, Tarantelli C, Beaufils F, Prescimone A, Mohamed Seid Hedad H, Kayali O, Orbegozo C, Raguž L, Schaefer T, Hebeisen P, Bertoni F, Wymann MP, Borsari C. Investigation of morpholine isosters for the development of a potent, selective and metabolically stable mTOR kinase inhibitor. Eur J Med Chem 2023; 248:115038. [PMID: 36634458 DOI: 10.1016/j.ejmech.2022.115038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.
Collapse
Affiliation(s)
- Martina De Pascale
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Lukas Bissegger
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Florent Beaufils
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Alessandro Prescimone
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058, Basel, Switzerland
| | | | - Omar Kayali
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Clara Orbegozo
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Luka Raguž
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Thorsten Schaefer
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Paul Hebeisen
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Matthias P Wymann
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| | - Chiara Borsari
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
5
|
Major A, Kline J, Karrison TG, Fishkin PAS, Kimball AS, Petrich AM, Nattam S, Rao K, Sleckman BG, Cohen K, Besien KV, Rapoport AP, Smith SM. Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas. Haematologica 2022; 107:1608-1618. [PMID: 34320785 PMCID: PMC9244831 DOI: 10.3324/haematol.2021.278853] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
The PI3K/Akt/mTOR (PAM) axis is constitutively activated in multiple lymphoma subtypes and is a promising therapeutic target. The mTOR inhibitor temsirolimus (TEM) and the immunomodulatory agent lenalidomide (LEN) have overlapping effects within the PAM axis with synergistic potential. This multicenter phase I/II study evaluated combination therapy with TEM/LEN in patients with relapsed and refractory lymphomas. Primary endpoints of the phase II study were rates of complete (CR) and overall response (ORR). There were 18 patients in the phase I dose-finding study, and TEM 25 mg weekly and LEN 20 mg on day 1 through day 21 every 28 days was established as the recommended phase II dose. An additional 93 patients were enrolled in the phase II component with three cohorts: diffuse large B-cell lymphoma (DLBCL, n=39), follicular lymphoma (FL, n=15), and an exploratory cohort of other lymphoma histologies with classical Hodgkin lymphoma (cHL) comprising the majority (n=39 total, n=20 with cHL). Patients were heavily pretreated with a median of four (range, 1-14) prior therapies and one-third with relapse following autologous stem cell transplantation (ASCT); patients with cHL had a median of six prior therapies. The FL cohort was closed prematurely due to slow accrual. ORR were 26% (13% CR) and 64% (18% CR) for the DLBCL and exploratory cohorts, respectively. ORR for cHL patients in the exploratory cohort, most of whom had relapsed after both brentuximab vedotin and ASCT, was 80% (35% CR). Eight cHL patients (40%) proceeded to allogeneic transplantation after TEM/LEN therapy. Grade ≥3 hematologic adverse events (AE) were common. Three grade 5 AE occurred. Combination therapy with TEM/LEN was feasible and demonstrated encouraging activity in heavily-pretreated lymphomas, particularly in relapsed/refractory cHL (clinicaltrials gov. Identifier: NCT01076543).
