1
|
Sharma S, Goyal T, Chawla S, Nadig PL, Bhodiakhera A, Jindal AK, Pilania RK, Dhaliwal M, Rawat A, Singh S. Cross-talk between immune cells and tumor cells in non-Hodgkin lymphomas arising in common variable immunodeficiency. Expert Rev Clin Immunol 2024:1-10. [PMID: 39206944 DOI: 10.1080/1744666x.2024.2398546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION CVID is the commonest and most symptomatic primary immune deficiency of adulthood. NHLs are the most prevalent malignancies in CVID. The cross-talk between tumor cells and immune cells may be an important risk factor in lymphomagenesis. AREAS COVERED The present review highlights immune cell, genetic and histopathological alterations in the CVID-associated NHLs. EXPERT OPINION CVID patients exhibit some notable immune defects that may predispose to lymphomas. T/NK cell defects including reduced T cells, naïve CD4+T cells, T regs, and Th17 cells, increased CD8+T cells with reduced T cell proliferative and cytokine responses and reduced iNKT and NK cell count and cytotoxicity. B cell defects include increased transitional and CD21low B cells, clonal IgH gene rearrangements, and increased BCMA levels. Increase in IL-9, sCD30 levels, and upregulation of BAFF-BAFFR signaling are associated with lymphomas in CVID. Increased expression of PFTK1, duplication of ORC4L, germline defects in TACI, NFKB1, and PIK3CD, and somatic mutations in NOTCH2 and MYD88 are reported in CVID-associated lymphomas. Upregulation of PD-L1-PD-1 pathway may also promote lymphomagenesis in CVID. These abnormalities need to be explored as prognostic or predictive markers of CVID-associated NHLs by large multicentric studies.
Collapse
Affiliation(s)
- Saniya Sharma
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Taru Goyal
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Sanchi Chawla
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Pallavi L Nadig
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Arjun Bhodiakhera
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Ankur Kumar Jindal
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics (Allergy & Immunology Unit), Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| |
Collapse
|
2
|
Chen W, Xie Y, Li F, Wen P, Wang L. EBV + B cell-derived exosomes promote EBV-associated T/NK-cell lymphoproliferative disease immune evasion by STAT3/IL-10/PD-L1 pathway. Immunol Res 2024:10.1007/s12026-024-09531-3. [PMID: 39164446 DOI: 10.1007/s12026-024-09531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
EBV-associated T/NK-cell lymphoproliferative diseases (EBV-T/NK-LPDs) are characterized by the clonal proliferation of EBV-positive ( +) T/NK cells. EBV is typically latent in B cells and the mechanism by which the EBV genome invades T/NK cells remains unknown. Recent studies have demonstrated that exosomes derived from EBV + B cells play a pivotal role in immunosuppressive microenvironment remodeling. Moreover, the existence of an immunosuppressive microenvironment is known to be critical in the development of EBV-T/NK-LPDs. Hence, we hypothesized that exosomes derived from EBV + B cells might promote the development of EBV-T/NK-LPDs by stimulating immune evasion. In this study, we utilized paraffin sections to clarify the STAT3/IL-10/PD-L1-associated immunosuppressive microenvironment in EBV-T/NK-LPDs. Further, we extracted exosomes from BL2009 (EBV + B cell lymphoma) and CA46 (EBV- B cell lymphoma) cell lines to co-culture with cutaneous T-cell lymphoma (CTCL) cell lines, to verify the changes in the above immune evasion pathway. The paraffin sections of EBV-T/NK-LPDs showed high-expression levels of IL-10/PD-L1, which might be related to the phosphorylation of STAT3. Exosomes derived from EBV + B cells could significantly activate the STAT3/IL-10/PD-L1 pathway. After being treated with C188-9, EBV + B cell-derived exosomes were no longer able to stimulate the expression of IL-10/PD-L1 in CTCL cells. EBV-T/NK-LPDs have a STAT3/IL-10/PD-L1 overactivation-associated immunosuppressive microenvironment. Our study elucidated part of this mechanism. Exosomes derived from EBV + B could induce phosphorylation of STAT3 in CTCL cells, leading to the overexpression of IL-10/PD-L1. Our findings might shed light on new directions for understanding immune evasion in EBV-T/NK-LPDs.
Collapse
Affiliation(s)
- Wei Chen
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, China
| | - Yao Xie
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, China
| | - Fan Li
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, China
| | - Pengfei Wen
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
4
|
Hambalie AO, Norahmawati E, Endharti AT, Retnani DP, Rahmadiani N. STAT3 Expression and Its Correlation with PD-L1 Expression in Non-Hodgkin's Lymphoma and Hodgkin's Lymphoma at Dr. Saiful Anwar Regional Public Hospital in Malang, Indonesian Population. Adv Hematol 2024; 2024:7989996. [PMID: 38817669 PMCID: PMC11139532 DOI: 10.1155/2024/7989996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background Lymphomas are malignant lymphocyte neoplasms that globally account for 10% of cancers in individuals aged <20 years. Malignant lymphomas are divided into Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL). Despite the availability of many therapeutic modalities for lymphoma, such as Brentuximab vedotin, Nivolumab, and Pembrolizumab, it is still necessary to identify appropriate strategies with minimal side effects. Immunotherapy is a promising approach, exemplified by targeting JAK/STAT3 signaling, which can inhibit tumor growth and enhance antitumor immune responses. Hence, STAT3 (signal transducer and activator of transcription 3) is a promising therapeutic target. PD-L1 (programmed death-ligand 1), an immune checkpoint molecule, is used as a frontline treatment for various cancers. This study aims to determine STAT3 expression and its correlation with PD-L1 expression in NHL and HL to serve as a basis for further research on anti-STAT3 and its combination with other therapy targets. Methods Samples were obtained from paraffin blocks of patients with confirmed diagnoses of NHL and HL, and then immunohistochemical staining was carried out with PD-L1 and STAT3 antibodies. The collected data were then analyzed using SPSS. Results Among the 10 HL patients, no patients (0%) expressed STAT3, while nine patients (90%) expressed PD-L1. Among the 10 NHL patients, 1 patient (10%) expressed STAT3, while six patients (60%) expressed PD-L1. There were no significant differences in STAT3 expression and PD-L1 expression between HL patients and NHL patients. There was no correlation between STAT3 and PD-L1 expression in HL and NHL because almost all STAT3 expressions were negative. Conclusion Although this study revealed no differences between STAT3 and PD-L1 expression in HL and NHL and no significant correlation between STAT3 and PD-L1 expression in HL and NHL, this may serve as the basis for understanding the role of STAT3 and PD-L1 in the regulation of HL and NHL, which may be useful for further research targeting STAT3 and PD-L1 immunotherapy in HL and NHL.
Collapse
Affiliation(s)
- Ailen Oktaviana Hambalie
- Department of Anatomical Pathology, Faculty of Medicine Brawijaya University, Malang, Indonesia
- Anatomical Pathology Laboratory, Dr. Saiful Anwar Regional Public Hospital, Malang, Indonesia
| | - Eviana Norahmawati
- Department of Anatomical Pathology, Faculty of Medicine Brawijaya University, Malang, Indonesia
- Anatomical Pathology Laboratory, Dr. Saiful Anwar Regional Public Hospital, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine Brawijaya University, Malang, Indonesia
| | - Diah Prabawati Retnani
- Department of Anatomical Pathology, Faculty of Medicine Brawijaya University, Malang, Indonesia
- Anatomical Pathology Laboratory, Dr. Saiful Anwar Regional Public Hospital, Malang, Indonesia
| | - Nayla Rahmadiani
- Department of Anatomical Pathology, Faculty of Medicine Brawijaya University, Malang, Indonesia
- Anatomical Pathology Laboratory, Dr. Saiful Anwar Regional Public Hospital, Malang, Indonesia
| |
Collapse
|
5
|
Gasparoli L, Virely C, Tsakaneli A, Che N, Edwards D, Bartram J, Hubank M, Pal D, Heidenreich O, Martens JHA, De Boer J, Williams O. Susceptibility of pediatric acute lymphoblastic leukemia to STAT3 inhibition depends on p53 induction. Haematologica 2024; 109:1069-1081. [PMID: 37794795 PMCID: PMC10985450 DOI: 10.3324/haematol.2023.283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.
