1
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Lu J, Fu B, Zhu Z, Yan C, Guan F, Wang P, Yu P. Enhancing the production of L-proline in recombinant Escherichia coli BL21 by metabolic engineering. Prep Biochem Biotechnol 2024:1-9. [PMID: 38984870 DOI: 10.1080/10826068.2024.2378104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
L-proline is widely used in the fields of food, medicine and agriculture, and is also an important raw material for the synthesis of trans-4-hydroxy-L-proline. In this study, enhancing the production of L-proline by metabolic engineering was investigated. Three genes, proB, proA and proC, were introduced into Escherichia coli BL21 by molecular biology technology to increase the metabolic flow of L-proline from glucose. The genes putP and proP related to the proline transfer were knocked out by CRISPR/Cas9 gene editing technology to weaken the feedback inhibition of proB to increase the production of L-proline. The fermentation curves of the engineered strain at different glucose concentrations were determined, and a glucose concentration of 10 g/L was chosen to expand the batch culture to 1 L shake flask. Ultimately, through these efforts, the titer of L-proline reached 832.19 mg/L in intermittent glucose addition fermentation in a 1 L shake flask.
Collapse
Affiliation(s)
- Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, People's Republic of China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Chuyang Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Fuyao Guan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Peize Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Sapna S, Jain P, Sharma A, Hora R, Sharma H, Karuveettil V. Prevalence and incidence of oral cancer and pre-cancerous lesions in indigenous populations: a systematic review protocol. JBI Evid Synth 2024; 22:1177-1186. [PMID: 38372044 DOI: 10.11124/jbies-23-00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
OBJECTIVE This review will determine the prevalence and incidence of oral cancer and pre-cancerous lesions in indigenous populations. INTRODUCTION There are approximately 476 million indigenous individuals worldwide. Oral cancer affected over 350,000 people globally in 2018, with approximately 80% of cases occurring in the indigenous population. Moreover, the incidence of pre-cancerous lesions is high in this population, accounting for 48.3%. Limited evidence exists regarding the burden of oral cancer among indigenous populations despite research on oral health disparities in this group. INCLUSION CRITERIA Studies on the burden of oral cancer and pre-cancerous lesions in indigenous groups, considering rates, ratios (prevalence or mortality), or survival proportions, will be considered for inclusion. There will be no limitations on study design, language, age, gender, or geography. We will exclude studies that only identify, diagnose, or screen oral cancer and pre-cancerous lesions without mentioning prevalence and incidence. METHODS This review will follow the JBI methodology for systematic reviews of prevalence and incidence. Databases to be searched will include MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCOhost), Cochrane Central Register of Controlled Trials, Scopus, and Dentistry and Oral Sciences Source (EBSCOhost). ProQuest Dissertations and Theses, OAIster, International Association for Dental Research conference abstracts, Google Scholar, government reports, and cancer registry reports will also be screened for unpublished studies. Two reviewers will independently screen articles, and data will be extracted using a customized form. Narrative data synthesis will be conducted and, where appropriate, meta-analysis will be performed. Methodological quality will be assessed using JBI's critical appraisal tool for prevalence studies. REVIEW REGISTRATION PROSPERO CRD42023402858.
Collapse
Affiliation(s)
- Swati Sapna
- Independent Researcher, Calgary, Alberta, Canada
| | - Praneetha Jain
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangalore, Karnataka, India
| | - Amrit Sharma
- Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | | | - Vineetha Karuveettil
- Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Amrita Centre for Evidence-Based Oral Health: A JBI Affiliated Group, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
4
|
Xi X, Zhang M, Li Y, Wang X. Identification of PRODH as a mitochondria- and angiogenesis-related biomarker for lung adenocarcinoma. Transl Cancer Res 2024; 13:2073-2093. [PMID: 38881931 PMCID: PMC11170523 DOI: 10.21037/tcr-23-2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/14/2024] [Indexed: 06/18/2024]
Abstract
Background Proline dehydrogenase (PRODH) encodes a mitochondrial protein that catalyzes the first step of proline degradation and is related to angiogenesis. Angiogenesis is a critical process in the development and progression of tumors, including lung adenocarcinoma (LUAD), as tumor growth and metastasis are dependent on angiogenesis. The mitochondria and their associated genes thus play a vital role in tumor therapy. However, the specific mechanism of action of PRODH in LUAD is not yet clear. The aim of this study was thus to clarify the specific mechanism of PRODH as a mitochondrial gene in LUAD. Methods This study identified genes related to mitochondria and angiogenesis in LUAD. Based on the high and low expression of the genes in LUAD, we grouped them and conducted relevant bioinformatics analysis on the differentially expressed genes. Results We screened genes related to mitochondria and angiogenesis in the differential genes of LUAD, and identified PRODH as a gene of interest. The expression of PRODH was associated with the survival outcome of patients with LUAD. Additionally, PRODH was found to be associated with immune cell infiltration and tumor mutations. Conclusions Mitochondrial metabolism and angiogenesis may have significant therapeutic ramifications for patients with LUAD. We identified PRODH, a gene exerts a dual role in cancer. PRODH may be a prospective therapeutic target in LUAD and a possible diagnostic and prognostic biomarker associated with immune infiltration and tumor mutational burden.