Collapse
Affiliation(s)
| | | | | | | | - Amy S Kimball
- University of Maryland School of Medicine and Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; Amgen Inc., Thousand Oaks, CA
| | - Adam M Petrich
- Northwestern University, Chicago, IL, USA; Daiichi-Sankyo, Basking Ridge, NJ
| | | | - Krishna Rao
- Southern Illinois University, Springfield, IL
| | | | | | | | - Aaron P Rapoport
- University of Maryland School of Medicine and Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | | |
Collapse
|
6
|
Zhang X, Wu Y, Sun X, Cui Q, Bai X, Dong G, Gao Z, Wang Y, Gao C, Sun S, Ji N, Liu Y. The PI3K/AKT/mTOR signaling pathway is aberrantly activated in primary central nervous system lymphoma and correlated with a poor prognosis. BMC Cancer 2022; 22:190. [PMID: 35184749 PMCID: PMC8859899 DOI: 10.1186/s12885-022-09275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is a specific subtype of non-Hodgkin lymphoma that is highly invasive and confined to the central nervous system (CNS). The vast majority of PCNSLs are diffuse large B-cell lymphomas (DLBCLs). PCNSL is a highly heterogeneous disease, and its pathogenesis has not yet been fully elucidated. Further studies are needed to guide individualized therapy and improve the prognosis. Methods In this study, we detected 1) the expression of p-AKT, p-mTOR, p-S6 and p-4E-BP1 by immunohistochemistry (IHC) and Western blotting, 2) the mRNA expression by real-time qPCR and 3) the deletion of PTEN gene by immunofluorescence in situ hybridization (FISH) in order to investigate the activation status of the PI3K/AKT/mTOR signaling pathway in PCNSL. Samples of reactive hyperplasia lymphnods were used as the control group. The correlations between the clinical characteristics and prognosis of PCNSL patients and the expression of p-AKT, p-mTOR, p-S6 and p-4E-BP1 and the deletion of PTEN were assessed. Results The IHC results showed that the positive expression rates of p-AKT, p-mTOR, p-S6 and p-4E-BP1 in PCNSL were significantly higher in the PCNSL group than in the control group (P < 0.05). The relative mRNA expression level of MTOR in PCNSL samples was significantly increased (P = 0.013). Correlation analysis revealed that the expression of p-mTOR was correlated with that of p-AKT, p-S6, p-4E-BP1. PTEN deletion was found in 18.9% of PCNSL samples and was correlated with the expression of p-AKT (P = 0.031). Correlation analysis revealed that the PCNSL relapse rate in the p-mTOR-positive group was 64.5%, significantly higher than that in the negative group (P = 0.001). Kaplan-Meier survival analysis showed inferior progression-free survival (PFS) in the p-mTOR- and p-S6-positive groups (P = 0.002 and 0.009, respectively), and PTEN deletion tended to be related to shorter overall survival (OS) (P = 0.072). Cox regression analysis revealed p-mTOR expression as an independent prognostic factor for a shorter PFS (hazard ratio (HR) =7.849, P = 0.046). Conclusions Our results suggest that the PI3K/AKT/mTOR signaling pathway is aberrantly activated in PCNSL and associated with a poor prognosis, which might indicate new therapeutic targets and prognostic factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09275-z.
Collapse
|
7
|
Zha JH, Xia YC, Ye CL, Hu Z, Zhang Q, Xiao H, Yu BT, Xu WH, Xu GQ. The Anti-Non-Small Cell Lung Cancer Cell Activity by a mTOR Kinase Inhibitor PQR620. Front Oncol 2021; 11:669518. [PMID: 34178653 PMCID: PMC8222575 DOI: 10.3389/fonc.2021.669518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
In non-small-cell lung carcinoma (NSCLC), aberrant activation of mammalian target of rapamycin (mTOR) contributes to tumorigenesis and cancer progression. PQR620 is a novel and highly-potent mTOR kinase inhibitor. We here tested its potential activity in NSCLC cells. In primary human NSCLC cells and established cell lines (A549 and NCI-H1944), PQR620 inhibited cell growth, proliferation, and cell cycle progression, as well as cell migration and invasion, while inducing significant apoptosis activation. PQR620 disrupted assembles of mTOR complex 1 (mTOR-Raptor) and mTOR complex 2 (mTOR-Rictor-Sin1), and blocked Akt, S6K1, and S6 phosphorylations in NSCLC cells. Restoring Akt-mTOR activation by a constitutively-active Akt1 (S473D) only partially inhibited PQR620-induced cytotoxicity in NSCLC cells. PQR620 was yet cytotoxic in Akt1/2-silenced NSCLC cells, supporting the existence of Akt-mTOR-independent mechanisms. Indeed, PQR620 induced sphingosine kinase 1 (SphK1) inhibition, ceramide production and oxidative stress in primary NSCLC cells. In vivo studies demonstrated that daily oral administration of a single dose of PQR620 potently inhibited primary NSCLC xenograft growth in severe combined immune deficient mice. In PQR620-treated xenograft tissues, Akt-mTOR inactivation, apoptosis induction, SphK1 inhibition and oxidative stress were detected. In conclusion, PQR620 exerted potent anti-NSCLC cell activity via mTOR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jian-Hua Zha
