1
|
Ahmmed R, Hossen MB, Ajadee A, Mahmud S, Ali MA, Mollah MMH, Reza MS, Islam MA, Mollah MNH. Bioinformatics analysis to disclose shared molecular mechanisms between type-2 diabetes and clear-cell renal-cell carcinoma, and therapeutic indications. Sci Rep 2024; 14:19133. [PMID: 39160196 PMCID: PMC11333728 DOI: 10.1038/s41598-024-69302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Type 2 diabetes (T2D) and Clear-cell renal cell carcinoma (ccRCC) are both complicated diseases which incidence rates gradually increasing. Population based studies show that severity of ccRCC might be associated with T2D. However, so far, no researcher yet investigated about the molecular mechanisms of their association. This study explored T2D and ccRCC causing shared key genes (sKGs) from multiple transcriptomics profiles to investigate their common pathogenetic processes and associated drug molecules. We identified 259 shared differentially expressed genes (sDEGs) that can separate both T2D and ccRCC patients from control samples. Local correlation analysis based on the expressions of sDEGs indicated significant association between T2D and ccRCC. Then ten sDEGs (CDC42, SCARB1, GOT2, CXCL8, FN1, IL1B, JUN, TLR2, TLR4, and VIM) were selected as the sKGs through the protein-protein interaction (PPI) network analysis. These sKGs were found significantly associated with different CpG sites of DNA methylation that might be the cause of ccRCC. The sKGs-set enrichment analysis with Gene Ontology (GO) terms and KEGG pathways revealed some crucial shared molecular functions, biological process, cellular components and KEGG pathways that might be associated with development of both T2D and ccRCC. The regulatory network analysis of sKGs identified six post-transcriptional regulators (hsa-mir-93-5p, hsa-mir-203a-3p, hsa-mir-204-5p, hsa-mir-335-5p, hsa-mir-26b-5p, and hsa-mir-1-3p) and five transcriptional regulators (YY1, FOXL1, FOXC1, NR2F1 and GATA2) of sKGs. Finally, sKGs-guided top-ranked three repurposable drug molecules (Digoxin, Imatinib, and Dovitinib) were recommended as the common treatment for both T2D and ccRCC by molecular docking and ADME/T analysis. Therefore, the results of this study may be useful for diagnosis and therapies of ccRCC patients who are also suffering from T2D.
Collapse
Affiliation(s)
- Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Ahad Ali
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Manir Hossain Mollah
- Department of Physical Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Division of Biomedical Informatics and Genomics, School of Medicine, Tulane University, 1440 Canal St., RM 1621C, New Orleans, LA, 70112, USA
| | - Mohammad Amirul Islam
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Cheng C, Lin S, Zhu A, Hong Z, Shi Z, Deng H, Zhang G. Linc00239 Facilitates the Progress of Clear Cell Renal Cell Carcinoma via the miR-204-5p/RAB22A Axis. Mol Biotechnol 2024:10.1007/s12033-024-01202-w. [PMID: 38850457 DOI: 10.1007/s12033-024-01202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 06/10/2024]
Abstract
Long intergenic non-coding RNA 239 (Linc00239) acts as an oncogene in colorectal cancer (CRC), esophageal squamous cell carcinoma, and acute myeloid leukemia cells. However, its role and regulatory mechanisms in clear cell renal cell carcinoma (ccRCC) remain unknown. We used StarBase and The Cancer Genome Atlas databases to evaluate Linc00239 expression and its effect on ccRCC. Furthermore, the function of Linc00239 in ccRCC proliferation and metastasis was analyzed using Cell Counting Kit-8 and Transwell assays following Linc00239 knockdown. Subsequently, the Linc00239-miRNA-mRNA regulatory associations were selected based on miRanda, miTarbase, and previous references, and their expression levels and binding relationship were further validated using quantitative real-time polymerase chain reaction, western blotting and dual-luciferase reporter gene assay. Additionally, we transfected a miRNA inhibitor to evaluate whether the miR-204-5p/RAB22A (Ras-related proteins in brain 22a) axis was involved in Linc00239 function. Linc00239 was elevated in ccRCC and correlated with poor prognosis. Linc00239 knockdown inhibited ccRCC progression. Additionally, Linc00239 inhibition elevated miR-204-5p expression and repressed RAB22A levels. Moreover, miR-204-5p inhibitors attenuated this inhibitory effect on proliferation, migration, invasion, and RAB22A level when Linc00239 was knocked down. Linc00239 promotes ccRCC proliferation and metastasis by elevating RAB22A expression through the adsorption of miR-204-5p, which provides a clue for the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuangquan Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zimin Shi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Gan Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
3
|
Wang D, Deng Z, Lu M, Deng K, Li Z, Zhou F. Integrated analysis of the roles of oxidative stress related genes and prognostic value in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:11057-11071. [PMID: 37340189 PMCID: PMC10465389 DOI: 10.1007/s00432-023-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Patients with clear cell renal cell carcinoma (ccRCC), which is the most commonly diagnosed subtype of renal cell carcinoma, are at risk of tumor metastasis and recrudescence. Previous research has shown that oxidative stress can induce tumorigenesis in many cancers and can be a target of cancer treatment. Despite these findings, little progress has been made understanding in the association of oxidative stress-related genes (OSRGs) with ccRCC. METHODS In vitro experiments were conducted with MTT survival assays, qRT‒PCR, apoptosis assays, cell cycle assays, ROS assays, and IHC staining. RESULTS In our study, 12 differentially expressed oxidative stress-related genes (DEOSGs) and related transcription factors (TFs) that are relevant to overall survival (OS) were screened, and their mutual regulatory networks were constructed with data from the TCGA database. Moreover, we constructed a risk model of these OSRGs and performed clinical prognostic analysis and validation. Next, we performed protein-protein interaction (PPI) network analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of MELK, PYCR1, and PML. A tissue microarray also verified the high expression of MELK and PYCR1 in ccRCC. Finally, in vitro cellular experiments demonstrated that knockdown of MELK or PYCR1 significantly inhibited ccRCC cell proliferation by causing cell apoptosis and inducing cell cycle arrest in the G1 phase. Intracellular ROS levels were elevated after these two genes were knocked down. CONCLUSION Our results revealed the potential DEORGs to be used in ccRCC prognostic prediction and identified two biomarkers, named PYCR1 and MELK, which regulated the proliferation of ccRCC cells by affecting ROS levels. Furthermore, PYCR1 and MELK could be promising targets for predicting the progression and prognosis of ccRCC, thereby serving as new targets for medical treatments.