Collapse
Affiliation(s)
- Luca Gasparoli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Clemence Virely
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Noelia Che
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Darren Edwards
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen
| | - Jasper De Boer
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London.
| |
Collapse
|
6
|
Wang JN, Li Y. Exploring the molecular mechanisms between lymphoma and myelofibrosis. Am J Transl Res 2024; 16:730-737. [PMID: 38586105 PMCID: PMC10994807 DOI: 10.62347/nwjo7078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
Lymphoma is a heterogeneous malignant tumor with an increasing annual incidence. As the lymphoma progresses, bone marrow (BM) invasion gradually appears. Myelofibrosis (MF) can accompany a variety of hematological malignancies, including lymphoma, and multiple myeloma. The prognosis of lymphoma patients with myelofibrosis is poor, and a fundamental reason is that there are few studies on the correlation and pathogenesis of the two diseases. In this review, we examine the potential pathogenesis and the correlation of the two diseases.
Collapse
Affiliation(s)
- Jun-Nuan Wang
- Hebei Medical UniversityShijiazhuang, Hebei, The People’s Republic of China
- Department of Hematology, Hebei General HospitalShijiazhuang, Hebei, The People’s Republic of China
| | - Yan Li
- Department of Hematology, Hebei General HospitalShijiazhuang, Hebei, The People’s Republic of China
| |
Collapse
|
7
|
Liu Y, Wang J, Guo J, Zhang Q, Wang S, Hu F, Wu J, Zhao Y, Zhang J, Yu Y, Li Y, Zhang X. Pan-cancer and multi-omics analyses revealed the diagnostic and prognostic value of BAZ2A in liver cancer. Sci Rep 2024; 14:5228. [PMID: 38433277 PMCID: PMC10909891 DOI: 10.1038/s41598-024-56073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/01/2024] [Indexed: 03/05/2024] Open
Abstract
BAZ2A, an epigenetic regulatory factor that affects ribosomal RNA transcription, has been shown to be highly expressed in several cancers and promotes tumor cell migration. This study explored the expression and mechanism of BAZ2A in tumorigenesis at the pan-cancer level. The Cancer Genome Atlas, Gene Expression Omnibus databases and TIMER2.0, cBioPortal and other tools were used to analyze the level of expression of BAZ2A in various tumor tissues and to examine the relationship between BAZ2A and survival, prognosis, mutation and immune invasion. In vitro experiments were performed to assess the function of BAZ2A in cancer cells. Using combined transcriptome and proteome analysis, we examined the possible mechanism of BAZ2A in tumors. BAZ2A exhibited high expression levels in multiple tumor tissues and displayed a significant association with cancer patient prognosis. The main type of BAZ2A genetic variation in cancer is gene mutation. Downregulation of BAZ2A inhibited proliferation, migration, and invasion and promoted apoptosis in LM6 liver cancer cell. The mechanism of BAZ2A in cancer development may involve lipid metabolism. These results help expand our understanding of BAZ2A in tumorigenesis and development and suggest BAZ2A may serve as a prognostic and diagnostic factor in several cancers.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Junli Wang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Jimin Guo
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Qianyi Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Shuqing Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Hospital of North China University of Science and Technology, Tangshan, 063210, China
| | - Fen Hu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, 063000, China
| | - Yating Zhao
- Department of Breast Center, North China University of Science and Technology Affiliated Hospital, Tangshan, 063210, China
| | - Jinghua Zhang
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, 063000, China.
| | - Yuan Yu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| | - Yufeng Li
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
| | - Xiaojun Zhang
- Department of Oncology, People's Hospital of Zunhua, Tangshan, 064200, China.
| |
Collapse
|
8
|
Huang CG, Liu Q, Zheng ST, Liu T, Tan YY, Peng TY, Chen J, Lu XM. miR-133b Promotes Esophageal Squamous Cell Carcinoma Metastasis. Clin Med Insights Oncol 2023; 17:11795549231219502. [PMID: 38144543 PMCID: PMC10748682 DOI: 10.1177/11795549231219502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Background Evaluation of biological changes at the molecular level has important clinical implications for improving the survival rate of esophageal squamous cell carcinoma (ESCC). Therefore, we plan to analyze and elucidate the expression of microRNA-133b (miR-133b), M2 pyruvate kinase (PKM2), and signal transducer and activator of transcription 3 (STAT3) in ESCC and their associated clinicopathological significance. Methods The 72 patients with ESCC were selected as the experimental study group. Normal adjacent tissues (NAT) were matched as the control group. In this study, in situ hybridization was used to detect the expression of miR-133b in ESCC, and tissue expressions of PKM2 and STAT3 were detected by immunohistochemistry, and literature review was conducted. Results Studies had shown that the positive expression of miR-133b in NAT was significantly higher than that in ESCC (χ2 = 9.007, P = .003). PKM2 and STAT3 in ESCC had a significantly higher positive expression levels than those of NAT (χ2 = 56.523, P = .000; χ2 = 72.939, P = .000). From correlation analysis, there was a negative correlation between miR-133b and PKM2(r = -0.515, P < .001), a negative correlation between miR-133b and STAT3(r = -0.314, P = .007), and a positive correlation between PKM2 and STAT3(r = 0.771, P < .001). Conclusions In ESCC, our study demonstrated that downregulation of miR-133b and upregulation of PKM2 and STAT3. We predict that miR-133b may inhibit the STAT3 pathway by downregulating PKM2.
Collapse
Affiliation(s)
- Cong-Gai Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, P R China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shu-Tao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Yi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tian-Yuan Peng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiao Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
9
|
Wang L, Zhou M, Kong X, Wu S, Ding C, Hu X, Guo H, Yan J. Specific Targeting of STAT3 in B Cells Suppresses Progression of B Cell Lymphoma. Int J Mol Sci 2023; 24:13666. [PMID: 37686472 PMCID: PMC10563066 DOI: 10.3390/ijms241713666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3), which regulates multiple oncogenic processes, has been found to be constitutively activated in lymphoma, suggesting its potential as a therapeutic target. Here, we constructed an anti-CD19-N-(4-carboxycyclohexylmethyl) maleimide N-hydroxysuccinimide ester (SMCC)-protamine (CSP)-STAT3 small interfering RNA (siRNA) conjugate and demonstrated that the CSP-STAT3 siRNA conjugate could specifically bind to normal B cells and A20 lymphoma cells in vitro. It decreased the STAT3 expression in B cell lymphoma cell lines (A20, SU-DHL-2 and OCI-Ly3), resulting in reduced proliferation of lymphoma cells featured with lower S-phase and higher apoptosis. Using an A20 transplantable lymphoma model, we found that the CSP-STAT3 siRNA conjugate significantly inhibited tumor growth and weight. Ki-67, p-STAT3, STAT3, and serum IL-6 levels were all significantly reduced in A20-bearing mice treated with CSP-STAT3 siRNA. These findings indicate that specifically targeting STAT3 siRNA to B cell lymphoma cell lines can significantly decrease STAT3 activity and inhibit tumor progression in vitro and in vivo, suggesting its potential utilization for cancer treatment.
Collapse
Affiliation(s)
- Lipei Wang
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310030, China
| | - Mingqian Zhou
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiangyu Kong
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouzhen Wu
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| | - Haixun Guo
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr. MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.Z.); (X.K.); (S.W.); (C.D.); (X.H.)
