1
|
Seipel K, Mandhair H, Bacher U, Pabst T. FLT3 and IRAK4 Inhibitor Emavusertib in Combination with BH3-Mimetics in the Treatment of Acute Myeloid Leukemia. Curr Issues Mol Biol 2024; 46:2946-2960. [PMID: 38666914 PMCID: PMC11049208 DOI: 10.3390/cimb46040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Harpreet Mandhair
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Taghiloo S, Ajami A, Alizadeh-Navaei R, Asgarian-Omran H. Combination therapy of acute myeloid leukemia by dual PI3K/mTOR inhibitor BEZ235 and TLR-7/8 agonist R848 in murine model. Int Immunopharmacol 2023; 125:111211. [PMID: 37956488 DOI: 10.1016/j.intimp.2023.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Due to the high relapse rate and toxicity of the common therapies in patients with acute myeloid leukemia (AML), modifications in the treatment strategies are required. The present study was conducted to determine the effects of combinational therapy with a dual PI3K/mTOR inhibitor, BEZ235, and TLR7/8 agonist, R848, on murine AML model. METHODS BEZ235 and R848 were administered to AML leukemic mice in either a single or combination treatment. Frequency of T-CD4+, T-CD8+, MDSCs, NK, exhausted T cells and the degranulation levels was measured via flow cytometry. The cytotoxicity and proliferation levels were evaluated by MTT assay. Then, the expression of iNOS, arginase-1, PD-L1, Gal-9, PVR, IFN-γ, TNF-α, IL-4, IL-10, IL-12 and IL-17 was investigated by Real-Time PCR. Organomegaly, body weight and survival rate were also monitored. RESULTS Following combinational therapy with BEZ235 and R848, increasing in the frequency of anti-tumor immune cells including T-CD4+ cells and M1 macroghages, and decreasing in pro-tumor immune cells including MDSCs, exhausted T-CD4+ and T-CD8+ cells and also M2 macrophages were observed. The functional defects of immune cells in term of proliferation, cytotoxicity, degranulation, and cytokines expression were improved in leukemic mice after treatment with BEZ235 and R848. Finally, organomegaly, body weight and survival analysis showed significant improvements after treatment with BEZ235 and R848. CONCLUSION Taken together, we indicated that the combinational therapy with BEZ235 and R848 could be considered as a potential and powerful therapeutic option for AML patients. Further clinical studies are required to expand our current findings.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Chapman SP, Duprez E, Remy E. Logical modelling of myelofibrotic microenvironment predicts dysregulated progenitor stem cell crosstalk. Biosystems 2023; 231:104961. [PMID: 37392989 DOI: 10.1016/j.biosystems.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Primary myelofibrosis is an untreatable age-related disorder of haematopoiesis in which a break in the crosstalk between progenitor Haematopoietic Stem Cells (HSCs) and neighbouring mesenchymal stem cells causes HSCs to rapidly proliferate and migrate out of the bone marrow. Around 90% of patients harbour mutations in driver genes that all converge to overactivate haematopoietic JAK-STAT signalling, which is thought to be critical for disease progression, as well as microenvironment modification induced by chronic inflammation. The trigger to the initial event is unknown but dysregulated thrombopoietin (TPO) and Toll-Like Receptor (TLR) signalling are hypothesised to initiate chronic inflammation which then disrupts stem cell crosstalk. Using a systems biology approach, we have constructed an intercellular logical model that captures JAK-STAT signalling and key crosstalk channels between haematopoietic and mesenchymal stem cells. The aim of the model is to decipher how TPO and TLR stimulation can perturb the bone marrow microenvironment and dysregulate stem cell crosstalk. The model predicted conditions in which the disease was averted and established for both wildtype and ectopically JAK mutated simulations. The presence of TPO and TLR are both required to disturb stem cell crosstalk and result in the disease for wildtype. TLR signalling alone was sufficient to perturb the crosstalk and drive disease progression for JAK mutated simulations. Furthermore, the model predicts probabilities of disease onset for wildtype simulations that match clinical data. These predictions might explain why patients who test negative for the JAK mutation can still be diagnosed with PMF, in which continual exposure to TPO and TLR receptor activation may trigger the initial inflammatory event that perturbs the bone marrow microenvironment and induce disease onset.
