1
|
Shivarov V, Tsvetkova G, Micheva I, Hadjiev E, Petrova J, Ivanova A, Madjarova G, Ivanova M. Differential modulation of mutant CALR and JAK2 V617F-driven oncogenesis by HLA genotype in myeloproliferative neoplasms. Front Immunol 2024; 15:1427810. [PMID: 39351227 PMCID: PMC11439724 DOI: 10.3389/fimmu.2024.1427810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Ilina Micheva
- Department of Clinical Hematology, Saint Marina University Hospital, Medical University Varna, Varna, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Jasmina Petrova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Galia Madjarova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Chia YC, Siti Asmaa MJ, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. Molecular Genetics of Thrombotic Myeloproliferative Neoplasms: Implications in Precision Oncology. Diagnostics (Basel) 2023; 13:163. [PMID: 36611455 PMCID: PMC9818412 DOI: 10.3390/diagnostics13010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include polycythaemia vera, essential thrombocythaemia, and primary myelofibrosis. Unlike monogenic disorders, a more complicated series of genetic mutations are believed to be responsible for MPN with various degrees of thromboembolic and bleeding complications. Thrombosis is one of the early manifestations in patients with MPN. To date, the driver genes responsible for MPN include JAK2, CALR, MPL, TET2, ASXL1, and MTHFR. Affords have been done to elucidate these mutations and the incidence of thromboembolic events. Several lines of evidence indicate that mutations in JAK2, MPL, TET2 and ASXL1 gene and polymorphisms in several clotting factors (GPIa, GPIIa, and GPIIIa) are associated with the occurrence and prevalence of thrombosis in MPN patients. Some polymorphisms within XRCC1, FBG, F2, F5, F7, F12, MMP9, HPA5, MTHFR, SDF-1, FAS, FASL, TERT, ACE, and TLR4 genes may also play a role in MPN manifestation. This review aims to provide an insightful overview on the genetic perspective of thrombotic complications in patients with MPN.
Collapse
Affiliation(s)
- Yuh Cai Chia
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mat Jusoh Siti Asmaa
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Marini Ramli
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Muhammad Farid Johan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050866 DOI: 10.1007/978-3-030-67696-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.
Collapse
|
4
|
Chia YC, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. WITHDRAWN: Molecular genetics of thrombotic myeloproliferative neoplasms: Implications in precision oncology. Genes Dis 2021. [DOI: 10.1016/j.gendis.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Allain-Maillet S, Bosseboeuf A, Mennesson N, Bostoën M, Dufeu L, Choi EH, Cleyrat C, Mansier O, Lippert E, Le Bris Y, Gombert JM, Girodon F, Pettazzoni M, Bigot-Corbel E, Hermouet S. Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent Cytokines in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092446. [PMID: 32872203 PMCID: PMC7564615 DOI: 10.3390/cancers12092446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Inflammation plays a major role in myeloproliferative neoplasms (MPNs) as regulator of malignant cell growth and mediator of clinical symptoms. Yet chronic inflammation may also be an early event that facilitates the development of MPNs. Here we analysed 42 inflammatory cytokines and report that in patients as well as in UT-7 cell lines, interleukin-1β and interferon-induced protein 10 (IP-10) were the main inflammatory molecules found to be induced by JAK2V617F, the most frequent driving mutation in MPNs. All other inflammatory cytokines were not linked to JAK2V617F, which implies that inflammation likely precedes MPN development at least in subsets of MPN patients. Consistently, a possible cause of early, chronic inflammation may be auto-immunity against glucolipids: we report that 20% of MPN patients presented with anti-glucosylsphingoside auto-antibodies. Since existing treatments can reduce glucosylsphingoside, this lysosphingolipid could become a new therapeutic target for subsets of MPN patients, in addition to JAK2V617F and inflammation. Abstract Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1β, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1β, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1β and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.