Collapse
Affiliation(s)
- Xinran Xi
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Meng Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Yonghua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xianghai Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
5
|
Sawicka MM, Sawicki K, Jadeszko M, Bielawska K, Supruniuk E, Reszeć J, Prokop-Bielenia I, Polityńska B, Jadeszko M, Rybaczek M, Latoch E, Gorbacz K, Łysoń T, Miltyk W. Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue. Cancers (Basel) 2024; 16:456. [PMID: 38275897 PMCID: PMC10814259 DOI: 10.3390/cancers16020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted.
Collapse
Affiliation(s)
- Magdalena M. Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Karol Sawicki
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Marek Jadeszko
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Izabela Prokop-Bielenia
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Mateusz Jadeszko
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Magdalena Rybaczek
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Krzysztof Gorbacz
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| |
Collapse
|
6
|
Nazar NSBM, Ramanathan A, Ghani WMN, Rokhani FB, Jacob PS, Sabri NEB, Hassan MS, Kadir K, Dharmarajan L. Salivary metabolomics in oral potentially malignant disorders and oral cancer patients-a systematic review with meta-analysis. Clin Oral Investig 2024; 28:98. [PMID: 38225483 DOI: 10.1007/s00784-023-05481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to assess the diagnostic potential of salivary metabolomics in the detection of oral potentially malignant disorders (OPMDs) and oral cancer (OC). MATERIALS AND METHODS A systematic review was performed in accordance with the 3rd edition of the Centre for Reviews and Dissemination (CRD) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Electronic searches for articles were carried out in the PubMed, Web of Science, and Scopus databases. The quality assessment of the included studies was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS) and the new version of the QUADOMICS tool. Meta-analysis was conducted whenever possible. The effect size was presented using the Forest plot, whereas the presence of publication bias was examined through Begg's funnel plot. RESULTS A total of nine studies were included in the systematic review. The metabolite profiling was heterogeneous across all the studies. The expression of several salivary metabolites was found to be significantly altered in OPMDs and OCs as compared to healthy controls. Meta-analysis was able to be conducted only for N-acetylglucosamine. There was no significant difference (SMD = 0.15; 95% CI - 0.25-0.56) in the level of N-acetylglucosamine between OPMDs, OC, and the control group. CONCLUSION Evidence for N-acetylglucosamine as a salivary biomarker for oral cancer is lacking. Although several salivary metabolites show changes between healthy, OPMDs, and OC, their diagnostic potential cannot be assessed in this review due to a lack of data. Therefore, further high-quality studies with detailed analysis and reporting are required to establish the diagnostic potential of the salivary metabolites in OPMDs and OC. CLINICAL RELEVANCE While some salivary metabolites exhibit significant changes in oral potentially malignant disorders (OPMDs) and oral cancer (OC) compared to healthy controls, the current evidence, especially for N-acetylglucosamine, is inadequate to confirm their reliability as diagnostic biomarkers. Additional high-quality studies are needed for a more conclusive assessment of salivary metabolites in oral disease diagnosis.
Collapse
Affiliation(s)
- Nur Syahirah Binti Mohd Nazar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Wan Maria Nabillah Ghani
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faezah Binti Rokhani
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Pulikkotil Shaju Jacob
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Nurul Elma Binti Sabri
- Department of Agrotechnology and Bioscience, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia
| | - Mohd Sukri Hassan
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
7
|
Grossi S, Berno E, Chiofalo P, Chiaravalli AM, Cinquetti R, Bruno A, Palano MT, Gallazzi M, La Rosa S, Sessa F, Acquati F, Campomenosi P. Proline Dehydrogenase (PRODH) Is Expressed in Lung Adenocarcinoma and Modulates Cell Survival and 3D Growth by Inducing Cellular Senescence. Int J Mol Sci 2024; 25:714. [PMID: 38255788 PMCID: PMC10815008 DOI: 10.3390/ijms25020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The identification of markers for early diagnosis, prognosis, and improvement of therapeutic options represents an unmet clinical need to increase survival in Non-Small Cell Lung Cancer (NSCLC), a neoplasm still characterized by very high incidence and mortality. Here, we investigated whether proline dehydrogenase (PRODH), a mitochondrial flavoenzyme catalyzing the key step in proline degradation, played a role in NSCLC tumorigenesis. PRODH expression was investigated by immunohistochemistry; digital PCR, quantitative PCR, immunoblotting, measurement of reactive oxygen species (ROS), and functional cellular assays were carried out. PRODH expression was found in the majority of lung adenocarcinomas (ADCs). Patients with PRODH-positive tumors had better cancer-free specific and overall survival compared to those with negative tumors. Ectopic modulation of PRODH expression in NCI-H1299 and the other tested lung ADC cell lines decreased cell survival. Moreover, cell proliferation curves showed delayed growth in NCI-H1299, Calu-6 and A549 cell lines when PRODH-expressing clones were compared to control clones. The 3D growth in soft agar was also impaired in the presence of PRODH. PRODH increased reactive oxygen species production and induced cellular senescence in the NCI-H1299 cell line. This study supports a role of PRODH in decreasing survival and growth of lung ADC cells by inducing cellular senescence.