Collapse
Affiliation(s)
- Danwen Wang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Choi S, Kim K, Yeo H, Lee G, Kim I, Oh J, An HJ, Lee S. miR-4284 Functions as a Tumor Suppressor in Renal Cell Carcinoma Cells by Targeting Glutamate Decarboxylase 1. Cancers (Basel) 2023; 15:3888. [PMID: 37568704 PMCID: PMC10417762 DOI: 10.3390/cancers15153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MicroRNAs (miRNAs) play a crucial role as oncogenic or tumor suppressors in the pathogenesis and progression of tumors. However, few studies have investigated the exact role of miR-4284 in renal cell carcinoma (RCC). We aimed to investigate the role of miR-4284 as a tumor suppressor in renal cancer cell lines. A498 and Caki-1 were transfected with miR-4284. The Cell Counting Kit-8, colony formation, apoptosis assays, and quantitative reverse transcription-polymerase chain reaction were used to evaluate tumor growth-inhibiting functions. The wound-healing, transwell, and sphere-formation assays were conducted to investigate tumorigenic characteristics. The potential target genes of miR-4284 were predicted and experimentally verified. A xenograft experiment was performed to estimate the tumor-growth-suppressive function of miR-4284. miR-4284 overexpression suppressed proliferation, induced apoptosis, and suppressed tumorigenic features of renal cancer cells. Glutamate decarboxylase 1 (GAD1) was directly targeted by miR-4284. A xenograft mouse model injected with Caki-1 cells transfected with miR-4284 showed significantly decreased tumor growth rate and volume. miR-4284 affected tumor growth, metastasis, and apoptosis of renal cancer cells in vitro and in vivo. These findings highlight the potential of miR-4284 as a target for anticancer miRNA therapeutics in RCC.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
| | - Kyeongmi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, 1205, Jungang-ro, Ilsandong-gu, Goyang-si 10414, Gyeonggi-do, Republic of Korea;
| | - Hyunjeong Yeo
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
| | - Gyurim Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
| | - Isaac Kim
- Department of General Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Jisu Oh
- Division of Hemato-Oncology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Seoul 16995, Gyeonggi-do, Republic of Korea;
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Gyeonggi-do, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Ji J, Xu Y, Xie M, He X, Ren D, Qiu T, Liu W, Chen Z, Shi W, Zhang Z, Wang X, Wang W, Ma J, Qian Q, Jing A, Ma X, Qin J, Ding Y, Geng T, Yang J, Sun Z, Liu W, Liu S, Liu B. VHL-HIF-2α axis-induced SEMA6A upregulation stabilized β-catenin to drive clear cell renal cell carcinoma progression. Cell Death Dis 2023; 14:83. [PMID: 36739418 PMCID: PMC9899268 DOI: 10.1038/s41419-023-05588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/06/2023]
Abstract
SEMA6A is a multifunctional transmembrane semaphorin protein that participates in various cellular processes, including axon guidance, cell migration, and cancer progression. However, the role of SEMA6A in clear cell renal cell carcinoma (ccRCC) is unclear. Based on high-throughput sequencing data, here we report that SEMA6A is a novel target gene of the VHL-HIF-2α axis and overexpressed in ccRCC. Chromatin immunoprecipitation and reporter assays revealed that HIF-2α directly activated SEMA6A transcription in hypoxic ccRCC cells. Wnt/β-catenin pathway activation is correlated with the expression of SEMA6A in ccRCC; the latter physically interacted with SEC62 and promoted ccRCC progression through SEC62-dependent β-catenin stabilization and activation. Depletion of SEMA6A impaired HIF-2α-induced Wnt/β-catenin pathway activation and led to defective ccRCC cell proliferation both in vitro and in vivo. SEMA6A overexpression promoted the malignant phenotypes of ccRCC, which was reversed by SEC62 depletion. Collectively, this study revealed a potential role for VHL-HIF-2α-SEMA6A-SEC62 axis in the activation of Wnt/β-catenin pathway. Thus, SEMA6A may act as a potential therapeutic target, especially in VHL-deficient ccRCC.
Collapse
Affiliation(s)
- Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuxin Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengru Xie
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xingbei He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dexu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Teng Qiu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wenwen Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zefeng Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wen Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinming Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ting Geng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhichao Sun
- Department of Pathology, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Haizhou, Lianyungang, 222006, Jiangsu, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030, PR China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Integrated Microarray-Based Data Analysis of miRNA Expression Profiles: Identification of Novel Biomarkers of Cisplatin-Resistance in Testicular Germ Cell Tumours. Int J Mol Sci 2023; 24:ijms24032495. [PMID: 36768818 PMCID: PMC9916636 DOI: 10.3390/ijms24032495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common solid malignancy among young men, and their incidence is still increasing. Despite good curability with cisplatin (CDDP)-based chemotherapy, about 10% of TGCTs are non-responsive and show a chemoresistant phenotype. To further increase TGCT curability, better prediction of risk of relapse and early detection of refractory cases is needed. Therefore, to diagnose this malignancy more precisely, stratify patients more accurately and improve decision-making on treatment modality, new biomarkers are still required. Numerous studies showed association of differential expressions of microRNAs (miRNAs) with cancer. Using microarray analysis followed by RT-qPCR validation, we identified specific miRNA expression patterns that discriminate chemoresistant phenotypes in TGCTs. Comparing CDDP-resistant vs. -sensitive TGCT cell lines, we identified miR-218-5p, miR-31-5p, miR-125b-5p, miR-27b-3p, miR-199a-5p, miR-214-3p, let-7a and miR-517a-3p as significantly up-regulated and miR-374b-5p, miR-378a-3p, miR-20b-5p and miR-30e-3p as significantly down-regulated. In patient tumour samples, we observed the highest median values of relative expression of miR-218-5p, miR-31-5p, miR-375-5p and miR-517a-3p, but also miR-20b-5p and miR-378a-3p, in metastatic tumour samples when compared with primary tumour or control samples. In TGCT patient plasma samples, we detected increased expression of miR-218-5p, miR-31-5p, miR-517a-3p and miR-375-5p when compared to healthy individuals. We propose that miR-218-5p, miR-31-5p, miR-375-5p, miR-517-3p, miR-20b-5p and miR-378a-3p represent a new panel of biomarkers for better prediction of chemoresistance and more aggressive phenotypes potentially underlying metastatic spread in non-seminomatous TGCTs. In addition, we provide predictions of the targets and functional and regulatory networks of selected miRNAs.
Collapse
|
7
|
The Role of Long Noncoding RNA (lncRNAs) Biomarkers in Renal Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010643. [PMID: 36614082 PMCID: PMC9820502 DOI: 10.3390/ijms24010643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma is one of the common cancers whose incidence and mortality are continuously growing worldwide. Initially, this type of tumour is usually asymptomatic. Due to the lack of reliable diagnostic markers, one-third of ccRCC patients already have distant metastases at the time of diagnosis. This underlines the importance of establishing biomarkers that would enable the prediction of the disease's course and the risk of metastasis. LncRNA, which modulates genes at the epigenetic, transcriptional, and post-transcriptional levels, appears promising. The actions of lncRNA involve sponging and sequestering target miRNAs, thus affecting numerous biological processes. Studies have confirmed the involvement of RNAs in various diseases, including RCC. In this review, we focused on MALAT1 (a marker of serious pathological changes and a factor in the promotion of tumorigenesis), RCAT1 (tumour promoter in RCC), DUXAP9 (a plausible marker of localized ccRCC), TCL6 (exerting tumour-suppressive effects in renal cancer), LINC00342 (acting as an oncogene), AGAP2 Antisense1 (plausible predictor of RCC progression), DLEU2 (factor promoting tumours growth via the regulation of epithelial-mesenchymal transition), NNT-AS1 (sponge of miR-22 contributing to tumour progression), LINC00460 (favouring ccRCC development and progression) and Lnc-LSG1 (a factor that may stimulate ccRCC metastasis).