| |
Collapse
|
10
|
Luo Y, Vermeer MH, de Haan S, Kinderman P, de Gruijl FR, van Hall T, Tensen CP. Socs1-knockout in skin-resident CD4 + T cells in a protracted contact-allergic reaction results in an autonomous skin inflammation with features of early-stage mycosis fungoides. Biochem Biophys Rep 2023; 35:101535. [PMID: 37664523 PMCID: PMC10470183 DOI: 10.1016/j.bbrep.2023.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Recent detailed genomic analysis of mycosis fungoides (MF) identified suppressor of cytokine signaling 1 (SOCS1), an inhibitor of JAK/STAT signaling, as one of the frequently deleted tumor suppressors in MF, and one-copy deletion of SOCS1 was confirmed in early-stage MF lesions. To better understand the functional role of SOCS1 in the genesis of MF, we used a genetically engineered mouse model emulating heterozygous SOCS1 loss in skin resident CD4+ T cells. In these mice an experimentally induced contact-allergic reaction was maintained for 20 weeks. Ten weeks after discontinuing contact-allergic challenges, only the skin with locally one-copy deletion of Socs1 in CD4+ T cells still showed high numbers of CD3+/CD4+ Socs1 k.o. cells in the dermis (p < 0.0001) with prevalent Stat3 activation (p <0.001). And in one out of 9 mice, this had progressed to far more dramatic increases, including the thickened epidermis, and with an explosive growth of Socs1 k.o. T cells in circulation; indicative of cutaneous lymphoma. Hence, we show that Socs1 mono-allelic loss in CD4+ T cells locally in protractedly inflamed skin results in autonomous skin inflammation with features of early-stage MF.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanne de Haan
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank R. de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Wang N, Li Q. Simultaneous Extraction and Analysis of Seven Major Saikosaponins from Bupleuri Radix and the Exploration of Antioxidant Activity and Its Mechanism. Molecules 2023; 28:5872. [PMID: 37570843 PMCID: PMC10420870 DOI: 10.3390/molecules28155872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Saikosaponins (SS) are the main active components of Bupleuri Radix. In this study, the yields of SS a, b1, b2, c, d, e, and f were simultaneously determined using the HPLC-DAD dual wavelength method, and the ultrasound-assisted extraction process of saikosaponins was optimized using the response surface methodology. The antioxidant effect of saikosaponins was investigated using the scavenging rate of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2-diazo-bis (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl (-OH) groups, and the mechanism was clarified via network pharmacological analysis. The results showed that the optimal extraction process of SS was a 5% ammonia-methanol solution as an extraction solvent, a material-liquid ratio of 1:40, a temperature of 46.66 °C, an extraction time of 65.07 min, and an ultrasonic power of 345.56 W. The total content of the seven saikosaponins under this condition was up to 6.32%, which was close to the model's predicted value of 6.56%, where the yields of the seven saikosaponins a, b1, b2, c, d, e, and f were 1.18%, 0.11%, 0.26%, 1.02%, 3.02%, 0.38%, and 0.44%, respectively. The saikosaponins have an obvious scavenging ability for DPPH, ABTS, and -OH radicals. The interactions of seven saikosaponins with antioxidant targets were studied, and a database was used to collate the core of saikosaponins and antioxidants through network pharmacology. The mechanisms of the antioxidant effects of the saikosaponins were derived via GO enrichment analysis and KEGG pathway analysis. Finally, the binding energy of the saikosaponins to the antioxidant targets was found to be less than -5.0 kcal·mol-1 via molecular docking, indicating that the antioxidant capacity of the saikosaponins are good. Therefore, this study developed a rapid and efficient method for the extraction of saikosaponins, which provides a theoretical basis for an in-depth understanding of the rational utilization of saikosaponins and the development of their medicinal value.
Collapse
Affiliation(s)
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
12
|
Berta D, Girma M, Melku M, Adane T, Birke B, Yalew A. Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma. Int J Gen Med 2023; 16:2469-2480. [PMID: 37342407 PMCID: PMC10278864 DOI: 10.2147/ijgm.s414106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Ribonucleic acid splicing is a crucial process to create a mature mRNA molecule by removing introns and ligating exons. This is a highly regulated process, but any alteration in splicing factors, splicing sites, or auxiliary components affects the final products of the gene. In diffuse large B-cell lymphoma, splicing mutations such as mutant splice sites, aberrant alternative splicing, exon skipping, and intron retention are detected. The alteration affects tumor suppression, DNA repair, cell cycle, cell differentiation, cell proliferation, and apoptosis. As a result, malignant transformation, cancer progression, and metastasis occurred in B cells at the germinal center. B-cell lymphoma 7 protein family member A (BCL7A), cluster of differentiation 79B (CD79B), myeloid differentiation primary response gene 88 (MYD88), tumor protein P53 (TP53), signal transducer and activator of transcription (STAT), serum- and glucose-regulated kinase 1 (SGK1), Pou class 2 associating factor 1 (POU2AF1), and neurogenic locus notch homolog protein 1 (NOTCH) are the most common genes affected by splicing mutations in diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dereje Berta
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mekonnen Girma
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bisrat Birke
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aregawi Yalew
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Ferrari A, Cangini D, Ghelli Luserna di Rorà A, Condorelli A, Pugliese M, Schininà G, Cosentino S, Fonzi E, Domizio C, Simonetti G, Leotta S, Milone G, Martinelli G. Venetoclax durable response in adult relapsed/refractory Philadelphia-negative acute lymphoblastic leukemia with JAK/STAT pathway alterations. Front Cell Dev Biol 2023; 11:1165308. [PMID: 37287455 PMCID: PMC10242111 DOI: 10.3389/fcell.2023.1165308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
High-risk relapsed/refractory adult Philadelphia-negative (Ph-) B-cell acute lymphoblastic leukemia (B-ALL) is a great challenge due to limited possibilities to achieve and maintain a complete response. This also applies to cases with extramedullary (EM) involvement that have poor outcomes and no accepted standard therapeutic approaches. The incidence of EM localization in relapsed/refractory B-ALL is poorly investigated: data on patients treated with blinatumomab reported a 40% rate. Some responses were reported in EM patients with relapsed/refractory B-ALL treated with inotuzumab ozogamicin or CAR-T. However, molecular mechanisms of response or refractoriness are usually investigated neither at the medullary nor at EM sites. In the complex scenario of pluri-relapsed/refractory B-ALL patients, new target therapies are needed. Our analysis started with the case of an adult pluri-relapsed Ph- B-ALL patient, poorly sensitive to inotuzumab ozogamicin, donor lymphocyte infusions, and blinatumomab in EM disease, who achieved a durable/complete response after treatment with the BCL2-inhibitor venetoclax. The molecular characterization of medullary and EM samples revealed a tyrosine kinase domain JAK1 mutation in the bone marrow and EM samples at relapse. By comparing the expression level of BCL2- and JAK/STAT pathway-related genes between the patient samples, 136 adult JAK1 wt B-ALL, and 15 healthy controls, we identified differentially expressed genes, including LIFR, MTOR, SOCS1/2, and BCL2/BCL2L1, that are variably modulated at diverse time points and might explain the prolonged response to venetoclax (particularly in the EM site, which was only partially affected by previous therapies). Our results suggest that the deep molecular characterization of both medullary and EM samples is fundamental to identifying effective and personalized targeted therapies.
Collapse
Affiliation(s)
- Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Delia Cangini
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, Pisa, Italy
| | - Annalisa Condorelli
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Marta Pugliese
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Giovanni Schininà
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | | | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Domizio
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Salvatore Leotta
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Giuseppe Milone
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
14
|
Muhamad IR, Che Ibrahim NB, Hussain FA. Evaluation of Signal Transducer and Activator of Transcription 3 (STAT-3) Protein Expression in Non-Hodgkin Lymphoma Cases in Hospital USM. Diagnostics (Basel) 2023; 13:diagnostics13091649. [PMID: 37175040 PMCID: PMC10178068 DOI: 10.3390/diagnostics13091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Evolving targeted therapy on Janus Associated Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, especially pertaining to STAT-3 protein in non-Hodgkin lymphoma (NHL), provides new treatment strategies. STAT-3 protein also relates to the prognostication of NHL. Hence, we aimed to evaluate the expression of STAT-3 protein in NHL cases diagnosed in Hospital Universiti Sains Malaysia (USM). METHODS A retrospective cross sectional study using formalin fixed paraffin embedded (FFPE) tissue blocks of 95 NHL cases were obtained. STAT-3 immunostaining was performed and evaluated. The proportion and association between the expression of STAT-3 protein with subtypes of NHL were statistically analyzed. RESULTS The majority of the cases (78.9%) had positive STAT-3 protein expression. 64.2% were among aggressive B cell NHL, whilst 20.0% of them were diffuse large B cell lymphoma, a non-germinal center B subtype (DLBCL-NGCB). There is also an association between STAT-3 protein expression with DLBCL subtypes (p = 0.046). CONCLUSION Our study demonstrated a remarkable expression of STAT-3 protein in NHL, in which DLBCL subtypes had significant association. A larger scale study with a combination of JAK protein evaluation should be undertaken in the future.