Collapse
Affiliation(s)
- S P Chapman
- I2M, Aix-Marseille University, CNRS, Marseille, France
| | - E Duprez
- Epigenetic Factors in Normal and Malignant Haematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
| | - E Remy
- I2M, Aix-Marseille University, CNRS, Marseille, France.
| |
Collapse
|
4
|
Bruserud Ø, Reikvam H. Casein Kinase 2 (CK2): A Possible Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3711. [PMID: 37509370 PMCID: PMC10378128 DOI: 10.3390/cancers15143711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The protein kinase CK2 (also known as casein kinase 2) is one of the main contributors to the human phosphoproteome. It is regarded as a possible therapeutic strategy in several malignant diseases, including acute myeloid leukemia (AML), which is an aggressive bone marrow malignancy. CK2 is an important regulator of intracellular signaling in AML cells, especially PI3K-Akt, Jak-Stat, NFκB, Wnt, and DNA repair signaling. High CK2 levels in AML cells at the first time of diagnosis are associated with decreased survival (i.e., increased risk of chemoresistant leukemia relapse) for patients receiving intensive and potentially curative antileukemic therapy. However, it is not known whether these high CK2 levels can be used as an independent prognostic biomarker because this has not been investigated in multivariate analyses. Several CK2 inhibitors have been developed, but CX-4945/silmitasertib is best characterized. This drug has antiproliferative and proapoptotic effects in primary human AML cells. The preliminary results from studies of silmitasertib in the treatment of other malignancies suggest that gastrointestinal and bone marrow toxicities are relatively common. However, clinical AML studies are not available. Taken together, the available experimental and clinical evidence suggests that the possible use of CK2 inhibition in the treatment of AML should be further investigated.
Collapse
Affiliation(s)
- Øystein Bruserud
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
5
|
Galloway-Peña JR, Jobin C. Microbiota Influences on Hematopoiesis and Blood Cancers: New Horizons? Blood Cancer Discov 2023; 4:267-275. [PMID: 37052501 PMCID: PMC10320642 DOI: 10.1158/2643-3230.bcd-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Hematopoiesis governs the generation of immune cells through the differentiation of hematopoietic stem cells (HSC) into various progenitor cells, a process controlled by intrinsic and extrinsic factors. Among extrinsic factors influencing hematopoiesis is the microbiota, or the collection of microorganisms present in various body sites. The microbiota has a profound impact on host homeostasis by virtue of its ability to release various molecules and structural components, which promote normal organ function. In this review, we will discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies, as well as highlight important knowledge gaps to move this field of research forward. SIGNIFICANCE Microbiota dysfunction is associated with many pathologic conditions, including hematologic malignancies. In this review, we discuss the role of microbiota in influencing hematopoiesis and how disrupting the microbiota/host network could lead to hematologic malignancies. Understanding how the microbiota influences hematologic malignancies could have an important therapeutic impact for patients.
Collapse
Affiliation(s)
- Jessica R. Galloway-Peña
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
7
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
8
|
Therapeutic applications of toll-like receptors (TLRs) agonists in AML. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2319-2329. [PMID: 35962918 DOI: 10.1007/s12094-022-02917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive type of blood cancer affecting bone marrow (BM). In AML, hematopoietic precursors are arrested in the early stages of development and are defined as the presence of ≥ 20% blasts (leukemia cells) in the BM. Toll-like receptors (TLR) are major groups of pattern recognition receptors expressed by almost all innate immune cells that enable them to detect a wide range of pathogen-associated molecular patterns and damage-associated molecular patterns to prime immune responses toward adaptive immunity. Because TLRs are commonly expressed on transformed immune system cells (ranging from blasts to memory cells), they can be a potential option for developing efficient clinical alternatives in hematologic tumors. This is because several in vitro and in vivo investigations have demonstrated that TLR signaling increased the immunogenicity of AML cells, making them more vulnerable to T cell-mediated invasion. This study aimed to review the current knowledge in this field and provide some insight into the therapeutic potentials of TLRs in AML.
Collapse
|
9
|
Inflammatory response mediates cross-talk with immune function and reveals clinical features in acute myeloid leukemia. Biosci Rep 2022; 42:231186. [PMID: 35441668 PMCID: PMC9093697 DOI: 10.1042/bsr20220647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulated genetic mutations are an important cause for the development of acute myeloid leukemia (AML), but abnormal changes in the inflammatory microenvironment also have regulatory effects on AML. Exploring the relationship between inflammatory response and pathological features of AML has implications for clinical diagnosis, treatment and prognosis evaluation. We analyzed the expression variation landscape of inflammatory response-related genes (IRRGs) and calculated an inflammatory response score for each sample using the gene set variation analysis (GSVA) algorithm. The differences in clinical- and immune-related characteristics between high- and low-inflammatory response groups were further analyzed. We found that most IRRGs were highly expressed in AML samples, and patients with high inflammatory response had poor prognosis and were accompanied with highly activated chemokine-, cytokine- and adhesion molecule-related signaling pathways, higher infiltration ratios of monocytes, neutrophils and M2 macrophages, high activity of type I/II interferon (IFN) response, and higher expression of immune checkpoints. We also used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the sensitivity of AML samples with different inflammatory responses to common drugs, and found that AML samples with low inflammatory response were more sensitive to cytarabine, doxorubicin and midostaurin. SubMap algorithm also demonstrated that high-inflammatory response patients are more suitable for anti-PD-1 immunotherapy. Finally, we constructed a prognostic risk score model to predict the overall survival (OS) of AML patients. Patients with higher risk score had significantly shorter OS, which was confirmed in two validation cohorts. The analysis of inflammatory response patterns can help us better understand the differences in tumor microenvironment (TME) of AML patients, and guide clinical medication and prognosis prediction.