Collapse
|
8
|
Obaidi I, Blanco Fernández A, McMorrow T. Curcumin Sensitises Cancerous Kidney Cells to TRAIL Induced Apoptosis via Let-7C Mediated Deregulation of Cell Cycle Proteins and Cellular Metabolism. Int J Mol Sci 2022; 23:ijms23179569. [PMID: 36076967 PMCID: PMC9455736 DOI: 10.3390/ijms23179569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
Targeted therapies are the most attractive options in the treatment of different tumours, including kidney cancers. Such therapies have entered a golden era due to advancements in research, breakthroughs in scientific knowledge, and a better understanding of cancer therapy mechanisms, which significantly improve the survival rates and life expectancy of patients. The use of tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) as an anticancer therapy has attracted the attention of the scientific community and created great excitement due to its selectivity in targeting cancerous cells with no toxic impacts on normal tissues. However, clinical studies disappointingly showed the emergence of resistance against TRAIL. This study aimed to employ curcumin to sensitise TRAIL-resistant kidney cancerous ACHN cells, as well as to gain insight into the molecular mechanisms of TRAIL sensitization. Curcumin deregulated the expression of apoptosis-regulating micro Ribonucleic Acid (miRNAs), most notably, let-7C. Transfecting ACHN cells with a let-7C antagomir significantly increased the expression of several cell cycle protein, namely beta (β)-catenin, cyclin dependent kinase (CDK)1/2/4/6 and cyclin B/D. Further, it overexpressed the expression of the two key glycolysis regulating proteins including hypoxia-inducible factor 1-alpha (HIF-1α) and pyruvate dehydrogenase kinase 1 (PDK1). Curcumin also suppressed the expression of the overexpressed proteins when added to the antagomir transfected cells. Overall, curcumin targeted ACHN cell cycle and cellular metabolism by promoting the differential expression of let-7C. To the best of our knowledge, this is the first study to mechanistically report the cancer chemosensitisation potential of curcumin in kidney cancer cells via induction of let-7C.
Collapse
Affiliation(s)
- Ismael Obaidi
- NatPro Centre for Natural Product Research, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 W272 Dublin, Ireland
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
- Correspondence: (I.O.); (T.M.); Tel.: +353-8-6064-2626 (I.O.); +353-1-716-2317 (ext. 6819) (T.M.)
| | - Alfonso Blanco Fernández
- Flow Cytometry Core Technology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Tara McMorrow
- Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: (I.O.); (T.M.); Tel.: +353-8-6064-2626 (I.O.); +353-1-716-2317 (ext. 6819) (T.M.)
| |
Collapse
|
9
|
Novel Prognosis and Therapeutic Response Model of Immune-Related lncRNA Pairs in Clear Cell Renal Cell Carcinoma. Vaccines (Basel) 2022; 10:vaccines10071161. [PMID: 35891325 PMCID: PMC9325030 DOI: 10.3390/vaccines10071161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma. It is particularly important to accurately judge the prognosis of patients. Since most tumor prediction models depend on the specific expression level of related genes, a better model therefore needs to be constructed. To provide an immune-related lncRNA (irlncRNAs) tumor prognosis model that is independent of the specific gene expression levels, we first downloaded and sorted out the data on ccRCC in the TCGA database and screened irlncRNAs using co-expression analysis and then obtained the differently expressed irlncRNA (DEirlncRNA) pairs by means of univariate analysis. In addition, we modified LASSO penalized regression. Subsequently, the ROC curve was drawn, and we compared the area under the curve, calculated the Akaike information standard value of the 5-year receiver operating characteristic curve, and determined the cut-off point to establish the best model to distinguish the high- or low-disease-risk group of ccRCC. Subsequently, we reassessed the model from the perspectives of survival, clinic-pathological characteristics, tumor-infiltrating immune cells, chemotherapeutics efficacy, and immunosuppressed biomarkers. A total of 17 DEirlncRNAs pairs (AL031710.1|AC104984.5, AC020907.4|AC127-24.4,AC091185.1|AC005104.1, AL513218.1|AC079015.1, AC104564.3|HOXB-AS3, AC003070.1|LINC01355, SEMA6A-AS1|CR936218.1, AL513327.1|AS005785.1, AC084876.1|AC009704.2, IGFL2-AS1|PRDM16-DT, AC011462.4|MMP25-AS1, AL662844.3I|TGB2-AS1, ARHGAP27P1|AC116914.2, AC093788.1|AC007098.1, MCF2L-AS1|AC093001.1, SMIM25|AC008870.2, and AC027796.4|LINC00893) were identified, all of which were included in the Cox regression model. Using the cut-off point, we can better distinguish patients according to different factors, such as survival status, invasive clinic-pathological features, tumor immune infiltration, whether they are sensitive to chemotherapy or not, and expression of immunosuppressive biomarkers. We constructed the irlncRNA model by means of pairing, which can better eliminate the dependence on the expression level of the target genes. In other words, the signature established by pairing irlncRNA regardless of expression levels showed promising clinical prediction value.
Collapse
|
10
|
Li T, Tong H, Zhu J, Qin Z, Yin S, Sun Y, Liu X, He W. Identification of a Three-Glycolysis-Related lncRNA Signature Correlated With Prognosis and Metastasis in Clear Cell Renal Cell Carcinoma. Front Med (Lausanne) 2022; 8:777507. [PMID: 35083240 PMCID: PMC8785401 DOI: 10.3389/fmed.2021.777507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
The clear cell renal cell carcinoma (ccRCC) is not only a malignant disease but also an energy metabolic disease, we aimed to identify a novel prognostic model based on glycolysis-related long non-coding RNA (lncRNAs) and explore its mechanisms. With the use of Pearson correlation analysis between the glycolysis-related differentially expressed genes and lncRNAs from The Cancer Genome Atlas (TCGA) dataset, we identified three glycolysis-related lncRNAs and successfully constructed a prognostic model based on their expression. The diagnostic efficacy and the clinically predictive capacity of the signature were evaluated by univariate and multivariate Cox analyses, Kaplan–Meier survival analysis, and principal component analysis (PCA). The glycolysis-related lncRNA signature was constructed based on the expressions of AC009084.1, AC156455.1, and LINC00342. Patients were grouped into high- or low-risk groups according to risk score demonstrated significant differences in overall survival (OS) period, which were validated by patients with ccRCC from the International Cancer Genome Consortium (ICGC) database. Univariate Cox analyses, multivariate Cox analyses, and constructed nomogram-confirmed risk score based on our signature were independent prognosis predictors. The CIBERSORT algorithms demonstrated significant correlations between three-glycolysis-related lncRNAs and the tumor microenvironment (TME) components. Functional enrichment analysis demonstrated potential pathways and processes correlated with the risk model. Clinical samples validated expression levels of three-glycolysis-related lncRNAs, and LINC00342 demonstrated the most significant aberrant expression. in vitro, the general overexpression of LINC00342 was detected in ccRCC cells. After silencing LINC00342, the aberrant glycolytic levels and migration abilities in 786-O cells were decreased significantly, which might be explained by suppressed Wnt/β-catenin signaling pathway and reversed Epithelial mesenchymal transformation (EMT) process. Collectively, our research identified a novel three-glycolysis-related lncRNA signature as a promising model for generating accurate prognoses for patients with ccRCC, and silencing lncRNA LINC00342 from the signature could partly inhibit the glycolysis level and migration of ccRCC cells.