Collapse
Affiliation(s)
- Izyan Rifhana Muhamad
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Noorul Balqis Che Ibrahim
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
15
|
Kasembeli MM, Kaparos E, Bharadwaj U, Allaw A, Khouri A, Acot B, Tweardy DJ. Aberrant function of pathogenic STAT3 mutant proteins is linked to altered stability of monomers and homodimers. Blood 2023; 141:1411-1424. [PMID: 36240433 PMCID: PMC10651785 DOI: 10.1182/blood.2021015330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
STAT3 mutations, predominantly in the DNA-binding domain (DBD) and Src-homology 2 domain (SH2D), cause rare cases of immunodeficiency, malignancy, and autoimmunity. The exact mechanisms by which these mutations abrogate or enhance STAT3 function are not completely understood. Here, we examined how loss-of-function (LOF) and gain-of-function (GOF) STAT3 mutations within the DBD and SH2D affect monomer and homodimer protein stability as well as their effect on key STAT3 activation events, including recruitment to phosphotyrosine (pY) sites within peptide hormone receptors, tyrosine phosphorylation at Y705, dimerization, nuclear translocation, and DNA binding. The DBD LOF mutants showed reduced DNA binding when homodimerized, whereas the DBD GOF mutants showed increased DNA binding. DBD LOF and GOF mutants showed minimal changes in other STAT3 functions or in monomer or homodimer protein stability. However, SH2D LOF mutants demonstrated reduced conformational stability as either monomers or homodimers, leading to decreased pY-peptide recruitment, tyrosine phosphorylation, dimerization, nuclear localization, and DNA binding. In contrast, cancer-causing SH2D GOF mutants showed increased STAT3 homodimer stability, which increased their DNA binding. Of note, a small-molecule inhibitor of STAT3 that targets the tyrosine phosphopeptide-binding pocket within the STAT3 SH2D potently inhibited cell proliferation driven by STAT3 SH2D GOF mutants. These findings indicate that the stability of STAT3 protein monomer and homodimer is critical for the pathogenesis of diseases caused by SH2D LOF and GOF mutations and suggest that agents that modulate STAT3 monomer and/or homodimer protein stability may have therapeutic value in diseases caused by these mutations.
Collapse
Affiliation(s)
- Moses M. Kasembeli
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Efiyenia Kaparos
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmad Allaw
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alain Khouri
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bianca Acot
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David J. Tweardy
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Jiménez-Cortegana C, Hontecillas-Prieto L, García-Domínguez DJ, Zapata F, Palazón-Carrión N, Sánchez-León ML, Tami M, Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Risk for Lymphoma: Possible Role of Leptin. Int J Mol Sci 2022; 23:15530. [PMID: 36555171 PMCID: PMC9779026 DOI: 10.3390/ijms232415530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity, which is considered a pandemic due to its high prevalence, is a risk factor for many types of cancers, including lymphoma, through a variety of mechanisms by promoting an inflammatory state. Specifically, over the last few decades, obesity has been suggested not only to increase the risk of lymphoma but also to be associated with poor clinical outcomes and worse responses to different treatments for those diseases. Within the extensive range of proinflammatory mediators that adipose tissue releases, leptin has been demonstrated to be a key adipokine due to its pleotropic effects in many physiological systems and diseases. In this sense, different studies have analyzed leptin levels and leptin/leptin receptor expressions as a probable bridge between obesity and lymphomas. Since both obesity and lymphomas are prevalent pathophysiological conditions worldwide and their incidences have increased over the last few years, here we review the possible role of leptin as a promising proinflammatory mediator promoting lymphomas.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Fernando Zapata
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - María L. Sánchez-León
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
18
|
Xu F, Chen R, Shen Y, Liu H, Hu L, Zhu L. CircUBXN7 suppresses cell proliferation and facilitates cell apoptosis in lipopolysaccharide-induced cell injury by sponging miR-622 and regulating the IL6ST/JAK1/STAT3 axis. Int J Biochem Cell Biol 2022; 153:106313. [DOI: 10.1016/j.biocel.2022.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
|
19
|
Human complete NFAT1 deficiency causes a triad of joint contractures, osteochondromas, and B-cell malignancy. Blood 2022; 140:1858-1874. [PMID: 35789258 DOI: 10.1182/blood.2022015674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.
Collapse
|
20
|
Hao Z, Pan Z, Qian W. Atractylenolide I Inhibits Triple-Negative Breast Cancer Cell Proliferation and Promotes Apoptosis via Blocking the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive agent Atractylenolide I (AT-1) has been shown to possess therapeutic value for treating various malignancies. The purpose of the current study is to clarify the potential effect of AT-1 on the development of triple-negative breast cancer (TNBC) and to investigate relevant
signaling pathways involved in its mechanism. MTT assay was used to assess the effect of different concentrations of AT-1 on cell survival rate in MCF-10A normal breast epithelial cell line and MDA-MB-231 TNBC cell line. Exogenous IL-6 and WP1066 respectively acted as the agonist and the inhibitor
of JAK2/STAT3. Determination of MDA-MB-231 cell viability, proliferation and apoptosis employed MTT, colony formation assay and TUNEL. Western blotting was conducted to measure the expression of proliferation- and apoptosis-related proteins. The viability of MCF-10A cells was unaffected by
AT-1, whereas in MDA-MB-231 cells the proliferation level was decreased and the apoptosis level was increased after AT-1 treatment. IL-6 partially restored the expression of AT-1-blocked JAK2/STAT3, and WP1066 inhibited JAK2/STAT3 expression in combination with IL-6 and AT-1. Furthermore,
compared with the AT-1 group, co-incubation of IL-6 and AT-1 partially restored the proliferative capacity and reduced the apoptosis of MDA-MB-231 cells, while WP1066 reversed these effects in combination with IL-6 and AT-1. AT-1 suppressed proliferation and promoted apoptosis in TNBC cells
likely through inhibiting the activation of JAK2/STAT3 signaling pathway. The findings from this study may provide guidance for future studies on AT-1 and theoretical basis of AT-1 pharmacological activities.
Collapse
Affiliation(s)
- Zhiye Hao
- Department of Oncology, Southern Branch of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing Province, 102618, China
| | - Zheng Pan
- Department of Respiratory Medicine, The Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin Province, 300162, China
| | - Wei Qian
- Department of Intensive Care Unit, Southern Branch of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Huangcun Town, Daxing District, Beijing, 102618, China
| |
Collapse
|
21
|
Gao X, Fan S, Zhang X. MiR-1306-5p promotes cell proliferation and inhibits cell apoptosis in acute myeloid leukemia by downregulating PHF6 expression. Leuk Res 2022; 120:106906. [DOI: 10.1016/j.leukres.2022.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
22
|
Alfwuaires M, Elsawy H, Sedky A. Acacetin Inhibits Cell Proliferation and Induces Apoptosis in Human Hepatocellular Carcinoma Cell Lines. Molecules 2022; 27:molecules27175361. [PMID: 36080130 PMCID: PMC9457933 DOI: 10.3390/molecules27175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of death across the world. Recent evidence suggests that STAT3 regulates proliferative, survival, metastasis, and angiogenesis genes in HCC. Novel agents that suppress STAT3 activation can be used to prevent or treat HCC. We used a functional proteomics tumor pathway technology platform and multiple HCC cell lines to investigate the effects of acacetin (ACN) on STAT3 activation, protein kinases, phosphatases, products of STAT3-regulated genes, and apoptosis. ACN was found to inhibit STAT3 activation in a dose- and time-dependent manner in HCC cells. Upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2 were also inhibited. The ACN inhibition of STAT3 was abolished by vanadate treatment, suggesting the involvement of tyrosine phosphatase activity. ACN was found to suppress the protein expression of genes involved in proliferation, survival, and angiogenesis via STAT3 inhibition. ACN appears to be a novel STAT3 inhibitor and may be a promising therapeutic compound for application in the treatment of HCC and other cancers.
Collapse
Affiliation(s)
- Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.A.); (H.E.); Tel.: +96-61-3589-1008 (M.A.); +96-61-3589-7402 (H.E.)
| | - Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.A.); (H.E.); Tel.: +96-61-3589-1008 (M.A.); +96-61-3589-7402 (H.E.)