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying-Chen Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun-Lin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Zhang
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, Suzhou, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Hua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Qiu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Copanlisib synergizes with conventional and targeted agents including venetoclax in B- and T-cell lymphoma models. Blood Adv 2021; 4:819-829. [PMID: 32126142 DOI: 10.1182/bloodadvances.2019000844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 01/26/2023] Open
Abstract
Copanlisib is a pan-class I phosphoinositide 3-kinase (PI3K) inhibitor with preferred activity toward PI3Kα and PI3Kδ. Despite the clear overall clinical benefit, the number of patients achieving complete remissions with the single agent is relatively low, a problem shared by the vast majority of targeted agents. Here, we searched for novel copanlisib-based combinations. Copanlisib was tested as a single agent, in combination with an additional 17 drugs in 26 cell lines derived from mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), and T-cell lymphomas. In vivo experiments, transcriptome analyses, and immunoblotting experiments were also performed. Copanlisib as a single agent showed in vitro dose-dependent antitumor activity in the vast majority of the models. Combination screening identified several compounds that synergized with copanlisib. The strongest combination was with the B-cell lymphoma 2 (BCL2) inhibitor venetoclax. The benefit of the combination over single agents was also validated in an MZL xenograft model and in MCL primary cells, and was due to increased induction of apoptosis, an effect likely sustained by the reduction of the antiapoptotic proteins myeloid cell leukemia 1 (MCL1) and BCL-XL, observed in MCL and MZL cell lines, respectively. These data supported the rationale for the design of the Swiss Group for Clinical Cancer Research (SAKK) 66/18 phase 1 study currently exploring the combination of copanlisib and venetoclax in relapsed/refractory lymphomas.
Collapse
|
9
|
Borsari C, Keles E, Rageot D, Treyer A, Bohnacker T, Bissegger L, De Pascale M, Melone A, Sriramaratnam R, Beaufils F, Hamburger M, Hebeisen P, Löscher W, Fabbro D, Hillmann P, Wymann MP. 4-(Difluoromethyl)-5-(4-((3 R,5 S)-3,5-dimethylmorpholino)-6-(( R)-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. J Med Chem 2020; 63:13595-13617. [PMID: 33166139 DOI: 10.1021/acs.jmedchem.0c00620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Lukas Bissegger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Anna Melone
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Petra Hillmann
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Satta T, Grant S. Enhancing venetoclax activity in hematological malignancies. Expert Opin Investig Drugs 2020; 29:697-708. [PMID: 32600066 PMCID: PMC7529910 DOI: 10.1080/13543784.2020.1789588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Targeting anti-apoptotic pathways involving the BCL2 family proteins represents a novel treatment strategy in hematologic malignancies. Venetoclax, a selective BCL2 inhibitor, represents the first approved agent of this class, and is currently used in CLL and AML. However, monotherapy is rarely sufficient for sustained responses due to the development of drug resistance and loss of dependence upon the targeted protein. Numerous pre-clinical studies have shown that combining venetoclax with other agents may represent a more effective therapeutic strategy by circumventing resistance mechanisms. In this review, we summarize pre-clinical data providing a foundation for rational combination strategies involving venetoclax. AREAS COVERED Novel combination strategies in hematologic malignancies involving venetoclax, primarily at the pre-clinical level, will be reviewed. We emphasize novel agents that interrupt complementary or compensatory pro-survival pathways, and particularly mechanistic insights underlying synergism. PubMed, Cochrane, EMBASE, and Google scholar were searched from 2000. EXPERT OPINION Although venetoclax has proven to be an effective therapeutic in hematologic malignancies, monotherapy may be insufficient for maximal effectiveness due to the development of resistance and/or loss of BCL2 addiction. Further pre-clinical and clinical development of combination therapies may be necessary for optimal outcomes in patients with diverse blood cancers.