Collapse
Affiliation(s)
- Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijia Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Liu
- Department of Urology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Zhang Y, Dai J, Huang W, Chen Q, Chen W, He Q, Chen F, Zhang P. Identification of a competing endogenous RNA network related to immune signature in clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:25980-26002. [PMID: 34958632 PMCID: PMC8751601 DOI: 10.18632/aging.203784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a fatal cancer of the urinary system. Long non-coding RNAs (lncRNAs) act as competitive endogenous RNAs (ceRNAs) involving the ccRCC progression. However, the relationship between the ceRNA network and immune signature is largely unknown. In this study, the ccRCC-related gene expression profiles retrieved from the TCGA database were used first to identify the differentially expressed genes through differential gene expression analysis and weighted gene co-expression network analysis. The interaction among differentially expressed lncRNAs, miRNAs, and mRNAs were matched using public databases. As a result, a ceRNA network was developed that contained 144 lncRNAs, 23 miRNAs, as well as 62 mRNAs. Four of 144 lncRNAs including LINC00943, SRD5A3-AS1, LINC02345, and U62317.3 were identified through LASSO regression and Cox regression analyses, and were used to create a prognostic risk model. Then, the ccRCC samples were divided into the high- and low-risk groups depending on their risk scores. ROC curves, Kaplan-Meier survival analysis, and the survival risk plots indicated that the predictive performance of our developed risk model was accurate. Moreover, the CIBERSORT algorithm was used to measure the infiltration levels of immune cells in the ccRCC samples. The further genomic analysis illustrated a positive correlation between most immune checkpoint blockade-related genes and the risk score. In conclusion, the present findings effectually contribute to the comprehensive understanding of the ccRCC pathogenesis, and may offer a reference for developing novel therapeutic and prognostic biomarkers.
Collapse
Affiliation(s)
- Yuke Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiangwen Dai
- Department of Oncology, Chengdu Fifth People's Hospital of Chengdu University of TCM, Chengdu, China
| | - Weifeng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Chen
- Department of Traumatology, Chongqing University Central Hospital, Chongqing, China
| | - Wei Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiying He
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Chen
- Department of Integrated Care Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Pei L, Lv X, Jia G, Tan X, Li M, Zhang A. Silencing circular RNA circ_0054537 and upregulating microRNA-640 suppress malignant progression of renal cell carcinoma via regulating neuronal pentraxin-2 (NPTX2). Bioengineered 2021; 12:8279-8295. [PMID: 34565284 PMCID: PMC8806977 DOI: 10.1080/21655979.2021.1984002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hsa_circ_0054537 (circ_0054537) is a novel tumor-related circular RNA in renal cell carcinoma (RCC), and we intended to ascertain its dysregulation and functions in RCC malignant progression, as well as the underlying mechanism via serving as competing endogenous RNA (ceRNA). In this research, using real-time quantitative PCR, we found circ_0054537 was upregulated in RCC tissues and cells, and distributed throughout the cytoplasm. Then, functional effects of circ_0054537 in RCC were detected using cell counting kit-8, transwell, flow cytometry and glycolysis stress test and adenosine Triphosphate (ATP) assays. The results uncovered that circ_0054537 knockdown inhibited cell proliferation, migration, invasion, autophagy and glycolysis, but promoted apoptosis in RCC cells. Notably, circ_0054537 was identified as a ceRNA for microRNA (miR)-640, and miR-640 could target neuronal pentraxin-2 (NPTX2), as evidenced by dual-luciferase reporter assay and RNA immunoprecipitation assay. Besides, miR-640 downregulation or NPTX2 overexpression partly overturned the tumor suppressor function of circ_0054537 silence and miR-640 overexpression in RCC cells. Additionally, RCC cell growth in vivo was retarded by circ_0054537 silence. In conclusion, circ_0054537/miR-640/NPTX2 ceRNA pathway regulated RCC malignant progression in vitro and curbed RCC tumor growth in vivo, which could be a potential diagnosis and therapeutic target of RCC.
Collapse
Affiliation(s)
- Long Pei
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xianqiang Lv
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Gaopei Jia
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xiaoliang Tan
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Ming Li
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
13
|
Zeng X, Zhu C, Zhu X. DUSP4 promotes the carcinogenesis of CCRCC via negative regulation of autophagic death. Biosci Biotechnol Biochem 2021; 85:1839-1845. [PMID: 34143206 DOI: 10.1093/bbb/zbab111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023]
Abstract
DUSP4 is considered as an oncogenic gene. However, the effect of DUSP4 on the carcinogenesis of clear cell Renal cell carcinoma (CCRCC) is still unclear. In this study, DUSP4 mRNA levels were significantly increased in CCRCC tissues and cell lines. Furthermore, DUSP4 overexpression promotes the proliferation, migration, and tumorigenicity of CCRCC cells while DUSP4 silencing showed the opposite effects. Importantly, both autophagic activity (LC3 conversion rate and LC3 puncta formation) and total death level promoted by DUSP4 silencing were reversed by treatment with 3-MA in CCRCC cells. Moreover, the proliferation and migration of CCRCC cells inhibited by DUSP4 silencing were also recovered by suppression of autophagy with 3-MA. In conclusion, DUSP4 serves as an oncogenic gene in CCRCC carcinogenesis due to its inhibitory effect on autophagic death, indicating the potential value of DUSP4 in the diagnosis and treatment of CCRCC.
Collapse
Affiliation(s)
- Xianyou Zeng
- Department of Urology, The Affiliated Hospital of Jinggangshan University, Jian, Jiangxi, China
| | - Changyan Zhu
- Department of Urology, 900th Hospital of Joint Logistics Support Force, Fuzhou, Fujian, China
| | - Xianxin Zhu
- Department of Urology, Ganzhou people's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
14
|
Dou Q, Gao S, Gan H, Kang Z, Zhang H, Yang Y, Tong H. A Metastasis-Related lncRNA Signature Correlates With the Prognosis in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:692535. [PMID: 34150667 PMCID: PMC8209488 DOI: 10.3389/fonc.2021.692535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
To explore the role of metastasis-related long noncoding RNA (lncRNA) signature for predicting the prognosis of clear cell renal cell carcinoma (ccRCC) patients. Firstly, metastasis-associated genes were identified to establish a metastasis-related lncRNA signature by statistical analysis. Secondly, the ccRCC patients were grouped into high-risk or low-risk group according to the established signature, and the different pathways between the 2 groups were identified by gene set enrichment analysis (GSEA). Finally, investigations involving PCR, transwell migration and invasion assay were carried out to further confirm our findings. The metastasis-related lncRNA signature was successfully constructed according to 7-metastasis-related genes (ADAM12, CD44, IL6, TFPI2, TGF-β1, THBS2, TIMP3). The diagnostic efficacy and the clinically predictive capacity of the signature were evaluated. Most of the values of the area under the time‐dependent receiver‐operating characteristic (ROC) were greater than 0.70. The nomogram constructed by integrating clinical data and risk scores confirmed that the risk score calculated from our signature was a good prognosis predictor. GSEA analysis showed that some tumor-related pathways were enriched in the high-risk group, while metabolism-related pathways were enriched in the low-risk group. In carcinoma tissues, the SSR3-6, WISP1-2 were highly expressed, but the expression of UBAC2-6 was low there. Knocking down SSR3-6 decreased the ability of migration and invasion in ccRCC cells. In conclusion, we successfully constructed a metastasis-related lncRNA signature, which could accurately predict the survival and prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Qian Dou