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Zoology Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
23
|
Guevara-Hoyer K, Fuentes-Antrás J, de la Fuente-Muñoz E, Fernández-Arquero M, Solano F, Pérez-Segura P, Neves E, Ocaña A, Pérez de Diego R, Sánchez-Ramón S. Genomic crossroads between non-Hodgkin's lymphoma and common variable immunodeficiency. Front Immunol 2022; 13:937872. [PMID: 35990641 PMCID: PMC9390007 DOI: 10.3389/fimmu.2022.937872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency (CVID) represents the largest group of primary immunodeficiencies that may manifest with infections, inflammation, autoimmunity, and cancer, mainly B-cell non-Hodgkin's lymphoma (NHL). Indeed, NHL may result from chronic or recurrent infections and has, therefore, been recognized as a clinical phenotype of CVID, although rare. The more one delves into the mechanisms involved in CVID and cancer, the stronger the idea that both pathologies can be a reflection of the same primer events observed from different angles. The potential effects of germline variants on specific somatic modifications in malignancies suggest that it might be possible to anticipate critical events during tumor development. In the same way, a somatic alteration in NHL could be conditioning a similar response at the transcriptional level in the shared signaling pathways with genetic germline alterations in CVID. We aimed to explore the genomic substrate shared between these entities to better characterize the CVID phenotype immunodeficiency in NHL. By means of an in-silico approach, we interrogated the large, publicly available datasets contained in cBioPortal for the presence of genes associated with genetic pathogenic variants in a panel of 50 genes recurrently altered in CVID and previously described as causative or disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available for analysis harbored variants of the CVID spectrum, with the most recurrent alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway analysis of common gene alterations showed enrichment in inflammatory, immune surveillance, and defective DNA repair mechanisms similar to those affected in CVID, with PIK3R1 appearing as a central node in the protein interaction network. The co-occurrence of gene alterations was a frequent phenomenon. This study represents an attempt to identify common genomic grounds between CVID and NHL. Further prospective studies are required to better know the role of genetic variants associated with CVID and their reflection on the somatic pathogenic variants responsible for cancer, as well as to characterize the CVID-like phenotype in NHL, with the potential to influence early CVID detection and therapeutic management.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Fernando Solano
- Department of Hematology, General University Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Hospital and University Center of Porto, Porto, Portugal
| | - Alberto Ocaña
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
24
|
Genetic and immunohistochemical profiling of NK/T-cell lymphomas reveals prognostically relevant BCOR-MYC association. Blood Adv 2022; 7:178-189. [PMID: 35882439 PMCID: PMC9837655 DOI: 10.1182/bloodadvances.2022007541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is an Epstein-Barr virus-positive, aggressive lymphoma with a heterogeneous cell of origin and variable clinical course. Several clinical prognostic indices have been proposed for ENKTL; however, there are few pathological biomarkers. This multi-institutional study sought to identify histologically assessable prognostic factors. We investigated mutation profiles by targeted next-generation sequencing (NGS) and immunohistochemical assessments of expression of MYC, Tyr705-phosphorylated (p-)STAT3, and CD30 in 71 ENKTL samples. The median age of the patients was 66 years (range, 6-100). The most frequent mutations were in STAT3 (27%), JAK3 (4%), KMT2D (19%), TP53 (13%), BCOR (10%), and DDX3X (7%). Immunohistochemistry (IHC) revealed that ENKTLs with STAT3 mutations exhibited higher expression of pSTAT3 and CD30. BCOR mutations were associated with increased MYC expression. Univariate analysis in the entire cohort showed that stage (II, III, or IV), BCOR mutations, TP53 mutations, and high MYC expression (defined as ≥40% positive neoplastic cells) were associated with reduced overall survival (OS). Multivariate modeling identified stage (II, III, or IV) and high MYC expression as independent adverse prognostic factors. In a subgroup analysis of patients treated with anthracycline (AC)-free chemotherapy and/or radiotherapy (RT) with curative intent, BCOR but not high MYC expression was an independent adverse prognostic factor. In conclusion, activating STAT3 mutations are common in ENKTLs and are associated with increased CD30 expression. MYC overexpression is, at least in part, associated with deleterious BCOR mutations, and this BCOR-MYC linkage may have prognostic significance, underscoring the potential utility of IHC for MYC in risk stratification of patients with ENKTL.
Collapse
|
25
|
Silconi ZB, Rosic V, Benazic S, Radosavljevic G, Mijajlovic M, Pantic J, Ratkovic ZR, Radic G, Arsenijevic A, Milovanovic M, Arsenijevic N, Milovanovic J. The Pt(S-pr-thiosal)2 and BCL1 Leukemia Lymphoma: Antitumor Activity In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23158161. [PMID: 35897737 PMCID: PMC9332548 DOI: 10.3390/ijms23158161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
B cell malignancies are, despite the development of targeted therapy in a certain percentage of the patients still a chronic disease with relapses, requiring multiple lines of therapy. Regimens that include platinum-based drugs provide high response rates in different B cell lymphomas, high-risk chronic lymphocytic leukemia (CLL), and devastating complication of CLL, Richter’s syndrome. The aim of this study was to explore the potential antitumor activity of previously synthetized platinum(IV) complex with alkyl derivatives of thyosalicilc acid, PtCl2(S-pr-thiosal)2, toward murine BCL1 cells and to delineate possible mechanisms of action. The PtCl2(S-pr-thiosal)2 reduced the viability of BCL1 cells in vitro but also reduced the growth of metastases in the leukemia lymphoma model in BALB/c mice. PtCl2(S-pr-thiosal)2 induced apoptosis, inhibited proliferation of BCL1 cells, and induced cell cycle disturbance. Treatment of BCL1 cells with PtCl2(S-pr-thiosal)2 inhibited expression of cyclin D3 and cyclin E and enhanced expression of cyclin-dependent kinase inhibitors p16, p21, and p27 resulting in cell cycle arrest in the G1 phase, reduced the percentage of BCL1 cells in the S phase, and decreased expression of Ki-67. PtCl2(S-pr-thiosal)2 treatment reduced expression of phosphorylated STAT3 and downstream-regulated molecules associated with cancer stemness and proliferation, NANOG, cyclin D3, and c-Myc, and expression of phosphorylated NFκB in vitro and in vivo. In conclusion, PtCl2(S-pr-thiosal)2 reduces STAT3 and NFκB phosphorylation resulting in inhibition of BCL1 cell proliferation and the triggering of apoptotic cell death.
Collapse
Affiliation(s)
| | - Vesna Rosic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sasa Benazic
- Department of Transfusiology, Pula General Hospital, 52100 Pula, Croatia;
| | - Gordana Radosavljevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marina Mijajlovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Jelena Pantic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Zoran R. Ratkovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gordana Radic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marija Milovanovic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Jelena Milovanovic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
- Correspondence: ; Tel.: +381-3430-6800
| |
Collapse
|
26
|
Gao Y, Feng X, Song W, Li H, Shi C, Jin M, Li Z, Zhang L, Zhang M. The potential efficacy and mechanism of bendamustine in entra-nodal NK/T cell lymphoma. Hematol Oncol 2022; 40:678-688. [PMID: 35439335 DOI: 10.1002/hon.3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 04/18/2022] [Indexed: 01/10/2023]
Abstract
Bendamustine has been shown to have anti-tumor activities in hematological malignancies, but the role of bendamustine in natural killer (NK)/T cell lymphoma (NKTCL) treatment is unclear. Our study has shown that bendamustine had potent growth-inhibitory and apoptosis-inducing effects on NKTCL cells. Interestingly, we noticed that the combination of either gemcitabine or etoposide results in additive or synergistic cytotoxicity. Bendamustine induced mitochondria-mediated apoptosis in concentration- and time-dependent manners in NKTCL cells, shown as down-regulation of Bcl-2 and activation of cleavage of caspases 3, 7, 9 and poly adenosinediphosphate-ribose polymerase (PARP). Bendamustine arrested NKTCL cells in G2/M phase, with downregulation of expression of cyclin B1 and upregulation of expression of p-cdc2, p-cdc25c and p-P53. Furthermore, we confirmed that bendamustine activated DNA damage response (DDR) directly or through Ataxia Telangiectasia Mutated Protein (ATM)/Chk2 and ATR/Chk1 pathway and increased the intracellular reactive oxygen species (ROS) level in NKTCL cells, which caused G2/M phase arrest and apoptosis. Bendamustine also inhibited phosphorylation of transcriptional factor STAT3, contributing to cell apoptosis and proliferation inhibition. Finally, we verified the effect of bendamustine on NKTCL cells in vivo. It showed that bendamustine dramatically inhibited the growth of the subcutaneous tumor, with no obvious impact on mice weight. These findings demonstrate that bendamustine activates DDR pathway, induces the accumulation of intracellularROS level as well as inhibition of STAT3, leading to cell apoptosis and G2/M cell cycle arrest in NKTCL cells, which indicates that bendamustine dramatically suppressed NKTCL both in vitro and in vivo and provides a potential therapeutic strategy in the treatment of NK/T lymphoma.
Collapse
Affiliation(s)
- Yuyang Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Cunzhen Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Mengyuan Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Secco B, Saitoski K, Drareni K, Soprani A, Pechberty S, Rachdi L, Venteclef N, Scharfmann R. Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells 2022; 11:cells11060924. [PMID: 35326375 PMCID: PMC8946101 DOI: 10.3390/cells11060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-βH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-βH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity.
