1
|
Brennan RJ, Jenkinson S, Brown A, Delaunois A, Dumotier B, Pannirselvam M, Rao M, Ribeiro LR, Schmidt F, Sibony A, Timsit Y, Sales VT, Armstrong D, Lagrutta A, Mittlestadt SW, Naven R, Peri R, Roberts S, Vergis JM, Valentin JP. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov 2024; 23:525-545. [PMID: 38773351 DOI: 10.1038/s41573-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohan Rao
- Janssen Research & Development, San Diego, CA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Lyn Rosenbrier Ribeiro
- UCB Biopharma, Braine-l'Alleud, Belgium
- AstraZeneca, Cambridge, UK
- Grunenthal, Berkshire, UK
| | | | | | - Yoav Timsit
- Novartis Biomedical Research, Cambridge, MA, USA
- Blueprint Medicines, Cambridge, MA, USA
| | | | - Duncan Armstrong
- Novartis Biomedical Research, Cambridge, MA, USA
- Armstrong Pharmacology, Macclesfield, UK
| | | | | | - Russell Naven
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Ravikumar Peri
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Alexion Pharmaceuticals, Wilmington, DE, USA
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - James M Vergis
- Faegre Drinker Biddle and Reath, LLP, Washington, DC, USA
| | | |
Collapse
|
2
|
Stakišaitis D, Kapočius L, Tatarūnas V, Gečys D, Mickienė A, Tamošuitis T, Ugenskienė R, Vaitkevičius A, Balnytė I, Lesauskaitė V. Effects of Combined Treatment with Sodium Dichloroacetate and Sodium Valproate on the Genes in Inflammation- and Immune-Related Pathways in T Lymphocytes from Patients with SARS-CoV-2 Infection with Pneumonia: Sex-Related Differences. Pharmaceutics 2024; 16:409. [PMID: 38543303 PMCID: PMC10974540 DOI: 10.3390/pharmaceutics16030409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 12/10/2024] Open
Abstract
The study presents data on the anti-inflammatory effects of a combination of sodium dichloroacetate and sodium valproate (DCA-VPA) on the expression of inflammation- and immune response-related genes in T lymphocytes of SARS-CoV-2 patients. The study aimed to assess the effects of DCA-VPA on the genes of cytokine activity, chemokine-mediated signaling, neutrophil chemotaxis, lymphocyte chemotaxis, T-cell chemotaxis, and regulation of T-cell proliferation pathways. The study included 21 patients with SARS-CoV-2 infection and pneumonia: 9 male patients with a mean age of 68.44 ± 15.32 years and 12 female patients with a mean age of 65.42 ± 15.74 years. They were hospitalized between December 2022 and March 2023. At the time of testing, over 90% of sequences analyzed in Lithuania were found to be of the omicron variant of SARS-CoV-2. The T lymphocytes from patients were treated with 5 mmol DCA and 2 mmol VPA for 24 h in vitro. The effect of the DCA-VPA treatment on gene expression in T lymphocytes was analyzed via gene sequencing. The study shows that DCA-VPA has significant anti-inflammatory effects and apparent sex-related differences. The effect is more potent in T cells from male patients with SARS-CoV-2 infection and pneumonia than in females.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| | - Auksė Mickienė
- Department of Infectious Diseases, Lithuanian University of Health Sciences, 47116 Kaunas, Lithuania;
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Rasa Ugenskienė
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| |
Collapse
|
3
|
Ma Q, Luo Y, Zhong J, Limbu SM, Li LY, Chen LQ, Qiao F, Zhang ML, Lin Q, Du ZY. Hypoxia tolerance in fish depends on catabolic preference between lipids and carbohydrates. Zool Res 2023; 44:954-966. [PMID: 37721105 PMCID: PMC10559088 DOI: 10.24272/j.issn.2095-8137.2023.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Hypoxia is a common environmental stress factor in aquatic organisms, which varies among fish species. However, the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known. Here, we showed that hypoxia response in different fish species was affected by lipid catabolism and preference for lipid or carbohydrate energy sources. Activation of biochemical lipid catabolism through peroxisome proliferator-activated receptor alpha (Pparα) or increasing mitochondrial fat oxidation in tilapia decreased tolerance to acute hypoxia by increasing oxygen consumption and oxidative damage and reducing carbohydrate catabolism as an energy source. Conversely, lipid catabolism inhibition by suppressing entry of lipids into mitochondria in tilapia or individually knocking out three key genes of lipid catabolism in zebrafish increased tolerance to acute hypoxia by decreasing oxygen consumption and oxidative damage and promoting carbohydrate catabolism. However, anaerobic glycolysis suppression eliminated lipid catabolism inhibition-promoted hypoxia tolerance in adipose triglyceride lipase (atgl) mutant zebrafish. Using 14 fish species with different trophic levels and taxonomic status, the fish preferentially using lipids for energy were more intolerant to acute hypoxia than those preferentially using carbohydrates. Our study shows that hypoxia tolerance in fish depends on catabolic preference for lipids or carbohydrates, which can be modified by regulating lipid catabolism.