Collapse
|
10
|
Jayavelu AK, Wolf S, Buettner F, Alexe G, Häupl B, Comoglio F, Schneider C, Doebele C, Fuhrmann DC, Wagner S, Donato E, Andresen C, Wilke AC, Zindel A, Jahn D, Splettstoesser B, Plessmann U, Münch S, Abou-El-Ardat K, Makowka P, Acker F, Enssle JC, Cremer A, Schnütgen F, Kurrle N, Chapuy B, Löber J, Hartmann S, Wild PJ, Wittig I, Hübschmann D, Kaderali L, Cox J, Brüne B, Röllig C, Thiede C, Steffen B, Bornhäuser M, Trumpp A, Urlaub H, Stegmaier K, Serve H, Mann M, Oellerich T. The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell 2022; 40:301-317.e12. [PMID: 35245447 DOI: 10.1016/j.ccell.2022.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.
Collapse
Affiliation(s)
- Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Clinical Cooperation Unit Pediatric Leukemia, DKFZ and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg - KiTZ, Heidelberg, Germany
| | - Sebastian Wolf
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Buettner
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Alexe
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Constanze Schneider
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sebastian Wagner
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Carolin Andresen
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Anne C Wilke
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Alena Zindel
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Jahn
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Silvia Münch
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Khali Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Philipp Makowka
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Fabian Acker
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Julius C Enssle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Nina Kurrle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Daniel Hübschmann
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Pattern Recognition and Digital Medicine, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bernhard Brüne
- Department of Biochemistry I, Goethe University, Frankfurt, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Björn Steffen
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany; National Center for Tumor Diseases, Dresden (NCT/UCC), Dresden, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
11
|
Banescu C, Tripon F, Bojan AS, Trifa AP, Muntean C, Crauciuc GA, Boglis A, Candea M, Lazar E, Jimbu L, Iancu M. Association of TLR4 Rs4986791 Polymorphism and TLR9 Haplotypes with Acute Myeloid Leukemia Susceptibility: A Case-Control Study of Adult Patients. J Pers Med 2022; 12:jpm12030409. [PMID: 35330409 PMCID: PMC8950293 DOI: 10.3390/jpm12030409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs) have an important role in innate immunity, and single nucleotide polymorphisms (SNPs) of TLR genes influence the risk of developing hematological malignancies. We aimed to evaluate the effect of TLR2 (rs5743708), TLR4 (rs11536889, rs4986790, rs4986791), TLR9 (rs187084, rs352140, rs5743836) on AML risk, the relation between investigated SNPs and somatic mutations, clinical features, and the overall survival of adult AML patients. All mentioned SNPs were genotyped in 511 AML cases and 503 healthy controls. DNMT3A (R882), FLT3 (D835, ITD), and NPM1 mutations’ status were investigated in AML patients. TLR4 rs4986791 was associated with an increased risk of AML under the dominant model (OR = 1.61, 95% CI: 1.001–2.59). Variant genotypes of the TLR4 rs4986790 or rs4986791 were associated with the odds of developing AML in the codominant model (OR = 3.14; 95% CI: 1.12–8.84; p = 0.032). The TLR9 rs5743836 variant genotype was associated with the NPM1 mutation (p = 0.002). The investigated SNPs were not associated with the DNMT3A, FLT3 mutations and had no significant contribution to the hazard of death after adjusting for covariates. Our findings suggest that TLR4 rs4986791 is associated with AML susceptibility. The combined variant genotypes of TLR4 rs4986790 and rs4986791 increase AML risk, the TLR9 C-G-A haplotype may represent a promising approach to predict a person’s risk for developing AML.