Collapse
Affiliation(s)
- Blandine Secco
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Kevin Saitoski
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
| | - Antoine Soprani
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
- Clinique Geoffroy Saint-Hilaire, Ramsey General de Santé, 75005 Paris, France
| | - Severine Pechberty
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Latif Rachdi
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
| | - Raphaël Scharfmann
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
- Correspondence: ; Tel.: +(33)-1-76-53-55-68
| |
Collapse
|
28
|
El-Tanani M, Al Khatib AO, Aladwan SM, Abuelhana A, McCarron PA, Tambuwala MM. Importance of STAT3 signalling in cancer, metastasis and therapeutic interventions. Cell Signal 2022; 92:110275. [PMID: 35122990 DOI: 10.1016/j.cellsig.2022.110275] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
The Signal Transducer and Activator of Transcription 3 (STAT3) protein is encoded on chromosome 17q21. The SH2 and the DNA binding domains are critical structural components of the protein, together with tyrosine and serine residues that initiate phosphorylation. STAT3 interacts with DNA directly and functions in cells as both a signal transducer and a transcription factor. Its cytoplasmic activation results in dimerisation and nuclear translocation, where it is involved in the transcription of a large number of target genes. STAT3 is hyperactive in cancer cells as a result of upstream STAT3 mutations or enhanced cytokine production in the tumour environment. The STAT3 signalling pathway promotes many hallmarks of carcinogenesis and metastasis, including enhanced cell proliferation and survival, as well as migration and invasion into the extracellular matrix. Recent investigations into novel STAT3-based therapies describe a range of innovative approaches, such as the use of novel oligonucleotide drugs. These limit STAT3 binding to its target genes by attaching to SH2 and DNA-binding domains. Yet, despite these significant steps in understanding the underpinning mechanisms, there are currently no therapeutic agents that addresses STAT3 signalling in a clinically relevant manner.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.
| | - Arwa Omar Al Khatib
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom
| | - Safwan Mahmoud Aladwan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom
| | - Ahmed Abuelhana
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom..
| |
Collapse
|
29
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
30
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
31
|
Jin X, Chen L, Zhou N, Ni H, Zu L, He J, Yang L, Zhu Y, Sun X, Li X, Xu S. LRMP Associates With Immune Infiltrates and Acts as a Prognostic Biomarker in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:711928. [PMID: 34901148 PMCID: PMC8661541 DOI: 10.3389/fmolb.2021.711928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Lymphoid-restricted membrane protein (LRMP) is an endoplasmic reticulum-associated protein that is expressed in a developmentally regulated manner in both B and T cell lineages. However, the role of LRMP in the growth, prognosis and immune infiltration in lung adenocarcinoma (LUAD) remains unclear. Method: The expression levels of LRMP mRNA in tumor and normal tissues were analyzed using Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2). LRMP protein expression was examined using the Human Protein Atlas. In vitro experiments, including qRT-PCR Western blot and immunohistochemistry staining were also performed to investigate LRMP expression. GEPIA2 and Kaplan-Meier plotter databases were used to analyze the clinical prognostic significance of LRMP. To further confirm the underlying function of LRMP, the data were analyzed using gene set enrichment analysis. Moreover, we also constructed plasmids to overexpress LRMP and explored the effect of LRMP in A549 cell line. Additionally, Tumor Immune single-cell Hub was used to investigate the distribution of LRMP in the LUAD immune microenvironment; TIMER and CIBERSORT were used to investigate the relationships among LRMP, LRMP co-expressed genes, and tumor-infiltrating immune cells; Finally, the correlations between LRMP and immune checkpoints were analyzed using TIMER 2.0. Results: The expression of LRMP was significantly lower in LUAD tissues and cell lines. High LRMP expression is associated with a better prognosis in patients with LUAD. In vitro experimental studies demonstrated that overexpression of LRMP could decrease the proliferation, migration and invasion in A549 cells, and downregulated multiple oncogenic signaling pathways, including p-STAT3, p-PI3K-p-AKT, p-MEK and EMT pathways. GSEA results showed that immuno-related and cell adhesion pathways were enriched in samples with high LRMP expression. LRMP and its co-expressed genes were positively correlated with various tumor-infiltrating immune cells and their markers. Additionally, LRMP positively correlated with immune checkpoints. Conclusions: Our data suggest that LRMP may act as a tumor suppressor gene and indicates a better prognosis. Moreover, LRMP is associated with immune infiltrates which may be involved in immunotherapy response in LUAD. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Liwei Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Ni
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinling He
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingqi Yang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyue Sun
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
33
|
Tu DY, Zhang M, Yin WJ, Xu LY, Sang W, Li ZY, Xu KL. [Effects of L-asparaginase on proliferation, cell cycle and apoptosis of Burkitt lymphoma cell lines]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:930-938. [PMID: 35045655 PMCID: PMC8763592 DOI: 10.3760/cma.j.issn.0253-2727.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Objective: To investigate the effect of L-asparaginase on the proliferation, cell cycle, and apoptosis of Burkitt lymphoma cell lines and explore the molecular mechanism. Methods: The effect of L-asparaginase on the cell proliferation of Burkitt lymphoma cell lines was detected using the CCK-8 method. The apoptosis rate and cell cycle were detected using flow cytometry. The expression of related molecules in cell cycle, apoptosis, autophagy, and PI3K/Akt/mTOR signaling pathway was detected and analyzed using qPCR and Western blot assay. Results: L-asparaginase significantly inhibited the proliferation of Burkitt lymphoma cell lines and caused cell cycle arrest at G(0)/G(1) phage. L-asparaginase induced cell apoptosis and autophagy in Burkitt lymphoma cell lines. Further results showed that L-asparaginase inhibited the expression of c-Myc and also inhibited the expression of p-PI3K, p-Akt-S473, p-mTOR, p-70S6K, and p-4E-BP1. Combining PI3K inhibitor LY294002 with L-asparaginase further induced apoptosis. Additionally, L-Asp inhibited STAT and ERK signaling pathways. Conclusion: L-asparaginase inhibited Burkitt lymphoma cell proliferation, arrested cell cycle, activated autophagy, and induced apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- D Y Tu
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China Department of Cardiology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng 224000, China
| | - M Zhang
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - W J Yin
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - L Y Xu
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - W Sang
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Z Y Li
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - K L Xu
- Institute of Hematology, Xuzhou Medical University, Cell Research and Transformation Center, Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
34
|
Li B, Wan Q, Li Z, Chng WJ. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers (Basel) 2021; 13:cancers13205147. [PMID: 34680295 PMCID: PMC8533975 DOI: 10.3390/cancers13205147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Janus kinases (JAKs) are transmembrane receptors that pass signals from extracellular ligands to downstream. Increasing evidence has suggested that JAK family aberrations promote lymphoid cancer pathogenesis and progression through mediating gene expression via the JAK/STAT pathway or noncanonical JAK signaling. We are here to review how canonical JAK/STAT and noncanonical JAK signalings are represented and deregulated in lymphoid malignancies and how to target JAK for therapeutic purposes. Abstract The Janus kinase (JAK) family are known to respond to extracellular cytokine stimuli and to phosphorylate and activate signal transducers and activators of transcription (STAT), thereby modulating gene expression profiles. Recent studies have highlighted JAK abnormality in inducing over-activation of the JAK/STAT pathway, and that the cytoplasmic JAK tyrosine kinases may also have a nuclear role. A couple of anti-JAK therapeutics have been developed, which effectively harness lymphoid cancer cells. Here we discuss mutations and fusions leading to JAK deregulations, how upstream nodes drive JAK expression, how classical JAK/STAT pathways are represented in lymphoid malignancies and the noncanonical and nuclear role of JAKs. We also summarize JAK inhibition therapeutics applied alone or synergized with other drugs in treating lymphoid malignancies.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
- Correspondence: or (Z.L.); (W.-J.C.)