Collapse
Affiliation(s)
- Sophie Allain-Maillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Adrien Bosseboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Nicolas Mennesson
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Mégane Bostoën
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Laura Dufeu
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Eun Ho Choi
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Cédric Cleyrat
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Olivier Mansier
- Laboratoire d’Hématologie, CHU de Bordeaux, 33600 Pessac, France;
- INSERM U1034, Université de Bordeaux, UFR Sciences de la Vie et de la Santé, 33000 Bordeaux, France
| | - Eric Lippert
- Laboratoire d’Hématologie, CHU de Brest, 29200 Brest, France;
- INSERM, Etablissement Français du Sang (EFS), UMR 1078, GGB, Université de Brest, 29200 Brest, France
| | - Yannick Le Bris
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
| | | | - François Girodon
- Laboratoire d’Hématologie, CHU Dijon, 21034 Dijon, France;
- INSERM, UMR 1231, University of Bourgogne Franche-Comté, 21078 Dijon, France
| | - Magali Pettazzoni
- LBMMS, Service de Biochimie et Biologie Moléculaire Grand Est, UF des Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, 69677 Bron CEDEX, France;
| | - Edith Bigot-Corbel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire de Biochimie, CHU de Nantes, 44093 Nantes, France
| | - Sylvie Hermouet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
- Correspondence: ; Tel.: +33-228080355
| |
Collapse
|
6
|
Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci 2020; 111:2682-2688. [PMID: 32462673 PMCID: PMC7419020 DOI: 10.1111/cas.14503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Deregulation of cytokine signaling is frequently associated with various pathological conditions, including malignancies. In patients with myeloproliferative neoplasms (MPNs), recurrent somatic mutations in the calreticulin (CALR) gene, which encodes a molecular chaperone that resides in the endoplasmic reticulum, have been reported. Studies have defined mutant CALR as an oncogene promoting the development of MPN, and deciphered a novel molecular mechanism by which mutant CALR constitutively activates thrombopoietin receptor MPL and its downstream molecules to induce cellular transformation. The mechanism of interaction and activation of MPL by mutant CALR is unique, not only due to the latter forming a homomultimeric complex through a novel mutant‐specific sequence generated by frameshift mutation, but also for its ability to interact with immature asparagine‐linked glycan for eventual engagement with immature MPL in the endoplasmic reticulum. The complex formed between mutant CALR and MPL is then transported to the cell surface, where it induces constitutive activation of downstream kinase JAK2 bound to MPL. Refined structural and cell biological studies can provide an in‐depth understanding of this unusual mechanism of receptor activation by a mutant molecular chaperone. Mutant CALR is also involved in modulation of the immune response, transcription, and intracellular homeostasis, which could contribute to the development of MPN. In the present article, we comprehensively review the current understanding of the underlying molecular mechanisms for mutant molecular chaperone‐induced cellular transformation.
Collapse
Affiliation(s)
- Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Roderburg C, Özdirik B, Wree A, Demir M, Tacke F. Systemic treatment of hepatocellular carcinoma: from sorafenib to combination therapies. Hepat Oncol 2020; 7:HEP20. [PMID: 32647565 PMCID: PMC7338920 DOI: 10.2217/hep-2020-0004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For almost a decade, systemic therapy of advanced hepatocellular carcinoma (HCC) was limited to the tyrosine kinase inhibitor (TKI) sorafenib. Different agents including checkpoint inhibitors, TKIs and anti-VEGFR antibodies demonstrated efficacy in treatment. For the first time, the combination of atezolizumab and bevacizumab, a first-line treatment that is superior to the current standard was identified, potentially changing the way we treat HCC. In this review, we summarize current data on systemic treatment of patients with advanced HCC, focusing on combination therapies comprising immune checkpoint inhibitors, TKIs and locoregional therapies. We elucidate findings from recent trials and discuss such challenges as the lack of predictive biomarkers for identification of subgroups that will benefit from novel treatment strategies.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Hepatology & Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum & Charité Campus Mitte, Berlin, 13353, Germany
| | - Burcin Özdirik
- Department of Hepatology & Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum & Charité Campus Mitte, Berlin, 13353, Germany
| | - Alexander Wree
- Department of Hepatology & Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum & Charité Campus Mitte, Berlin, 13353, Germany
| | - Münevver Demir
- Department of Hepatology & Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum & Charité Campus Mitte, Berlin, 13353, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum & Charité Campus Mitte, Berlin, 13353, Germany
| |
Collapse
|
8
|
Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers (Basel) 2020; 12:cancers12020333. [PMID: 32024211 PMCID: PMC7072709 DOI: 10.3390/cancers12020333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.
Collapse
Affiliation(s)
- Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-1580
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - James A. McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|