Collapse
Affiliation(s)
- Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia Zhong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Samwel Mchele Limbu
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam 60091, Tanzania
| | - Ling-Yu Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China. E-mail:
| |
Collapse
|
4
|
Diržiuvienė R, Šlekienė L, Palubinskienė J, Balnytė I, Lasienė K, Stakišaitis D, Valančiūtė A. Tumors derived from lung cancer cells respond differently to treatment with sodium valproate (a HDAC inhibitor) in a chicken embryo chorioallantoic membrane model. Histol Histopathol 2022; 37:1201-1212. [PMID: 35703146 DOI: 10.14670/hh-18-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is the most frequent cause of cancer death. Some human lung malignant tumors have a combined small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) histology, with tumor cell phenotype changing during tumor progression. Valproic acid is used as an anti-seizure medication to treat migraine, and bipolar mood disorders. Recently, its efficacy as an adjuvant therapy was shown in cancer due to its histone deacetylase (HDAC) inhibitory property. HDACs are upregulated in lung tumors, and HDAC inhibitors, including valproic acid, inhibit endothelial cell proliferation in vitro and in vivo and have antiproliferative and antimigratory properties. We tested valproic acid for possible antiangiogenic and antimigratory effects on experimental lung tumors grafted onto the chicken embryo chorioallantoic membrane (CAM). Tumors were formed from two NSCLC cell lines and a single SCLC cell line. To investigate tumor and CAM interactions, in vivo biomicroscopy, visualization of blood vessels with injected fluorescent dextran, histological, immunohistochemical and histomorphometric methods were applied. Our results showed that a sodium valproate (NaVP) treatment-induced a dose-dependent decrease of experimental tumor invasion into the CAM mesenchyme and a reduction in angiogenesis. Both the invasion and the angiogenic response were dependent on the type of cell line used: invasion and angiogenesis of tumors derived from A549 and NCI-H146 cell lines responded to increasing doses of NaVP from 4 to 8 mM, whereas Sk_Lu_1 cells response were antimigratory and antiangiogenic when NaVP was used up to 6 mM. When 8mM NaVP was used, stimulated invasion and angiogenesis in tumors from Sk_Lu_1 cells were observed.