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: or (Z.L.); (W.-J.C.)
| |
Collapse
|
35
|
Xu L, Qin Y, Liu M, Jiao J, Tu D, Zhang M, Yan D, Song X, Sun C, Zhu F, Wang X, Sang W, Xu K. The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma. Anticancer Agents Med Chem 2021; 22:1530-1540. [PMID: 34503423 DOI: 10.2174/1871520621666210908103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extranodal natural killer/T cell lymphoma (ENKTL) is an aggressive malignant non-Hodgkin's lymphoma (NHL) with a poor prognosis. Therefore, novel therapeutic biomarkers and agents must be identified for the same. KAT5 inhibitor, NU 9056, is a small molecule that can inhibit cellular proliferation; however, its role in ENKTL has not been studied. OBJECTIVE The present study investigated the effect of NU 9056 in ENKTL cells and explored the possible molecular mechanism for its antitumour effect. METHODS The role of NU 9056 in ENKTL cells was investigated through the Cell Counting Kit-8 assay, flow cytometry, Western blot, and real-time quantitative polymerase chain reaction assay. RESULTS NU 9056 inhibited ENKTL cell proliferation and induced G2/M phase arrest. NU 9056 also induced apoptosis by upregulating DR4, DR5, and caspase 8 expressions. Additionally, NU 9056 increased the expression of Bax, Bid, and cytochrome C and decreased the expression of Bcl-2, Mcl-1, and XIAP. Furthermore, NU 9056 activated endoplasmic reticulum (ER) stress and inhibited the JAK2/STAT3 signalling pathway. The p38 mitogen-activated protein kinase (MAPK) signalling pathway was also activated by NU 9056, and the ERK signalling pathway was suppressed in natural killer/T cell lymphoma cells. CONCLUSION NU 9056 inhibited cell proliferation, arrested cell cycle in the G2/M phase, and induced apoptosis through the stimulation of ER stress, thus inhibiting the JAK2/STAT3 signalling pathway and regulating MAPK pathways in ENKTL cells.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongyun Tu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Meng Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Xiangmin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu. China
| |
Collapse
|
36
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Sun PM, Zhang T, Sun HW, Zhou JL, Yang JW, Yang HM, Li ZP, Cui Y. Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2648065. [PMID: 34195260 PMCID: PMC8214476 DOI: 10.1155/2021/2648065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - He-Ming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| |
Collapse
|
37
|
Ramis-Zaldivar JE, Gonzalez-Farre B, Nicolae A, Pack S, Clot G, Nadeu F, Mottok A, Horn H, Song JY, Fu K, Wright G, Gascoyne RD, Chan WC, Scott DW, Feldman AL, Valera A, Enjuanes A, Braziel RM, Smeland EB, Staudt LM, Rosenwald A, Rimsza LM, Ott G, Jaffe ES, Salaverria I, Campo E. MAP-kinase and JAK-STAT pathways dysregulation in plasmablastic lymphoma. Haematologica 2021; 106:2682-2693. [PMID: 33951889 PMCID: PMC8485662 DOI: 10.3324/haematol.2020.271957] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is an aggressive B-cell lymphoma with an immunoblastic/large cell morphology and plasmacytic differentiation. The differential diagnosis with Burkitt lymphoma (BL), plasma cell myeloma (PCM) and some variants of diffuse large B-cell lymphoma (DLBCL) may be challenging due to the overlapping morphological, genetic and immunophenotypic features. Furthermore, the genomic landscape in PBL is not well known. To characterize the genetic and molecular heterogeneity of these tumors, we investigated thirty-four PBL using an integrated approach, including fluorescence in situ hybridization, targeted sequencing of 94 B-cell lymphoma related genes, and copy-number arrays. PBL were characterized by high genetic complexity including MYC translocations (87%), gains of 1q21.1-q44, trisomy 7, 8q23.2-q24.21, 11p13-p11.2, 11q14.2-q25, 12p and 19p13.3-p13.13, losses of 1p33, 1p31.1-p22.3, 13q and 17p13.3-p11.2, and recurrent mutations of STAT3 (37%), NRAS and TP53 (33%), MYC and EP300 (19%) and CARD11, SOCS1 and TET2 (11%). Pathway enrichment analysis suggested a cooperative action between MYC alterations and MAPK (49%) and JAK-STAT (40%) signaling pathways. Of note, EBVnegative PBL cases had higher mutational and copy-number load and more frequent TP53, CARD11 and MYC mutations, whereas EBV-positive PBL tended to have more mutations affecting the JAK-STAT pathway. In conclusion, these findings further unravel the distinctive molecular heterogeneity of PBL identifying novel molecular targets and the different genetic profile of these tumors related to EBV infection.
Collapse
Affiliation(s)
- Joan Enric Ramis-Zaldivar
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Blanca Gonzalez-Farre
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Alina Nicolae
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Svetlana Pack
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Guillem Clot
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Anja Mottok
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - George Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Randy D Gascoyne
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte
| | - David W Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Alexandra Valera
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Anna Enjuanes
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Rita M Braziel
- Department of Clinical Pathology, Oregon Health and Science University, Oregon
| | - Erlend B Smeland
- Department of Immunology and Centre for Cancer Biomedicine, University of Oslo and Oslo University Hospital, Oslo
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda
| | | | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Itziar Salaverria
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.
| |
Collapse
|
38
|
Flores-Fernández R, Aponte-López A, Suárez-Arriaga MC, Gorocica-Rosete P, Pizaña-Venegas A, Chávez-Sanchéz L, Blanco-Favela F, Fuentes-Pananá EM, Chávez-Rueda AK. Prolactin Rescues Immature B Cells from Apoptosis-Induced BCR-Aggregation through STAT3, Bcl2a1a, Bcl2l2, and Birc5 in Lupus-Prone MRL/lpr Mice. Cells 2021; 10:cells10020316. [PMID: 33557010 PMCID: PMC7913714 DOI: 10.3390/cells10020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
Self-reactive immature B cells are eliminated through apoptosis by tolerance mechanisms, failing to eliminate these cells results in autoimmune diseases. Prolactin is known to rescue immature B cells from B cell receptor engagement-induced apoptosis in lupus-prone mice. The objective of this study was to characterize in vitro prolactin signaling in immature B cells, using sorting, PCR array, RT-PCR, flow cytometry, and chromatin immunoprecipitation. We found that all B cell maturation stages in bone marrow express the prolactin receptor long isoform, in both wild-type and MRL/lpr mice, but its expression increased only in the immature B cells of the latter, particularly at the onset of lupus. In these cells, activation of the prolactin receptor promoted STAT3 phosphorylation and upregulation of the antiapoptotic Bcl2a1a, Bcl2l2, and Birc5 genes. STAT3 binding to the promoter region of these genes was confirmed through chromatin immunoprecipitation. Furthermore, inhibitors of prolactin signaling and STAT3 activation abolished the prolactin rescue of self-engaged MRL/lpr immature B cells. These results support a mechanism in which prolactin participates in the emergence of lupus through the rescue of self-reactive immature B cell clones from central tolerance clonal deletion through the activation of STAT3 and transcriptional regulation of a complex network of genes related to apoptosis resistance.
Collapse
Affiliation(s)
- Rocio Flores-Fernández
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Angélica Aponte-López
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Mayra C. Suárez-Arriaga
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Patricia Gorocica-Rosete
- Departamento de Investigación en Bioquímica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosió Villegas”, Mexico City 14080, Mexico;
| | - Alberto Pizaña-Venegas
- Unidad de Investigación y Bioterio, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosió Villegas”, Mexico City 14080, Mexico;
| | - Luis Chávez-Sanchéz
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Francico Blanco-Favela
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Correspondence: or (E.M.F.-P.); or (A.K.C.-R.); Tel.: +52-5544349663 (E.M.F.-P.); +52-555627694 (A.K.C.-R.)
| | - Adriana K. Chávez-Rueda
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
- Correspondence: or (E.M.F.-P.); or (A.K.C.-R.); Tel.: +52-5544349663 (E.M.F.-P.); +52-555627694 (A.K.C.-R.)