Collapse
Affiliation(s)
- Claudia Banescu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Genetics Laboratory, County Emergency Clinical Hospital of Targu Mures, 50, Gheorghe Marinescu Street, 540136 Targu Mures, Romania
- Correspondence:
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Anca S. Bojan
- Department of Hematology, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania; (A.S.B.); (L.J.)
| | - Adrian P. Trifa
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania;
- Department of Genetics, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Carmen Muntean
- Department of Clinical Science, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - George Andrei Crauciuc
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
| | - Alina Boglis
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (M.C.); (E.L.)
| | - Erzsebet Lazar
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (M.C.); (E.L.)
| | - Laura Jimbu
- Department of Hematology, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania; (A.S.B.); (L.J.)
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Modeling Down Syndrome Myeloid Leukemia by Sequential Introduction of GATA1 and STAG2 Mutations in Induced Pluripotent Stem Cells with Trisomy 21. Cells 2022; 11:cells11040628. [PMID: 35203280 PMCID: PMC8870267 DOI: 10.3390/cells11040628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by acquisition of additional somatic mutations in a stepwise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein, leading to enhanced production of immature megakaryocytic population compared to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation pathways and interferon α/β signaling, along with an upregulation of pathways promoting myeloid differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.
Collapse
|
13
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
14
|
Dias ML, O'Connor KM, Dempsey EM, O'Halloran KD, McDonald FB. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. Am J Physiol Regul Integr Comp Physiol 2021; 321:R879-R902. [PMID: 34612068 DOI: 10.1152/ajpregu.00307.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial transmembrane receptors that form part of the innate immune response. They play a role in the recognition of various microorganisms and their elimination from the host. TLRs have been proposed as vital immunomodulators in the regulation of multiple neonatal stressors that extend beyond infection such as oxidative stress and pain. The immune system is immature at birth and takes some time to become fully established. As such, babies are especially vulnerable to sepsis at this early stage of life. Findings suggest a gestational age-dependent increase in TLR expression. TLRs engage with accessory and adaptor proteins to facilitate recognition of pathogens and their activation of the receptor. TLRs are generally upregulated during infection and promote the transcription and release of proinflammatory cytokines. Several studies report that TLRs are epigenetically modulated by chromatin changes and promoter methylation upon bacterial infection that have long-term influences on immune responses. TLR activation is reported to modulate cardiorespiratory responses during infection and may play a key role in driving homeostatic instability observed during sepsis. Although complex, TLR signaling and downstream pathways are potential therapeutic targets in the treatment of neonatal diseases. By reviewing the expression and function of key Toll-like receptors, we aim to provide an important framework to understand the functional role of these receptors in response to stress and infection in premature infants.
Collapse
Affiliation(s)
- Maria L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Wang T, Lyu CY, Jiang YH, Dong XY, Wang Y, Li ZH, Wang JX, Xu RR. A drug-biomarker interaction model to predict the key targets of Scutellaria barbata D. Don in adverse-risk acute myeloid leukaemia. Mol Divers 2021; 25:2351-2365. [PMID: 32676746 DOI: 10.1007/s11030-020-10124-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
A poor prognosis, relapse and resistance are burning issues during adverse-risk acute myeloid leukaemia (AML) treatment. As a natural medicine, Scutellaria barbata D. Don (SBD) has shown impressive antitumour activity in various cancers. Thus, SBD may become a potential drug in adverse-risk AML treatment. This study aimed to screen the key targets of SBD in adverse-risk AML using the drug-biomarker interaction model through bioinformatics and network pharmacology methods. First, the adverse-risk AML-related critical biomarkers and targets of SBD active ingredient were obtained from The Cancer Genome Atlas database and several pharmacophore matching databases. Next, the protein-protein interaction network was constructed, and topological analysis and pathway enrichment were used to screen key targets and main pathways of intervention of SBD in adverse-risk AML. Finally, molecular docking was implemented for key target verification. The results suggest that luteolin and quercetin are the main active components of SBD against adverse-risk AML, and affected drug resistance, apoptosis, immune regulation and angiogenesis through the core targets AKT1, MAPK1, IL6, EGFR, SRC, VEGFA and TP53. We hope the proposed drug-biomarker interaction model provides an effective strategy for the research and development of antitumour drugs.
Collapse
Affiliation(s)
- Teng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Chun-Yi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yue-Hua Jiang
- Central Laboratory of Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Xue-Yan Dong
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Zong-Hong Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Jin-Xin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Rui-Rong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China.