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
| | - Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
- Department of Biochemistry, Virginia Commonwealth University , Richmond, USA
- Department of Pharmacology, Virginia Commonwealth University , Richmond, USA
- Department of Molecular and Human Genetics, Virginia Commonwealth University , Richmond, USA
| |
Collapse
|
11
|
Singer E, Walter C, Fabbro D, Rageot D, Beaufils F, Wymann MP, Rischert N, Riess O, Hillmann P, Nguyen HP. Brain-penetrant PQR620 mTOR and PQR530 PI3K/mTOR inhibitor reduce huntingtin levels in cell models of HD. Neuropharmacology 2019; 162:107812. [PMID: 31622602 DOI: 10.1016/j.neuropharm.2019.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
One of the pathological hallmarks of Huntington disease (HD) is accumulation of the disease-causing mutant huntingtin (mHTT), which leads to the disruption of a variety of cellular functions, ultimately resulting in cell death. Induction of autophagy, for example by the inhibition of mechanistic target of rapamycin (mTOR) signaling, has been shown to reduce HTT levels and aggregates. While rapalogs like rapamycin allosterically inhibit the mTOR complex 1 (TORC1), ATP-competitive mTOR inhibitors suppress activities of TORC1 and TORC2 and have been shown to be more efficient in inducing autophagy and reducing protein levels and aggregates than rapalogs. The ability to cross the blood-brain barrier of first generation catalytic mTOR inhibitors has so far been limited, and therefore sufficient target coverage in the brain could not be reached. Two novel, brain penetrant compounds - the mTORC1/2 inhibitor PQR620, and the dual pan-phosphoinositide 3-kinase (PI3K) and mTORC1/2 kinase inhibitor PQR530 - were evaluated by assessing their potential to induce autophagy and reducing mHTT levels. For this purpose, expression levels of autophagic markers and well-defined mTOR targets were analyzed in STHdh cells and HEK293T cells and in mouse brains. Both compounds potently inhibited mTOR signaling in cell models as well as in mouse brain. As proof of principle, reduction of aggregates and levels of soluble mHTT were demonstrated upon treatment with both compounds. Originally developed for cancer treatment, these second generation mTORC1/2 and PI3K/mTOR inhibitors show brain penetrance and efficacy in cell models of HD, making them candidate molecules for further investigations in HD.
Collapse
Affiliation(s)
- Elisabeth Singer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany.
| | - Carolin Walter
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany.
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergerstrasse 60C, Basel, 4057, Switzerland.
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel, 4056, Switzerland.
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60C, Basel, 4057, Switzerland.
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel, 4056, Switzerland.
| | - Nadine Rischert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany; Centre for Rare Diseases (ZSE), University of Tuebingen, Calwerstrasse 7, Tuebingen, 72076, Germany.
| | - Petra Hillmann
- PIQUR Therapeutics AG, Hochbergerstrasse 60C, Basel, 4057, Switzerland.
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Universitaetsstrasse 150, Bochum, 44801, Germany.
| |
Collapse
|
12
|
Rageot D, Beaufils F, Borsari C, Dall’Asen A, Neuburger M, Hebeisen P, Wymann MP. Scalable, Economical, and Practical Synthesis of 4-(Difluoromethyl)pyridin-2-amine, a Key Intermediate for Lipid Kinase Inhibitors. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Alix Dall’Asen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Markus Neuburger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias P. Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|