Collapse
Affiliation(s)
- Sarah Grossi
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Elena Berno
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Priscilla Chiofalo
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Anna Maria Chiaravalli
- Unità di Anatomia Patologica, Ospedale di Circolo e Fondazione Macchi, Via O. Rossi 9, 21100 Varese, Italy; (A.M.C.); (S.L.R.); (F.S.)
- Centro di Ricerca per lo Studio dei Tumori Eredo-Famigliari, Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Raffaella Cinquetti
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
| | - Antonino Bruno
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
- Laboratorio di Immunità Innata, Unità di Patologia Molecolare, Biochimica, e Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (M.T.P.); (M.G.)
- Centro di Ricerca per l’Invecchiamento di Successo (CRIS), Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Maria Teresa Palano
- Laboratorio di Immunità Innata, Unità di Patologia Molecolare, Biochimica, e Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (M.T.P.); (M.G.)
| | - Matteo Gallazzi
- Laboratorio di Immunità Innata, Unità di Patologia Molecolare, Biochimica, e Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (M.T.P.); (M.G.)
| | - Stefano La Rosa
- Unità di Anatomia Patologica, Ospedale di Circolo e Fondazione Macchi, Via O. Rossi 9, 21100 Varese, Italy; (A.M.C.); (S.L.R.); (F.S.)
- Centro di Ricerca per lo Studio dei Tumori Eredo-Famigliari, Università degli Studi dell’Insubria, 21100 Varese, Italy
- Dipartimento di Medicina e Innovazione Tecnologica, DIMIT, Università degli Studi dell’Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Fausto Sessa
- Unità di Anatomia Patologica, Ospedale di Circolo e Fondazione Macchi, Via O. Rossi 9, 21100 Varese, Italy; (A.M.C.); (S.L.R.); (F.S.)
- Dipartimento di Medicina e Innovazione Tecnologica, DIMIT, Università degli Studi dell’Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Francesco Acquati
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
- Centro di Ricerca per l’Invecchiamento di Successo (CRIS), Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Paola Campomenosi
- Dipartimento di Biotecnologie e Scienze della Vita, DBSV, Università degli Studi dell’Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (S.G.); (E.B.); (P.C.); (R.C.); (A.B.); (F.A.)
- Centro di Ricerca per l’Invecchiamento di Successo (CRIS), Università degli Studi dell’Insubria, 21100 Varese, Italy
| |
Collapse
|
8
|
Xu X, Zhang G, Chen Y, Xu W, Liu Y, Ji G, Xu H. Can proline dehydrogenase-a key enzyme involved in proline metabolism-be a novel target for cancer therapy? Front Oncol 2023; 13:1254439. [PMID: 38023181 PMCID: PMC10661406 DOI: 10.3389/fonc.2023.1254439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Emerging evidence suggests that proline metabolism is important for regulating the survival and death of different types of cancer cells. Proline dehydrogenase (PRODH), an enzyme catalyzing proline catabolism, and the degradation products of proline by PRODH, such as ATP and ROS, are known to play critical roles in cancer progression. Notably, the role of PRODH in cancer is still complicated and unclear, and primarily depends on the cancer type and tumor microenvironment. For instance, PRODH induces apoptosis and senescence through ROS signaling in different types of cancers, while as a protumor factor, PRODH promotes malignant phenotypes of certain tumors under stresses such as hypoxia. In order to assess whether PRODH can serve as a novel target for cancer therapy, we will provide an overview of the biological functions of PRODH and its double-edged role in cancer in this article.