| |
Collapse
|
16
|
Chashchina A, Märklin M, Hinterleitner C, Salih HR, Heitmann JS, Klimovich B. DNAM-1/CD226 is functionally expressed on acute myeloid leukemia (AML) cells and is associated with favorable prognosis. Sci Rep 2021; 11:18012. [PMID: 34504191 PMCID: PMC8429762 DOI: 10.1038/s41598-021-97400-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
DNAM-1 is reportedly expressed on cytotoxic T and NK cells and, upon interaction with its ligands CD112 and CD155, plays an important role in tumor immunosurveillance. It has also been reported to be functionally expressed by myeloid cells, but expression and function on malignant cells of the myeloid lineage have not been studied so far. Here we analyzed expression of DNAM-1 in leukemic cells of acute myeloid leukemia (AML) patients. We found substantial levels of DNAM-1 to be expressed on leukemic blasts in 48 of 62 (> 75%) patients. Interaction of DNAM-1 with its ligands CD112 and CD155 induced release of the immunomodulatory cytokines IL-6, IL-8 IL-10 and TNF-α by AML cells and DNAM-1 expression correlated with a more differentiated phenotype. Multivariate analysis did not show any association of DNAM-1 positivity with established risk factors, but expression was significantly associated with clinical disease course: patients with high DNAM-1 surface levels had significantly longer progression-free and overall survival compared to DNAM-1low patients, independently whether patients had undergone allogenic stem cell transplantation or not. Together, our findings unravel a functional role of DNAM-1 in AML pathophysiology and identify DNAM-1 as a potential novel prognostic maker in AML.
Collapse
Affiliation(s)
- Anna Chashchina
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Clemens Hinterleitner
- DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany.,Department of Medical Oncology and Pulmonology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany. .,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany.
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| |
Collapse
|
17
|
Zhang R, Li P, Lv H, Li N, Ren S, Xu W. Exosomal SNHG16 secreted by CSCs promotes glioma development via TLR7. Stem Cell Res Ther 2021; 12:349. [PMID: 34134771 PMCID: PMC8207674 DOI: 10.1186/s13287-021-02393-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Glioma is one of the most common central nervous system malignant tumors, accounting for 45~60% of adult intracranial tumors. However, the clinical treatment of glioma is limited. It is of great significance to seek new therapeutic methods for glioma via gene therapy. Methods Long non-coding RNA (lncRNA) SNHG16 expression level was measured by microarray and qRT-PCR assay; ISH was used to identify the location of SNHG16. Cancer stem cells (CSCs) were separated from glioma tissues and identified using immunofluorescence. Exosomes were isolated from CSCs and cancer cells and identified by TEM and western blot. MTT, wound healing, transwell, and colony formation assay were performed to explore the role of SNHG16 or si-SNHG16 from CSCs on progression of glioma cells. RIP was used to verify the interaction between SNHG16 and TLR7. The experiment of Xenograft used for exploring the function of SNHG16/ TLR7/MyD88/NFκB/c-Myc on growth on glioma in vivo. Results Microarray assay showed long non-coding RNA (lncRNA) SNHG16 was upregulated in glioma. Followed qRT-PCR also showed an increase of SNHG16 in glioma tissues; high expression of SNHG16 indicated a poor prognosis in glioma patients. Interestingly, SNHG16 was packaged into exosomes and derived from CSCs. Functional analysis showed exo-SNHG16 secreted by CSCs promoted the progression of glioma cell lines SHG44 and U251. Furthermore, SNHG16 interacted with TLR7 and activated NFκB/c-Myc signaling in glioma cells. And the silencing of TLR7 inhibited the progression of SHG44 and U251 cells by exo-SNHG16 from CSCs. In vivo tumorigenesis experiments showed that exo-SNHG16 induced glioma progression by activating TLR7/MyD88/NFκB/c-Myc signaling. Conclusion Our study suggested CSC-derived exo-SNHG16 promoted cancer progression by activating TLR7/MyD88/NFκB/c-Myc signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02393-8.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Neurology, Heze Hospital of Traditional Chinese Medicine, Heze, 274000, Shandong, China
| | - Peng Li
- Department of Neurosurgery, Heze Hospital of Traditional Chinese Medicine, 1036, Danyang Road, Heze, 274000, Shandong, China
| | - Heli Lv
- Department of Neurosurgery, Heze Hospital of Traditional Chinese Medicine, 1036, Danyang Road, Heze, 274000, Shandong, China
| | - Nana Li
- Department of Non-treatment, Wenshang County Hospital of Traditional Chinese Medicine, Jining, 272501, Shandong, China
| | - Suliang Ren
- Department of Neurosurgery, Heze Hospital of Traditional Chinese Medicine, 1036, Danyang Road, Heze, 274000, Shandong, China
| | - Wentao Xu
- Department of Neurosurgery, Heze Hospital of Traditional Chinese Medicine, 1036, Danyang Road, Heze, 274000, Shandong, China.