Collapse
Affiliation(s)
- Raminta Diržiuvienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Lasienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
5
|
Du GF, Dong Y, Fan X, Yin A, Le YJ, Yang XY. Proteomic Investigation of the Antibacterial Mechanism of Cefiderocol against Escherichia coli. Microbiol Spectr 2022; 10:e0109322. [PMID: 35980225 PMCID: PMC9603102 DOI: 10.1128/spectrum.01093-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/01/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the antibacterial mechanism of cefiderocol (CFDC) using data-independent acquisition quantitative proteomics combined with cellular and molecular biological assays. Numerous differentially expressed proteins related to the production of NADH, reduced cofactor flavin adenine dinucleotide (FADH2), NADPH and reactive oxygen species (ROS), iron-sulfur cluster binding, and iron ion homeostasis were found to be upregulated by CFDC. Furthermore, parallel reaction monitoring analysis validated these results. Meanwhile, we confirmed that the levels of NADH, ROS, H2O2, and iron ions were induced by CFDC, and the sensitivity of Escherichia coli to CFDC was inhibited by the antioxidant vitamin C, N-acetyl-l-cysteine, and deferoxamine. Moreover, deferoxamine also suppressed the H2O2 stress induced by CFDC. In addition, knockout of the NADH-quinone oxidoreductase genes (nuoA, nuoC, nuoE, nuoF, nuoG, nuoJ, nuoL, nuoM) in the respiratory chain attenuated the sensitivity of E. coli to CFDC far beyond the effects of cefepime and ceftazidime; in particular, the E. coli BW25113 ΔnuoJ strain produced 60-fold increases in MIC to CFDC compared to that of the wild-type E. coli BW25113 strain. The present study revealed that CFDC exerts its antibacterial effects by inducing ROS stress by elevating the levels of NADH and iron ions in E. coli. IMPORTANCE CFDC was the first FDA-approved siderophore cephalosporin antibiotic in 2019 and is known for its Trojan horse tactics and broad antimicrobial activity against Gram-negative bacteria. However, its antibacterial mechanism is not fully understood, and whether it has an impact on in vivo iron ion homeostasis remains unknown. To comprehensively reveal the antibacterial mechanisms of CFDC, data-independent acquisition quantitative proteomics combined with cellular and molecular biological assays were performed in this study. The findings will further facilitate our understanding of the antibacterial mechanism of CFDC and may provide a theoretical foundation for controlling CFDC resistance in the future.
Collapse
Affiliation(s)
- Gao-Fei Du
- Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Dong
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolu Fan
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, China
| | - Ankang Yin
- Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao-Jin Le
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiao-Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Bioactive Platinum(IV) Complexes Incorporating Halogenated Phenylacetates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207120. [PMID: 36296713 PMCID: PMC9611758 DOI: 10.3390/molecules27207120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
A new series of cytotoxic platinum(IV) complexes (1-8) incorporating halogenated phenylacetic acid derivatives (4-chlorophenylacetic acid, 4-fluorophenylacetic acid, 4-bromophenylacetic acid and 4-iodophenylacetic acid) were synthesised and characterised using spectroscopic and spectrometric techniques. Complexes 1-8 were assessed on a panel of cell lines including HT29 colon, U87 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, SJ-G2 glioblastoma, MIA pancreas, the ADDP-resistant ovarian variant, and the non-tumour-derived MCF10A breast line. The in vitro cytotoxicity results confirmed the superior biological activity of the studied complexes, especially those containing 4-fluorophenylacetic acid and 4-bromophenylacetic acid ligands, namely 4 and 6, eliciting an average GI50 value of 20 nM over the range of cell lines tested. In the Du145 prostate cell line, 4 exhibited the highest degree of potency amongst the derivatives, displaying a GI50 value of 0.7 nM, which makes it 1700-fold more potent than cisplatin (1200 nM) and nearly 7-fold more potent than our lead complex, 56MESS (4.6 nM) in this cell line. Notably, in the ADDP-resistant ovarian variant cell line, 4 (6 nM) was found to be almost 4700-fold more potent than cisplatin. Reduction reaction experiments were also undertaken, along with studies aimed at determining the complexes' solubility, stability, lipophilicity, and reactive oxygen species production.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
| | - Maria George Elias