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shun Gao
- Department of Urology, Mianyang Central Hospital, Mianyang, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao Kang
- Department of Oncology, Mianyang Fulin Hospital, Mianyang, China
| | - Han Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Liu Y, Hu X, Hu L, Xu C, Liang X. Let-7i-5p enhances cell proliferation, migration and invasion of ccRCC by targeting HABP4. BMC Urol 2021; 21:49. [PMID: 33775245 PMCID: PMC8005230 DOI: 10.1186/s12894-021-00820-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers. The present study aimed to explore the effects and potential mechanisms of let-7i-5p in ccRCC cells. METHODS Using bioinformatics analyses, we investigated the expression of let-7i-5p in The Cancer Genome Atlas (TCGA) database and predicted biological functions and possible target genes of let-7i-5p in ccRCC cells. Cell proliferation assay, wound healing assay and transwell invasion assay were conducted to characterize the effects of let-7i-5p in ccRCC cells. To verify the interactions between let-7i-5p and HABP4, dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blotting were conducted. Rescue experiments were used to investigate the relationship between let-7i-5p and HABP4. RESULTS TCGA data analysis revealed that ccRCC tissues had significantly increased let-7i-5p expression, which was robustly associated with poor overall survival. Further verification showed that ccRCC cell proliferation, migration and invasion were inhibited by let-7i-5p inhibitor but enhanced by let-7i-5p mimics. Subsequently, HABP4 was predicted to be the target gene of let-7i-5p. TCGA data showed that ccRCC tissues had decreased expression of HABP4 and that HABP4 expression was negatively correlated with let-7i-5p. Further verification showed that downregulation of HABP4 expression promoted cell proliferation, migration and invasion. The dual-luciferase reporter gene assay suggested that the let-7i-5p/HABP4 axis was responsible for the development of ccRCC. CONCLUSION Our results provide evidence that let-7i-5p functions as a tumor promoter in ccRCC and facilitates cell proliferation, migration and invasion by targeting HABP4. These results clarify the pathogenesis of ccRCC and offer a potential target for its treatment.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xing Hu
- Department of General Practice, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Liang Hu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xuemei Liang
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
16
|
Zhou Z, Ni H, Li Y, Jiang B. LncRNA XIST promotes inflammation by downregulating GRα expression in the adenoids of children with OSAHS. Exp Ther Med 2021; 21:500. [PMID: 33791009 PMCID: PMC8005745 DOI: 10.3892/etm.2021.9931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Whether glucocorticoid receptor α (GRα) serves a role in obstructive sleep apnea/hypopnea syndrome (OSAHS) remains unclear. However, it has been reported that GRα expression is decreased in the adenoids of patients with OSAHS. The present study aimed to evaluate the role of GRα in OSAHS and the underlying mechanism. Bioinformatics assays revealed that long noncoding RNA (lncRNA) X inactivate-specific transcript (XIST) was closely associated with GRα. Furthermore, reverse transcription-quantitative PCR showed that the expression of lncRNA XIST was significantly increased in the adenoids of patients with OSAHS compared with healthy controls. Further in vitro studies by Pearson correlation analysis, RNA pull-down assay, western blot analysis and ELISA demonstrated that XIST significantly decreased the expression of GRα and that significantly increased the production of inflammatory cytokines, including interleukin (IL)-8, tumor necrosis factor α, IL-6 and IL-1β, while the overexpression of GRα significantly decreased the production of these inflammatory cytokines in NP69 cells, a human nasopharyngeal epithelial cell line. Furthermore, XIST significantly increased the protein levels of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunits, including Rel-B, c-Rel, P52, P50 and P65, which are associated with the transcription of cytokines. The stimulatory effect of XIST was significantly inhibited by the NF-κB inhibitor EVP4593. These results indicated that the stimulatory effect of XIST was dependent on NF-κB. In summary, the present study demonstrated that the XIST-GRα-NF-κB signaling pathway contributed to inflammation in the adenoids of patients with OSAHS.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Department of Otolaryngology, Head and Neck Surgery, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Haifeng Ni
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bo Jiang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
17
|
Yang W, Zhou J, Zhang K, Li L, Xu Y, Ma K, Xie H, Cai L, Gong Y, Gong K. Identification and validation of the clinical roles of the VHL-related LncRNAs in clear cell renal cell carcinoma. J Cancer 2021; 12:2702-2714. [PMID: 33854630 PMCID: PMC8040721 DOI: 10.7150/jca.55113] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that lncRNAs (long non-coding RNAs) function as oncogenes or tumor suppressor genes in ccRCC (clear cell renal cell carcinoma). Although VHL (Von Hippel-Lindau) gene inactivation is by far the most common carcinogenic driving event in ccRCC, the roles of VHL-related lncRNAs in ccRCC remain unknown. In this study, using RNA-seq and clinical data in TCGA-KIRC (the Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma), we identified VHL-related lncRNAs through WGCNA (Weighted Gene Co-expression Network Analysis), correlation analysis and catRAPID algorithm, and explored their clinical characteristics in ccRCC. Results showed that 10 lncRNAs (AC112220.2, AL391121.1, USP46-AS1, AL450326.1, MID1IP1-AS1, SUCLG2-AS1, RAP2C-AS1, FGD5-AS1, AC018647.2 and AC015922.2) were identified as VHL-related lncRNAs, and they were down-regulated in ccRCC tissues. Survival analysis results indicated that high expression groups of AC112220.2, AL391121.1, USP46-AS1, AL450326.1, SUCLG2-AS1, RAP2C-AS1, FGD5-AS1, AC018647.2 and AC015922.2 had significantly longer OS (Overall Survival) than their respective low expression groups. Meanwhile high AC112220.2, USP46-AS1, AL450326.1, SUCLG2-AS1, FGD5-AS1, AC018647.2 and AC015922.2 expression groups had remarkably longer DFS (Disease Free Survival) than their respective low expression groups. Besides, FGD5-AS1 and AL391121.1 expression were decreased in VHL mutant tissues compared with VHL non-mutant tissues. Moreover, high expression group of FGD5-AS1 had significantly longer OS and DFS than their respective low expression groups in VHL mutant ccRCC. In addition, we found that DNA hypermethylation may also play an important role in decreased FGD5-AS1 expression. Furthermore, we validated the expression of FGD5-AS1 in VHL mutant and non-mutant ccRCC tissues and cell lines. In conclusion, our results demonstrated that lncRNA FGD5-AS1 was significantly associated with VHL and can serve as a novel biomarker of ccRCC.