| |
Collapse
|
18
|
Zhang H, Shen L, Fang W, Zhang X, Zhong Y. Perfluorooctanoic acid-induced immunotoxicity via NF-kappa B pathway in zebrafish (Danio rerio) kidney. FISH & SHELLFISH IMMUNOLOGY 2021; 113:9-19. [PMID: 33727078 DOI: 10.1016/j.fsi.2021.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial production due to its stable chemical structure and hydrophobic and oleophobic characteristics. PFOA has been frequently detected in environmental media and organisms, leading to increased health risks. There is a lack of information about the immunotoxicity of aquatic organisms induced by PFOA, and the molecular mechanisms remain unclear. In this study, LC-MS analysis proved that PFOA can accumulate in the kidney of zebrafish. In the 0.05 mg/L PFOA treatment group, the accumulation of PFOA in the kidney after 21 days of exposure significantly increased by 79.89%, compared to 14 days of exposure. And a hydropic endoplasmic reticulum, swelling of mitochondria and vacuolization were observed in kidney immune cells of zebrafish. The Toll-like receptor 2 (TLR2)/myeloid differentiation factor 88 (myd88)/NF-κB (P65) pathway was activated when PFOA exerted its effects, which led to regulation of antibody expression; RT-PCR results showed that the mRNA expression level of interleukin-4 (IL-4) decreased in a dose-dependent manner, decreasing to 29.6% of the control level in the 1 mg/L PFOA group after 21 d of exposure. According to triangle plot analysis, immunoglobulin exhibited a notable stress response to PFOA at an early phase; a high concentration of PFOA may disrupt the immune system of zebrafish. Third-order polynomial fitting analysis showed that the high-mRNA-expression regions of IL-4 and antibodies were partially consistent. The results indicated that PFOA could affect antibodies by increasing the concentrations of proinflammatory cytokines. Changes in antibody levels further influenced the expression of other cytokines, which eventually caused disorders in the zebrafish immune system. This study expands the understanding of PFOA-induced immunosuppression and suggests that toxicity mechanisms should be considered for further health risk assessment of emerging pollutants.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wendi Fang
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
19
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
20
|
Aasebø E, Brenner AK, Birkeland E, Tvedt THA, Selheim F, Berven FS, Bruserud Ø. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers (Basel) 2021; 13:cancers13071509. [PMID: 33806032 PMCID: PMC8037744 DOI: 10.3390/cancers13071509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The formation of normal blood cells in the bone marrow is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. These cell types support and regulate the growth of acute myeloid leukemia (AML) cells and communicate with leukemic cells through the release of proteins to their common extracellular microenvironment. One of the AML-supporting normal cell types is a subset of connective tissue cells called mesenchymal stem cells. In the present study, we observed that AML cells release a wide range of diverse proteins into their microenvironment, but patients differ both with regard to the number and amount of released proteins. Inhibition of this bidirectional communication through protein release between AML cells and leukemia-supporting normal cells may become a new strategy for cancer treatment. Abstract Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557–2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | | | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Øystein Bruserud
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: or
| |
Collapse
|
21
|
Long W, Liu S, Li XX, Shen X, Zeng J, Luo JS, Li KR, Wu AG, Yu L, Qin DL, Hu GQ, Yang J, Wu JM. Whole transcriptome sequencing and integrated network analysis elucidates the effects of 3,8-Di-O-methylellagic acid 2-O-glucoside derived from Sanguisorba offcinalis L., a novel differentiation inducer on erythroleukemia cells. Pharmacol Res 2021; 166:105491. [PMID: 33582247 DOI: 10.1016/j.phrs.2021.105491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive hematologic malignancy with no specific treatment. Sanguisorba officinalis L. (S. officinalis), a well-known traditional Chinese medicine, possesses potent anticancer activity. However, the active components of S. officinalis against AEL and the associated molecular mechanisms remain unknown. In this study, we predicted the anti-AML effect of S. officinalis based on network pharmacology. Through the identification of active components of S. officinalis, we found that 3,8-Di-O-methylellagic acid 2-O-glucoside (DMAG) not only significantly inhibited the proliferation of erythroleukemic cell line HEL, but also induced their differentiation to megakaryocytes. Furthermore, we demonstrated that DMAG could prolong the survival of AEL mice model. Whole-transcriptome sequencing was performed to elucidate the underlying molecular mechanisms associated with anti-AEL effect of DMAG. The results showed that the total of 68 miRNAs, 595 lncRNAs, 4030 mRNAs and 35 circRNAs were significantly differentially expressed during DMAG induced proliferation inhibition and differentiation of HEL cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed miRNAs, lncRNAs, mRNAs and circRNAs were mainly involved in metabolic, HIF-1, MAPK, Notch pathway and apoptosis. The co-expression networks showed that miR-23a-5p, miR-92a-1-5p, miR-146b and miR-760 regulatory networks were crucial for megakaryocyte differentiation induced by DMAG. In conclusion, our results suggest that DMAG, derived from S. officinalis might be a potent differentiation inducer of AEL cells and provide important information on the underlying mechanisms associated with its anti-AEL activity.