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
- Ingham Institute, Sydney, NSW 2170, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia
| | | | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
| | | | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203218
| |
Collapse
|
7
|
The Comparative Experimental Study of Sodium and Magnesium Dichloroacetate Effects on Pediatric PBT24 and SF8628 Cell Glioblastoma Tumors Using a Chicken Embryo Chorioallantoic Membrane Model and on Cells In Vitro. Int J Mol Sci 2022; 23:ijms231810455. [PMID: 36142368 PMCID: PMC9499689 DOI: 10.3390/ijms231810455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, pyruvate dehydrogenase kinase-1 inhibition with dichloroacetate (DCA) was explored as an alternative cancer therapy. The study’s aim was to compare the effectiveness of NaDCA and MgDCA on pediatric glioblastoma PBT24 and SF8628 tumors and cells. The treatment effects were evaluated on xenografts growth on a chicken embryo chorioallantoic membrane. The PCNA, EZH2, p53, survivin expression in tumor, and the SLC12A2, SLC12A5, SLC5A8, CDH1, and CDH2 expression in cells were studied. The tumor groups were: control, cells treated with 10 mM and 5 mM of NaDCA, and 5 mM and 2.5 mM of MgDCA. The cells were also treated with 3 mM DCA. Both the 10 mM DCA preparations significantly reduced PBT24 and SF8624 tumor invasion rates, while 5 mM NaDCA reduced it only in the SF8628 tumors. The 5 mM MgDCA inhibited tumor-associated neoangiogenesis in PBT24; both doses of NaDCA inhibited tumor-associated neoangiogenesis in SF8628. The 10 mM DCA inhibited the expression of markers tested in PBT24 and SF8628 tumors, but the 5 mM DCA affect on their expression depended on the cation. The DCA treatment did not affect the SLC12A2, SLC12A5, and SLC5A8 expression in cells but increased CDH1 expression in SF8628. The tumor response to DCA at different doses indicated that a contrast between NaDCA and MgDCA effectiveness reflects the differences in the tested cells’ biologies.
Collapse
|
8
|
Karissa P, Simpson T, Dawson SP, Low TY, Tay SH, Nordin FDA, Zain SM, Lee PY, Pung YF. Comparison Between Dichloroacetate and Phenylbutyrate Treatment for Pyruvate Dehydrogenase Deficiency. Br J Biomed Sci 2022; 79:10382. [PMID: 35996497 PMCID: PMC9302545 DOI: 10.3389/bjbs.2022.10382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.
Collapse
Affiliation(s)
- Patricia Karissa
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Timothy Simpson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon P Dawson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sook Hui Tay
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
9
|
Jiang X, Xia Y, Meng H, Liu Y, Cui J, Huang H, Yin G, Shi B. Identification of a Nuclear Mitochondrial-Related Multi-Genes Signature to Predict the Prognosis of Bladder Cancer. Front Oncol 2021; 11:746029. [PMID: 34692528 PMCID: PMC8528313 DOI: 10.3389/fonc.2021.746029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Bladder cancer (BC) is one of the most prevalent urinary cancers, and its management is still a problem causing recurrence and progression, elevating mortality. MATERIALS AND METHODS We aimed at the nuclear mitochondria-related genes (MTRGs), collected from the MITOMAP: A Human Mitochondrial Genome Database. Meanwhile, the expression profiles and clinical information of BC were downloaded from the Cancer Genome Atlas (TCGA) as a training group. The univariate, multivariate, and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a nuclear mitochondrial-related multi-genes signature and the prognostic nomogram. RESULTS A total of 17 nuclear MTRGs were identified to be correlated with the overall survival (OS) of BC patients, and a nuclear MTRGs signature based on 16 genes expression was further determined by the LASSO Cox regression analysis. Based on a nuclear MTRGs scoring system, BC patients from the TCGA cohort were divided into high- and low- nuclear MTRGs score groups. Patients with a high nuclear MTRGs score exhibited a significantly poorer outcome (median OS: 92.90 vs 20.20 months, p<0.0001). The nuclear MTRGs signature was further verified in three independent datasets, namely, GSE13507, GSE31684, and GSE32548, from the Gene Expression Omnibus (GEO). The BC patients with a high nuclear MTRGs score had significantly worse survival (median OS in GSE13507: 31.52 vs 98.00 months, p<0.05; GSE31684: 32.85 months vs unreached, p<0.05; GSE32548: unreached vs unreached, p<0.05). Furthermore, muscle-invasive bladder cancer (MIBC) patients had a significantly higher nuclear MTRGs score (p<0.05) than non-muscle-invasive bladder cancer (NMIBC) patients. The integrated signature outperformed each involved MTRG. In addition, a