Collapse
Affiliation(s)
- Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Kaifang Ma
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Haibiao Xie
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Lin Cai
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China.,Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, P.R. China.,Institute of Urology, Peking University, Beijing 100034, P.R. China.,National Urological Cancer Center, Beijing 100034, P.R. China
| |
Collapse
|
18
|
Li W, Xu S, Peng N, Zhang Z, He H, Chen R, Chen D, Fan J, Wang X. Downregulation of METTL7B Inhibits Proliferation of Human Clear Cell Renal Cancer Cells In Vivo and In Vitro. Front Oncol 2021; 11:634542. [PMID: 33718220 PMCID: PMC7952878 DOI: 10.3389/fonc.2021.634542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most aggressive urologic tumor, and its incidence and diagonosis have been continuously increasing. Identifying novel molecular biomarker for inhibiting the progression of ccRCC will facilitate developing new treatment strategies. Although methyltransferase-like 7B (METTL7B) was identified as a Golgi-associated methyltransferase, the function and mechanism of METTL7B in ccRCC development and progression has not been explored. METTL7B expression were significantly upregulated in ccRCC tissues (n = 60), which significantly associated with TNM classification, tumor size, lymph node metastasis, and poor prognosis for ccRCC patients. Functional studies showed downregulation of METTL7B inhibited cell proliferation, migration in vitro, and xenograft tumor formation in vivo. In addition, METTL7B knockdown promoted cell cycle arrest at G0/G1phase and induced cellular apoptosis. Taken together, downregulation of METTL7B inhibits ccRCC cell proliferation and tumorigenesis in vivo and in vitro. These findings provide a rationale for using METTL7B as a potential therapeutic target in ccRCC patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Naixiong Peng
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Zejian Zhang
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hua He
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ruoyu Chen
- Department of Proctology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dong Chen
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiqing Fan
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xisheng Wang
- Department of Urology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
19
|
Zhang H, Qin C, Liu HW, Guo X, Gan H. An Effective Hypoxia-Related Long Non-Coding RNAs Assessment Model for Prognosis of Clear Cell Renal Carcinoma. Front Oncol 2021; 11:616722. [PMID: 33692953 PMCID: PMC7937891 DOI: 10.3389/fonc.2021.616722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a significant clinical feature and regulates various tumor processes in clear cell renal carcinoma (ccRCC). Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) are closely associated with the survival outcomes of ccRCC patients and regulates hypoxia-induced tumor processes. Thus, this study aimed to develop a hypoxia-related lncRNA (HRL) prognostic model for predicting the survival outcomes in ccRCC. LncRNAs in ccRCC samples were extracted from The Cancer Genome Atlas database. Hypoxia-related genes were downloaded from the Molecular Signatures Database. A co-expression analysis between differentially expressed lncRNAs and hypoxia-related genes in ccRCC samples was performed to identify HRLs. Univariate and multivariate Cox regression analyses were performed to select nine optimal lncRNAs for developing the HRL model. The prognostic model showed good performance in predicting prognosis among patients with ccRCC, and the validation sets reached consistent results. The model was also found to be related to the clinicopathologic parameters of tumor grade and tumor stage and to tumor immune infiltration. In conclusion, our findings indicate that the hypoxia-lncRNA assessment model may be useful for prognostication in ccRCC cases. Furthermore, the nine HRLs included in the model might be useful targets for investigating the tumorigenesis of ccRCC and designing individualized treatment strategies.
Collapse
Affiliation(s)
- Han Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hua Wen Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|
21
|
Miao X, Liu Y, Fan Y, Wang G, Zhu H. LncRNA BANCR Attenuates the Killing Capacity of Cisplatin on Gastric Cancer Cell Through the ERK1/2 Pathway. Cancer Manag Res 2021; 13:287-296. [PMID: 33469371 PMCID: PMC7811444 DOI: 10.2147/cmar.s269679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Chemotherapy-based comprehensive treatments are the most important therapeutic methods for patients with advanced gastric cancer, but chemoresistance often cause treatment failure. Long non-coding RNA (LncRNA) BRAF-activated non-coding RNA (BANCR) has been shown to participate in many biological behaviors of multiple cancers. However, the biological roles of LncRNA BANCR in chemoresistance of gastric cancer remain unclear. Here, we aimed to evaluate the functions of LncRNA BANCR on the therapy of gastric cancer. Methods In this study, LncRNA BANCR expression was detected in gastric cancer patient samples and cell lines by quantity polymerase chain reaction (qPCR). Cell proliferation and viability in cisplatin-treated cells were measured using clonogenic survival assay and cell counting kit-8. The levels of ERK1/2 pathway molecules were tested with Western blot. Ly3214996, an inhibitor of ERK signal pathway, was administered to assess the effects of BANCR overexpression on gastric cancer cell with cisplatin-treated resistance. Moreover, the role of BANCR in cisplatin resistance of gastric cancer was validated in xenograft mouse models in vivo. Results Our study revealed that LncRNA BANCR expression was also significantly increased in gastric cancer tissues compared with adjacent normal tissues. Furthermore, we found that BANCR overexpression promoted gastric cancer cell resistance to cisplatin in vitro. Ly3214996 treatment abolished the BANCR overexpression-mediated gastric cancer cell cisplatin resistance via regulating the phosphorylation of ERK protein. Knock-down of BANCR significantly delayed tumor growth in xenograft mouse models. Conclusion BANCR promoted cisplatin resistance of gastric cancer cells by activating ERK1/2 pathway. Inhibition of BANCR markedly suppressed the growth of gastric cancer cells in vitro as well as in vivo. These results provided a new strategy for gastric cancer therapy via targeting BANCR.
Collapse
Affiliation(s)
- Xiang Miao
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Yixiang Liu
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Yuzhu Fan
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Guoqiang Wang
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| | - Hongbo Zhu
- Department of General Surgery, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu 222042, People's Republic of China
| |
Collapse
|
22
|
Iacobas DA, Mgbemena VE, Iacobas S, Menezes KM, Wang H, Saganti PB. Genomic Fabric Remodeling in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC): A New Paradigm and Proposal for a Personalized Gene Therapy Approach. Cancers (Basel) 2020; 12:cancers12123678. [PMID: 33302383 PMCID: PMC7762545 DOI: 10.3390/cancers12123678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary We applied the genomic fabric principles for personalized gene therapy to a case of clear cell renal cell carcinoma (ccRCC). Despite decades of research, the process of finding the molecular mechanisms responsible for the disease and, more importantly, the therapeutic solution is still a work in progress. We analyzed the transcriptomes of the chest wall metastasis, two distinct cancer nodules, and the cancer-free surrounding tissue in the surgically removed right kidney of a Fuhrman grade 3 metastatic ccRCC patient. The studies revealed that even histopathologically equally classified cancer nodules from the same kidney have different transcriptomic topologies, requiring tailored therapeutic solutions not only for each patient but even for each cancer nodule. We identified death-associated protein kinase 3 (DAPK3); transcription activation suppressor (TASOR); family with sequence similarity 27, member C, long non-coding RNA (FAM27C); and UDP-N-acetylglucosaminyltransferase subunit (ALG13) as the gene master regulators of the four profiled regions and proposed molecular mechanisms by which expression manipulation of TASOR and ALG13 may selectively destroy the cancer cells without affecting many of the normal cells. Abstract Published transcriptomic data from surgically removed metastatic clear cell renal cell carcinoma samples were analyzed from the genomic fabric paradigm (GFP) perspective to identify the best targets for gene therapy. GFP considers the transcriptome as a multi-dimensional mathematical object constrained by a dynamic set of expression controls and correlations among genes. Every gene in the chest wall metastasis, two distinct cancer nodules, and the surrounding normal tissue of the right kidney was characterized by three independent measures: average expression level, relative expression variation, and expression correlation with each other gene. The analyses determined the cancer-induced regulation, control, and remodeling of the chemokine and vascular endothelial growth factor (VEGF) signaling, apoptosis, basal transcription factors, cell cycle, oxidative phosphorylation, renal cell carcinoma, and RNA polymerase pathways. Interestingly, the three cancer regions exhibited different transcriptomic organization, suggesting that the gene therapy should not be personalized only for every patient but also for each major cancer nodule. The gene hierarchy was established on the basis of gene commanding height, and the gene master regulators DAPK3,TASOR, FAM27C and ALG13 were identified in each profiled region. We delineated the molecular mechanisms by which TASOR overexpression and ALG13 silencing would selectively affect the cancer cells with little consequences for the normal cells.
Collapse
Affiliation(s)
- Dumitru A. Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (D.A.I.); (P.B.S.); Tel.: +1-(936)-261-9626 (D.A.I.)
| | - Victoria E. Mgbemena
- Department of Biology, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Kareena M. Menezes
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
| | - Huichen Wang
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
| | - Premkumar B. Saganti
- CRI Radiation Institute for Science & Engineering, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA; (K.M.M.); (H.W.)