Collapse
Affiliation(s)
- Wang Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Sha Liu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Xuan Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Xin Shen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jie-Si Luo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ke-Ru Li
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Guang-Qiang Hu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
22
|
Aasebø E, Birkeland E, Selheim F, Berven F, Brenner AK, Bruserud Ø. The Extracellular Bone Marrow Microenvironment-A Proteomic Comparison of Constitutive Protein Release by In Vitro Cultured Osteoblasts and Mesenchymal Stem Cells. Cancers (Basel) 2020; 13:cancers13010062. [PMID: 33379263 PMCID: PMC7795818 DOI: 10.3390/cancers13010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Normal blood cells are formed in the bone marrow by a process called hematopoiesis. This process is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. However, these cells can also support the growth of cancer cells, i.e., hematological malignancies (e.g., leukemias) and cancers that arise in another organ and spread to the bone marrow. Two of these cancer-supporting normal cells are bone-forming osteoblasts and a subset of connective tissue cells called mesenchymal stem cells. One mechanism for their cancer support is the release of proteins that support cancer cell proliferation and progression of the cancer disease. Our present study shows that both these normal cells release a wide range of proteins that support cancer cells, and inhibition of this protein-mediated cancer support may become a new strategy for cancer treatment. Abstract Mesenchymal stem cells (MSCs) and osteoblasts are bone marrow stromal cells that contribute to the formation of stem cell niches and support normal hematopoiesis, leukemogenesis and development of metastases from distant cancers. This support is mediated through cell–cell contact, release of soluble mediators and formation of extracellular matrix. By using a proteomic approach, we characterized the protein release by in vitro cultured human MSCs (10 donors) and osteoblasts (nine donors). We identified 1379 molecules released by these cells, including 340 proteins belonging to the GO-term Extracellular matrix. Both cell types released a wide range of functionally heterogeneous proteins including extracellular matrix molecules (especially collagens), several enzymes and especially proteases, cytokines and soluble adhesion molecules, but also several intracellular molecules including chaperones, cytoplasmic mediators, histones and non-histone nuclear molecules. The levels of most proteins did not differ between MSCs and osteoblasts, but 82 proteins were more abundant for MSC (especially extracellular matrix proteins and proteases) and 36 proteins more abundant for osteoblasts. Finally, a large number of exosomal proteins were identified. To conclude, MSCs and osteoblasts show extracellular release of a wide range of functionally diverse proteins, including several extracellular matrix molecules known to support cancer progression (e.g., metastases from distant tumors, increased relapse risk for hematological malignancies), and the large number of identified exosomal proteins suggests that exocytosis is an important mechanism of protein release.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway; (E.B.); (F.S.); (F.B.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway; (E.B.); (F.S.); (F.B.)
| | - Frode Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway; (E.B.); (F.S.); (F.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (E.A.); (A.K.B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Correspondence: or ; Tel.: +47-5597-2997
| |
Collapse
|
23
|
Sioud M. Microbial sensing by haematopoietic stem and progenitor cells: Vigilance against infections and immune education of myeloid cells. Scand J Immunol 2020; 92:e12957. [PMID: 32767789 DOI: 10.1111/sji.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Bone marrow haematopoietic stem and progenitor cells (HSPCs) express pattern recognition receptors such as Toll-like receptors (TLRs) to sense microbial products and activation of these innate immune receptors induces cytokine expression and redirects bone marrow haematopoiesis towards the increased production of myeloid cells. Secreted cytokines by HSPCs in response to TLR ligands can act in an autocrine or paracrine manner to regulate haematopoiesis. Moreover, tonic activation of HSPCs by microbiota-derived compounds might educate HSPCs to produce superior myeloid cells equipped with innate memory responses to combat pathogens. While haematopoietic stem cell activation through TLRs meets the increased demand for blood leucocytes to protect the host against infection, persistent exposure to inflammatory cytokines or microbial products might impair their function and even induce malignant transformation. This review highlights the potential outcomes of HSPCs in response to TLR ligands.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Oslo University Hospital-Radiumhospitalet, Montebello, Norway
| |
Collapse
|
24
|