nuclear MTRGs-based nomogram was constructed as a novel prediction prognosis model, whose AUC values for OS at 1, 3, 5 years were 0.76, 0.75, and 0.75, respectively, showing the prognostic nomogram had good and stable predicting ability. Enrichment analyses of the hallmark gene set and KEGG pathway revealed that the E2F targets, G2M checkpoint pathways, and cell cycle had influences on the survival of BC patients. Furthermore, the analysis of tumor microenvironment indicated more CD8+ T cells and higher immune score in patients with high nuclear MTRGs score, which might confer sensitivity to immune checkpoint inhibitors. CONCLUSIONS Not only could the signature and prognostic nomogram predict the prognosis of BC, but it also had potential therapeutic guidance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| |
Collapse
|
10
|
Stakišaitis D, Damanskienė E, Curkūnavičiūtė R, Juknevičienė M, Alonso MM, Valančiūtė A, Ročka S, Balnytė I. The Effectiveness of Dichloroacetate on Human Glioblastoma Xenograft Growth Depends on Na+ and Mg2+ Cations. Dose Response 2021; 19:1559325821990166. [PMID: 33716589 PMCID: PMC7923996 DOI: 10.1177/1559325821990166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
The study's aim was to investigate the effectiveness of sodium dichloroacetate (NaDCA) or magnesium dichloroacetate (MgDCA) on adult U87 MG and pediatric PBT24 cell lines glioblastoma (GB) xenografts in a chicken chorioallantoic membrane (CAM) model. The study groups were: treated with 10 mM, 5 mM of NaDCA, and 5 mM, 2.5 mM of MgDCA, and controls. The U87 MG and PBT24 xenografts growth, frequency of tumor invasion into CAM, CAM thickening, and the number of blood vessels in CAM differed depending on the dichloroacetate salt treatment. NaDCA impact on U87 MG and PBT24 tumor on proliferating cell nunclear antigen (PCNA) and enhancer of zeste homolog 2 (EZH2) expression in the tumor was different, depending on the NaDCA dose. The 5 mM MgDCA impact was more potent and had similar effects on U87 MG and PBT24 tumors, and its impact was also reflected in changes in PCNA and EZH2 expression in tumor cells. The U87 MG and PBT24 tumor response variations to treatment with different NaDCA concentration on tumor growth or a contrast between NaDCA and MgDCA effectiveness may reflect some differences in U87 MG and PBT24 cell biology.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Curkūnavičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Saulius Ročka
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
11
|
Li H, Ma Y, Hu H, Song X, Ma Y, Yan H. Novel ammonium dichloroacetates with enhanced herbicidal activity for weed control. RSC Adv 2020; 10:44512-44521. [PMID: 35517127 PMCID: PMC9058436 DOI: 10.1039/d0ra08707f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Dichloroacetic acid (DCA) exhibits great potential as an herbicide (nontoxic, easily biodegradable), but its application in agriculture has scarcely been investigated. Since DCA readily undergoes photolysis when exposed to natural light or UV irradiation, there is a large activity loss in controlling weeds. To improve the activity of DCA, we proposed the transformation of DCA into an ionic salt form by using an herbicidal ionic liquids (HILs) strategy. Herein, fifteen novel ammonium dichloroacetates were designed and achieved for the first time. When compared to the anionic precursor DCA, three salts with longer alkyl chains ranging from dodecyl to hexadecyl chains were found to enhance not only the post emergence herbicidal activity but also the rates of activity against some broadleaf weeds under greenhouse conditions. The enhancement was due to the synergistic effect of structural factors, such as the surface activity, solubility and stability arising from their ionic nature. In addition, IL 13 possesses a low phytotoxicity to cotton plants with a favorable selectivity index above 2. This study will be useful for the design of new, high-performance herbicidal formulations.
Collapse
Affiliation(s)
- Huanhuan Li
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Yajie Ma
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Hongyan Hu
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Xianpeng Song
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Yan Ma
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
12
|
Bazhin AV. Mitochondria and Cancer. Cancers (Basel) 2020; 12:cancers12092641. [PMID: 32947892 PMCID: PMC7563473 DOI: 10.3390/cancers12092641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alexandr V. Bazhin
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians University, 81377 Munich, Germany; ; Tel.: +49-894-4007-3440
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| |
Collapse
|