| |
Collapse
|
39
|
Hu X, Ma R, Cao J, Du X, Cai X, Fan Y. PTPN2 negatively regulates macrophage inflammation in atherosclerosis. Aging (Albany NY) 2020; 13:2768-2779. [PMID: 33411686 PMCID: PMC7880395 DOI: 10.18632/aging.202326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease. Systemic inflammation is one important characteristic in atherosclerosis. Pro-inflammatory macrophages can secrete inflammatory factors and promote the inflammation of atherosclerosis. It has a great value for the treatment of atherosclerosis by inhibiting the release of inflammatory factors in macrophages. However, the detailed mechanism of this process is still unclear. In this study, we constructed an APOE-/- mice model of atherosclerosis to research the molecular mechanism of atherosclerosis. Protein tyrosine phosphatase non-receptor type 2 (PTPN2), an anti-inflammatory gene, was dramatically decreased in inflammatory mice. Deletion of PTPN2 could significantly induce monocytes toward M1 phenotype of macrophages, enhance the secretion of IL-12 and IL-1, and promote cell proliferation, invasion and metastasis. Mechanism research showed that PTPN2-mediated p65/p38/STAT3 de-phosphorylation could block the process of macrophage inflammation. In vivo experiments showed that PTPN2 may effectively inhibit the inflammatory response during atherosclerosis. In conclusion, we uncovered the negative role of PTPN2 in the occurrence of atherosclerosis, and this study provides a new potential target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ruisong Ma
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianjin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, JiangXi, China
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Clinicopathologic significance of MYD88 L265P mutation and expression of TLR4 and P-STAT3 in primary central nervous system diffuse large B-cell lymphomas. Brain Tumor Pathol 2020; 38:50-58. [PMID: 33079297 DOI: 10.1007/s10014-020-00386-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Patients with primary central nervous system lymphoma (PCNSL) have a prognosis poorer than that of systemic lymphoma patients. In patients with this condition, TLR4/STAT3 pathway alterations and the MYD88 L265P mutation may be viable targets for therapeutic intervention. The present study was, therefore, designed to identify clinicopathologic correlates of MYD88 mutations and TLR4/STAT3 pathway alterations in PCNSL. We detected TLR4 and p-STAT3 in 41.5% (22/53) and 43.4% (23/53) of PCNSL patients, respectively, while 60.4% of these patients (32/53) were found to harbor the MYD88 L265P mutation. TLR4 expression was found to be significantly associated with the presence of multiple brain lesions, while p-STAT3 expression was significantly linked to advanced age, the presence of multiple brain lesions, non-GCB histological findings, and non-CR status. The presence of the MYD88 L265P mutation was significantly linked to advanced age, the presence of multiple brain lesions, and DLBCL molecular subtype. Multivariate analyses additionally confirmed that elevated TLR4 and p-STAT3 expression levels are associated with a poorer PCNSL patient prognosis. Based on these findings, we hypothesize that signaling through the TLR4/MYD88/STAT3 pathway plays a key role in the pathogenesis of PCNSL.
Collapse
|
41
|
Lian J, Liu C, Guan X, Wang B, Yao Y, Su D, Ma Y, Fang L, Zhang Y. Ubiquitin specific peptidase 5 enhances STAT3 signaling and promotes migration and invasion in Pancreatic Cancer. J Cancer 2020; 11:6802-6811. [PMID: 33123271 PMCID: PMC7592018 DOI: 10.7150/jca.48536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose: Ubiquitin specific peptidase 5 (USP5) has been reported to promote the progression of several malignant tumors. It may affect cancer development via modulating cell cycle and colony formation. In pancreatic cancer, the biological function of USP5, especially in migration and invasion remains unclear. Methods: USP5 protein expression levels in primary pancreatic cancer and lymph node metastasis tissues were detected using immunohistochemistry (IHC). χ2 test, Kaplan-Meier analysis, univariate and multivariate analyses were used to evaluate the relationship between USP5 expression and clinicopathological feature. RT-qPCR were carried out to quantitate the mRNA expression levels of USP5 in pancreatic cancer cell lines. CCK8 and Colony formation assay were performed to prove how USP5 works in proliferation. Evaluation of tumor metastasis was made by Transwell and wound healing assay. EMT and STAT3 signaling related markers were detected by western blot. Results: (1) USP5 protein expression levels were related to tumor differentiation, CEA and CA19-9 level. (2) Univariate and multivariate analyses showed that high USP5 expression is an unfavorable prognostic factor for pancreatic cancer. Kaplan-Meier analysis directly indicated that patients with high USP5 expression had shorter overall survival. (3) Increased USP5 expression is related to pancreatic cancer in both proliferation and metastasis. (4) USP5 was proved to mediate STAT3 signaling in pancreatic cancer cells. Conclusions: The results suggest that USP5 is highly expressed and might have clinical significance for pancreatic cancer patients. High USP5 expression promotes both progression and metastasis by activating STAT3 signaling. Thus, USP5 might be a potential target in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jie Lian
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| |
Collapse
|
42
|
Na HH, Moon S, Kim KC. Knockout of SETDB1 gene using the CRISPR/cas-9 system increases migration and transforming activities via complex regulations of E-cadherin, β-catenin, STAT3, and Akt. Biochem Biophys Res Commun 2020; 533:486-492. [PMID: 32972752 DOI: 10.1016/j.bbrc.2020.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
SETDB1 HMTase participates in various cellular processes via epigenetic transcriptional regulation. SETDB1 expression is downregulated by anticancer drug treatment in cancer cells, but we still need to verify the functional significance on SETDB1 downregulation. CRISPR/cas9 is a useful technology for doing a knockout (KO) of a target gene. It is widely used to examine the function of genes. In this study, we prepared SETDB1-KO from A549 human lung cancer cells using the CRISPR/Cas9 system, and we compared molecular changes between the A549 cells and the SETDB1-KO cells. The SETDB1-KO cell proliferation rate was slightly decreased as compared to the A549 cells, but there was no large difference in sensitivity with doxorubicin treatment. Instead, the migration activity and transforming activity were dramatically increased in SETDB-KO cells. Using a western blot analysis and an immunostaining experiment, we confirmed that SETDB1-KO downregulates the expression of E-cadherin and β-catenin. A qPCR and an RT-PCR analysis suggested that SETDB1 transcriptionally regulates E-cadherin and β-catenin. Moreover, E-cadherin expression was also detected in the cytoplasmic region of SETDB1-KO cells, indicating that functional localization of E-cadherin might be changed in SETDB1-KO cells. On the other hand, total levels of STAT3 and Akt were increased in the SETDB1-KO cells, but activation of STAT3 (pSTAT3) was not induced in doxorubicin-treated SETDB1-KO cells. SETDB1 overexpression into SETDB1-KO cells restores the expression of E-cadherin, β-catenin, STAT3, and Akt, suggesting that those proteins are tightly regulated by SETDB1. Collectively, we suggest that complex regulations on E-cadherin, β-catenin, STAT3, and Akt are correlated with the increased migration and transforming activity of SETDB1-KO cells.
Collapse
Affiliation(s)
- Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sungjin Moon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
43
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
44
|
Brooks AJ, Putoczki T. JAK-STAT Signalling Pathway in Cancer. Cancers (Basel) 2020; 12:cancers12071971. [PMID: 32698360 PMCID: PMC7409105 DOI: 10.3390/cancers12071971] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andrew J. Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Qld 4072, Australia
- Correspondence:
| | - Tracy Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
| |
Collapse
|
45
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
46
|
Teramo A, Barilà G, Calabretto G, Vicenzetto C, Gasparini VR, Semenzato G, Zambello R. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. Front Oncol 2020; 10:152. [PMID: 32133291 PMCID: PMC7040228 DOI: 10.3389/fonc.2020.00152] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic proliferation of clonal cytotoxic lymphocytes, usually presenting with cytopenias and yet lacking a specific therapy. The disease is heterogeneous, including different subsets of patients distinguished by LGL immunophenotype (CD8+ Tαβ, CD4+ Tαβ, Tγδ, NK) and the clinical course of the disease (indolent/symptomatic/aggressive). Even if the etiology of LGLL remains elusive, evidence is accumulating on the genetic landscape driving and/or sustaining chronic LGL proliferations. The most common gain-of-function mutations identified in LGLL patients are on STAT3 and STAT5b genes, which have been recently recognized as clonal markers and were included in the 2017 WHO classification of the disease. A significant correlation between STAT3 mutations and symptomatic disease has been highlighted. At variance, STAT5b mutations could have a different clinical impact based on the immunophenotype of the mutated clone. In fact, they are regarded as the signature of an aggressive clinical course with a poor prognosis in CD8+ T-LGLL and aggressive NK cell leukemia, while they are devoid of negative prognostic significance in CD4+ T-LGLL and Tγδ LGLL. Knowing the specific distribution of STAT mutations helps identify the discrete mechanisms sustaining LGL proliferations in the corresponding disease subsets. Some patients equipped with wild type STAT genes are characterized by less frequent mutations in different genes, suggesting that other pathogenetic mechanisms are likely to be involved. In this review, we discuss how the LGLL mutational pattern allows a more precise and detailed tumor stratification, suggesting new parameters for better management of the disease and hopefully paving the way for a targeted clinical approach.
Collapse
Affiliation(s)
- Antonella Teramo
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Vanessa Rebecca Gasparini
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|