Wang S, Yang L, Liu Y, Xu Y, Zhang D, Jiang Z, Wang C, Liu Y. A Novel Immune-Related Competing Endogenous RNA Network Predicts Prognosis of Acute Myeloid Leukemia. Front Oncol 2020; 10:1579. [PMID: 32850463 PMCID: PMC7432272 DOI: 10.3389/fonc.2020.01579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a genetically, biologically and clinically heterogeneous hematopoietic malignancy that is highly dependent on the bone marrow (BM) microenvironment. Infiltrated immune cells and stromal cells are an important part of the BM microenvironment and significantly affect the progression of AML. Recently, the competing endogenous RNA hypothesis has gained great interests in the study of molecular and biological mechanisms of tumor occurrence and progression. However, research on how competing endogenous RNA relates to leukemia tumor microenvironment remains uninvestigated. Methods In this study, mRNA, miRNA and lncRNA data and clinical information of the AML cohort were obtained from The Cancer Genome Atlas (TCGA) database, and the immune and stromal scores were calculated using the ESTIMATE algorithm. Results We found that immune scores were significantly correlated with cytogenetic risk and overall survival, and also identified microenvironment-related mRNAs, miRNAs, and lncRNAs based on the immune and stromal scores. Differentially expressed mRNAs and lncRNAs were applied to weighted correlation network analysis (WGCNA) to identify the modules most relevant to the immune microenvironment of AML. Using miRNA database to predict miRNA-targeted genes, we established the immune-related competing endogenous RNA network consisting of 33 lncRNAs, 21 miRNAs and 135 mRNAs. Prognostic analysis was performed on the genes in the immune-related competing endogenous RNA network to screen out 15 lncRNAs, 2 miRNAs and 31 mRNAs with prognostic values. Conclusion In summary, we identified a novel immune-related mRNA-miRNA-lncRNA competing endogenous RNA network associated with the prognosis of AML, which may contribute to better understanding of the development and progression of AML and to serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Schmid B, Hausmann O, Hitzl W, Achermann Y, Wuertz-Kozak K. The Role of Cutibacterium acnes in Intervertebral Disc Inflammation. Biomedicines 2020; 8:biomedicines8070186. [PMID: 32629986 PMCID: PMC7400222 DOI: 10.3390/biomedicines8070186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, the role of infection of the intervertebral disc (IVD) with Cutibacterium acnes (C. acnes) as a contributor to disc-related low back pain (LBP) has been discussed. The aim of this study was to investigate whether and how C. acnes contributes to the inflammatory processes during IVD disease. The prevalence of C. acnes infection in human IVD tissue was determined by aerobic and anaerobic culture. Thereafter, primary human IVD cells were infected with a reference and a clinical C. acnes strain and analyzed for pro-inflammatory markers (gene/protein level). In a subsequent experiment, the involvement of the Toll-like receptor (TLR) pathway was investigated by co-treatment with sparstolonin B, a TLR2/4 inhibitor. We detected C. acnes in 10% of IVD biopsies (with either herniation or degeneration). Stimulating IVD cells with both C. acnes strains strongly and significantly upregulated expression of Interleukin (IL)-1β, IL-6, IL-8, and inducible nitric oxide synthase (iNOS). IL-6, cyclooxygenase (COX)-2, and iNOS expression was reduced upon TLR2/4 inhibition in 3 out of 5 donors, whereby responders and non-responders could not be differentiated by their basal TLR2 or TLR4 expression levels. We demonstrate that exposure of IVD cells to C. acnes induces an inflammatory response that may contribute to the development of discogenic LBP by involving TLR2/4 activation, yet only in a subgroup of patients. Whether the same response will be observed in vivo and where lower inoculums are present remains to be proven in future studies.
Collapse
Affiliation(s)
- Bettina Schmid
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland;
- Faculty of Science, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Oliver Hausmann
- Neuro- and Spine Centre, Klinik St. Anna, St. Anna Street 32, 6006 Lucerne, Switzerland;
- Department of Neurosurgery, Inselspital Berne, University of Berne, Murtenstrasse 11, 3010 Berne, Switzerland
- CABMM Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland;
| | - Wolfgang Hitzl
- Research Office (Biostatistics), Paracelsus Medical University, Strubergasse 20, 5020 Salzburg, Austria;
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Müllner Hauptstr. 48, 5020 Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University Salzburg, 2020 Salzburg, Austria
| | - Yvonne Achermann
- CABMM Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland;
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Karin Wuertz-Kozak
- CABMM Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland;
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Dr., Rochester, NY 14623, USA
- Institute for Biomechanics, D-HEST, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
- Spine Center, Schön Clinic Munich Harlaching (Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg), Harlachinger Str. 51, 81547 Munich, Germany
- Correspondence: or ; Tel.: +1585-475-7355
| |
Collapse
|
26
|
Do We Really Need Another Special Issue on NF-κB in Cancer and Inflammation? Cancers (Basel) 2019; 11:cancers11121978. [PMID: 31835312 PMCID: PMC6966584 DOI: 10.3390/cancers11121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
|