- Department of Physics, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: (D.A.I.); (P.B.S.); Tel.: +1-(936)-261-9626 (D.A.I.)
| |
Collapse
|
23
|
Ding L, Jiang M, Wang R, Shen D, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. The emerging role of small non-coding RNA in renal cell carcinoma. Transl Oncol 2020; 14:100974. [PMID: 33395751 PMCID: PMC7719974 DOI: 10.1016/j.tranon.2020.100974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
SncRNAs contribute to the progress of renal cell carcinoma. SncRNAs are promising biomarkers for diagnosis and prognosis of renal cell carcinoma. Despite the potential of sncRNA-based cancer therapy, some obstacles remain, including several severe adverse effect.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
24
|
Construction of a Novel Multigene Panel Potently Predicting Poor Prognosis in Patients with Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12113471. [PMID: 33266355 PMCID: PMC7700485 DOI: 10.3390/cancers12113471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Clear cell renal cell carcinoma (ccRCC) is the predominant cause of kidney cancer death attributed to its prevalence (70%) and its nature being the most aggressive form of kidney cancer. Most ccRCC deaths are resulted from metastasis. It is essential to know which ccRCCs are at risk of metastasis and the development to lethal disease; however, our capacity for such analysis remains poor. To improve this diagnostic capacity, we have examined a comprehensive ccRCC dataset containing 512 patients and have produced a 9-gene signature. This signature is novel; all its 9 components genes are unknown to be related to ccRCC. Importantly, all 9 individual genes possess significant ability in diagnosis of ccRCC metastasis and fatality; the combination of these genes or this signature predicts deadly ccRCCs at an impressive efficiency. This research will open new avenues in ccRCC research and will have a major impact in reducing ccRCC-associated deaths. Abstract We observed associations of IQGAP1 downregulation with poor overall survival (OS) in clear cell renal cell carcinoma (ccRCC). Differentially expressed genes (DEGs, n = 611) were derived from ccRCCs with (n = 111) and without IQGAP1 (n = 397) reduction using the TCGA PanCancer Atlas ccRCC dataset. These DEGs exhibit downregulations of immune response and upregulations of DNA damage repair pathways. Through randomization of the TCGA dataset into a training and testing subpopulation, a 9-gene panel (SigIQGAP1NW) was derived; it predicts poor OS in training, testing, and the full population at a hazard ratio (HR) 2.718, p < 2 × 10−16, p = 1.08 × 10−5, and p < 2 × 10−16, respectively. SigIQGAP1NW independently associates with poor OS (HR 1.80, p = 2.85 × 10−6) after adjusting for a set of clinical features, and it discriminates ccRCC mortality at time-dependent AUC values of 70% at 13.8 months, 69%/31M, 69%/49M, and 75.3%/71M. All nine component genes of SigIQGAP1NW are novel to ccRCC. The inclusion of RECQL4 (a DNA helicase) in SigIQGAP1NW agrees with IQGAP1 DEGs enhancing DNA repair. THSD7A affects kidney function; its presence in SigIQGAP1NW is consistent with our observed THSD7A downregulation in ccRCC (n = 523) compared to non-tumor kidney tissues (n = 100). Collectively, we report a novel multigene panel that robustly predicts poor OS in ccRCC.
Collapse
|
25
|
Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T, Li X. Long Non-coding RNA IRAIN Inhibits VEGFA Expression via Enhancing Its DNA Methylation Leading to Tumor Suppression in Renal Carcinoma. Front Oncol 2020; 10:1082. [PMID: 32983957 PMCID: PMC7492562 DOI: 10.3389/fonc.2020.01082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/29/2020] [Indexed: 01/19/2023] Open
Abstract
Aims: Long non-coding RNA IRAIN (lncRNA IRAIN) plays a critical role in numerous malignancies. However, the function of lncRNA IRAIN in renal carcinoma (RC) remains enigmatic. The purpose of this study is to characterize the effects of lncRNA IRAIN on RC progression. Methods: The expression pattern of lncRNA IRAIN and the vascular endothelial growth factor A (VEGFA) in RC tissues and cells was characterized by RT-qPCR and Western blot analysis. The roles of lncRNA IRAIN and VEGFA in the progression of RC were studied by gain- or loss-of-function experiments. Bioinformatics data analysis was used to predict CpG islands in the VEGFA promoter region. MSP was applied to detect the level of DNA methylation in RC cells. The interaction between lncRNA IRAIN and VEGFA was identified by RNA immunoprecipitation and RNA-protein pull down assays. Recruitment of DNA methyltransferases (Dnmt) to the VEGFA promoter region was achieved by chromatin immunoprecipitation. The subcellular localization of lncRNA IRAIN was detected by fractionation of nuclear and cytoplasmic RNA. Cell viability was investigated by CCK-8 assay, cell migration was tested by transwell migration assay, and apoptosis was analyzed by flow cytometry. The expression of epithelial–mesenchymal transition-related and apoptotic factors was evaluated by Western blot analysis. Finally, the effect of the lncRNA IRAIN/VEGFA axis was confirmed in an in vivo tumor xenograft model. Results: LncRNA IRAIN was poorly expressed in RC tissues and cells with a primary localization in the nucleus, while VEGFA was highly expressed. Overexpression of lncRNA IRAIN or knockdown of VEGFA inhibited cell proliferation and migration and induced the apoptosis of RC cells. Bioinformatics analysis indicated the presence of CpG islands in the VEGFA promoter region. Lack of methylation at specific sites in the VEGFA promoter region was detected through MSP assay. We found that lncRNA IRAIN was able to inhibit VEGFA expression through recruitment of Dnmt1, Dnmt3a, and Dnmt3b to the VEGFA promoter region. LncRNA IRAIN was also able to suppress RC tumor growth via repression of VEGFA in an in vivo mouse xenograft model. Conclusion: Our data shows that by downregulating VEGFA expression in RC, the lncRNA IRAIN has tumor-suppressive potential.
Collapse
Affiliation(s)
- Yang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Qingyang Luo
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zun Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yun Wang
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaoyang Zhu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Tieqiang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaodong Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
26
|
Barth DA, Drula R, Ott L, Fabris L, Slaby O, Calin GA, Pichler M. Circulating Non-coding RNAs in Renal Cell Carcinoma-Pathogenesis and Potential Implications as Clinical Biomarkers. Front Cell Dev Biol 2020; 8:828. [PMID: 33042985 PMCID: PMC7523432 DOI: 10.3389/fcell.2020.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy-the determination of circulating cells, proteins, DNA or RNA from biofluids through a "less invasive" approach-has emerged as a novel approach in all cancer entities. Circulating non-(protein) coding RNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and YRNAs can be passively released by tissue or cell damage or actively secreted as cell-free circulating RNAs, bound to lipoproteins or carried by exosomes. In renal cell carcinoma (RCC), a growing body of evidence suggests circulating non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and YRNAs as promising and easily accessible blood-based biomarkers for the early diagnosis of RCC as well as for the prediction of prognosis and treatment response. In addition, circulating ncRNAs could also play a role in RCC pathogenesis and progression. This review gives an overview over the current study landscape of circulating ncRNAs and their involvement in RCC pathogenesis as well as their potential utility as future biomarkers in RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rares Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leonie Ott
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
27
|
Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer. Noncoding RNA 2020; 6:ncrna6030027. [PMID: 32640630 PMCID: PMC7549355 DOI: 10.3390/ncrna6030027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides. They participate in cancer development and progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing body of evidence supports the role of lncRNAs in the hypoxic and normoxic regulation of HIF and its subunits HIF-1α and HIF-2α in cancer. This review provides a comprehensive update and overview of lncRNAs as regulators of HIFs expression and activation and discusses and highlights potential involved pathways.
Collapse
|
28
|
Seles M, Hutterer GC, Foßelteder J, Svoboda M, Resel M, Barth DA, Pichler R, Bauernhofer T, Zigeuner RE, Pummer K, Slaby O, Klec C, Pichler M. Long Non-Coding RNA PANTR1 is Associated with Poor Prognosis and Influences Angiogenesis and Apoptosis in Clear-Cell Renal Cell Cancer. Cancers (Basel) 2020; 12:E1200. [PMID: 32397610 PMCID: PMC7281347 DOI: 10.3390/cancers12051200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
POU3F3 adjacent non-coding transcript 1 (PANTR1) is an oncogenic long non-coding RNA with significant influence on numerous cellular features in different types of cancer. No characterization of its role in renal cell carcinoma (RCC) is yet available. In this study, PANTR1 expression was confined to human brain and kidney tissue and was found significantly up-regulated in clear-cell renal cell carcinoma tissue (ccRCC) compared to non-cancerous kidney tissue in two independent cohorts (p < 0.001 for both cohorts). In uni- and multivariate Cox regression analysis, ccRCC patients with higher levels of PANTR1 showed significantly poorer disease-free survival in our own respective cohort (n = 175, hazard ratio: 4.3, 95% confidence interval: 1.45-12.75, p = 0.008) in accordance with significantly poorer overall survival in a large The Cancer Genome Atlas database (TCGA) cohort (n = 530, hazard ratio: 2.19, 95% confidence interval: 1.59-3.03, p ≤ 0.001). To study the underlying cellular mechanisms mediated by varying levels of PANTR1 in kidney cancer cells, we applied siRNA-mediated knock-down experiments in three independent ccRCC cell lines (RCC-FG, RCC-MF, 769-P). A decrease in PANTR1 levels led to significantly reduced cellular growth through activation of apoptosis in all tested cell lines. Moreover, as angiogenesis is a critical driver in ccRCC pathogenesis, we identified that PANTR1 expression is critical for in vitro tube formation and endothelial cell migration (p < 0.05). On the molecular level, knock-down of PANTR1 led to a decrease in Vascular Endothelial growth factor A (VEGF-A) and cell adhesion molecule laminin subunit gamma-2 (LAMC2) expression, corroborated by a positive correlation in RCC tissue (for VEGF-A R = 0.19, p < 0.0001, for LAMC2 R = 0.13, p = 0.0028). In conclusion, this study provides first evidence that PANTR1 has a relevant role in human RCC by influencing apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Georg C. Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Johannes Foßelteder
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Marek Svoboda
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; (M.S.); (O.S.)
| | - Margit Resel
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Dominik A. Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
| | - Richard E. Zigeuner
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Karl Pummer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria; (M.S.); (G.C.H.); (R.E.Z.); (K.P.)
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic; (M.S.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.R.); (D.A.B.); (T.B.); (M.P.)
- “Non-coding RNAs and Genome Editing in Cancer” Research Unit, Medical University of Graz, 8036 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer. Cancers (Basel) 2020; 12:cancers12030749. [PMID: 32235691 PMCID: PMC7140096 DOI: 10.3390/cancers12030749] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Testicular cancer is an important disease with increasing incidence and a high burden of morbidity and mortality in young men worldwide. Histological examination of the testicular tissue after orchiectomy plays an important role alongside patient history, imaging, clinical presentation and laboratory parameters. Surgical procedures and chemotherapeutic treatment provide a high chance of cure in early stages, though some patients in advanced stages belonging to a poor risk group experience cancer-related death. Though conventional serum-based tumor markers, including α-fetoprotein (AFP), the β-subunit of human chorionic gonadotropin (β-hCG), and lactate dehydrogenase (LDH), are useful as prognostic and diagnostic biomarkers, unfortunately, these tumor markers only have a sensitivity of about 60%, and in pure seminoma even lower with about 20%. Therefore, the development of new tumor markers is an important and intensively ongoing issue. The analysis of epigenetic modification and non-coding RNA microRNAs (miRNAs) are carrying most promising potential as tumor markers in future. miRNAs are small RNAs secreted by testicular tumor cells and circulate and be measurable in body fluids. In recent years, miRNAs of the miR-371-373 cluster in particular have been identified as potentially superior tumor markers in testicular cancer patients. Studies showed that miR-371a-3p and miR-302/367 expression significantly differ between testicular tumors and healthy testicular tissue. Several studies including high prospective multi-center trials clearly demonstrated that these miRNAs significantly exceed the sensitivity and specificity of conventional tumor markers and may help to facilitate the diagnosis, follow-up, and early detection of recurrences in testicular cancer patients. In addition, other miRNAs such as miR-223-3p, miR-449, miR-383, miR-514a-3p, miR-199a-3p, and miR-214 will be discussed in this review. However, further studies are needed to identify the value of these novel markers in additional clinical scenarios, including the monitoring in active surveillance or after adjuvant chemotherapy, but also to show the limitations of these tumor markers. The aim of this review is to give an overview on the current knowledge regarding the relevance of non-coding miRNAs as biomarkers in testicular cancer.
Collapse
|
30
|
Hatzl S, Perfler B, Wurm S, Uhl B, Quehenberger F, Ebner S, Troppmair J, Reinisch A, Wölfler A, Sill H, Zebisch A. Increased Expression of Micro-RNA-23a Mediates Chemoresistance to Cytarabine in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:E496. [PMID: 32093419 PMCID: PMC7072365 DOI: 10.3390/cancers12020496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Resistance to chemotherapy is one of the primary obstacles in acute myeloid leukemia (AML) therapy. Micro-RNA-23a (miR-23a) is frequently deregulated in AML and has been linked to chemoresistance in solid cancers. We, therefore, studied its role in chemoresistance to cytarabine (AraC), which forms the backbone of all cytostatic AML treatments. Initially, we assessed AraC sensitivity in three AML cell lines following miR-23a overexpression/knockdown using MTT-cell viability and soft-agar colony-formation assays. Overexpression of miR-23a decreased the sensitivity to AraC, whereas its knockdown had the opposite effect. Analysis of clinical data revealed that high miR-23a expression correlated with relapsed/refractory (R/R) AML disease stages, the leukemic stem cell compartment, as well as with inferior overall survival (OS) and event-free survival (EFS) in AraC-treated patients. Mechanistically, we demonstrate that miR-23a targets and downregulates topoisomerase-2-beta (TOP2B), and that TOP2B knockdown mediates AraC chemoresistance as well. Likewise, low TOP2B expression also correlated with R/R-AML disease stages and inferior EFS/OS. In conclusion, we show that increased expression of miR-23a mediates chemoresistance to AraC in AML and that it correlates with an inferior outcome in AraC-treated AML patients. We further demonstrate that miR-23a causes the downregulation of TOP2B, which is likely to mediate its effects on AraC sensitivity.
Collapse
Affiliation(s)
- Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.E.); (J.T.)
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.E.); (J.T.)
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (S.H.); (B.P.); (S.W.); (B.U.); (A.R.); (A.W.); (H.S.)
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|