Collapse
Affiliation(s)
- Xiangyuan Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijia Chen
- Department of Gynecology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weina Xu
- Shanghai Pudong New Area Zhoujiadu Community Health Service Center, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| |
Collapse
|
9
|
Mohi-Ud-Din R, Chawla A, Sharma P, Mir PA, Potoo FH, Reiner Ž, Reiner I, Ateşşahin DA, Sharifi-Rad J, Mir RH, Calina D. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28:345. [PMID: 37710280 PMCID: PMC10500791 DOI: 10.1186/s40001-023-01275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chemotherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A systematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to different therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promoting apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments and improve patient outcomes in a cost-effective manner.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, 190001, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Pooja Sharma
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Faheem Hyder Potoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 1982, 31441, Dammam, Saudi Arabia
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Reiner
- Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | | | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
10
|
Listiyana A, Kristanti RA, Aishaqeena AMF, Ahmad APM, Astari LF, Indradmojo C, Inayatilah FR. Effect of ethanol extract from Chrysanthemum cinerariifolium leaves on Ki-67 proliferation and dysplasia severity in a rat model of oral squamous cell carcinoma. Open Vet J 2023; 13:99-107. [PMID: 36777434 PMCID: PMC9897507 DOI: 10.5455/ovj.2023.v13.i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a malignant tumor that can rapidly infiltrate the oral epithelial tissue and cause high mortality worldwide because the available therapies are less effective. Chrysanthemum cinerariifolium leaf contains secondary metabolites as anti-inflammatory, antioxidant, anticancer, and antimutagenic. Aims The study aimed to analyze the ethanolic extract of C. cinerariifolium leaf in reducing proliferation (Ki-67) and the degree of dysplasia in OSCC rats. Methods This study used male Sprague Dawley induced by 7,12-dimethylbenz(a)anthracene (DMBA) 0.5% and divided into five treatment groups, namely positive control/C+ (sick), negative control/C- (healthy), and treatment group induced with DMBA and given extract C. cinerariifolium leaf with successive doses of T1, T2, and T3 (50, 100, and 200 mg/kg bw). The oral epithelium was stained with hematoxylin and eosin and immunohistochemically stained with a Ki-67 monoclonal antibody. The statistical analysis utilizes the one-way analysis of variance test. Results The results showed that T1 at a dose of 200 mg/kg bw could significantly reduce Ki-67 expression and the degree of oral epithelial dysplasia (OED; p < 0.05) close to healthy controls. Conclusion The conclusion shows that C. cinerariifolium leaf extract can be a therapy against OSCC by decreasing cell proliferation and the degree of OED.
Collapse
Affiliation(s)
- Anik Listiyana
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia,Corresponding Author: Anik Listiyana. Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia.
| | - Risma Aprinda Kristanti
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Al Mazida Fauzil Aishaqeena
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Anggun Putri Maulana Ahmad
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Lina Fitria Astari
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Christyaji Indradmojo
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| | - Fidia Rizkiah Inayatilah
- Department of Medical Education, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
| |
Collapse
|
11
|
Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J Cancer Res Clin Oncol 2022; 149:2095-2113. [PMID: 35876951 PMCID: PMC9310000 DOI: 10.1007/s00432-022-04187-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently prescribed drug classes with wide therapeutic applications over the centuries. Starting from the use of salicylate-containing willow leaves to the recent rise and fall of highly selective cyclooxygenase-2 (COX-2) inhibitors and the latest dual-acting anti-inflammatory molecules, they have displayed a rapid and ongoing evolution. Despite the enormous advances in the last twenty years, investigators are still in search of the design and development of more potent and safer therapy against inflammatory conditions. This challenge has been increasingly attractive as the emergence of inflammation as a common seed and unifying mechanism for most chronic diseases. Indeed, this fact put the NSAIDs in the spotlight for repurposing against inflammation-related disorders. This review attempts to present a historical perspective on the evolution of NSAIDs, regarding their COX-dependent/independent mode of actions, structural and mechanism-based classifications, and adverse effects. Additionally, a systematic review of previous studies was carried out to show the current situation in drug repurposing, particularly in cancers associated with the GI tract such as gastric and colorectal carcinoma. In the case of non-GI-related cancers, preclinical studies elucidating the effects and modes of action were collected and summarized.
Collapse
|
12
|
Zhao P, Qiu H, Wei Q, Li Y, Gao L, Zhao P. Anti-tumor effect of novel amino acid Schiff base nickel (II) complexes on oral squamous cell carcinoma cells (CAL-27) in vitro. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Liu N, Shi F, Yang L, Liao W, Cao Y. Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188724. [DOI: 10.1016/j.bbcan.2022.188724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
|
14
|
Proline Metabolism in Malignant Gliomas: A Systematic Literature Review. Cancers (Basel) 2022; 14:cancers14082030. [PMID: 35454935 PMCID: PMC9027994 DOI: 10.3390/cancers14082030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Studies of various types of cancers have found proline metabolism to be a key player in tumor development, involved in basic metabolic pathways, regulating cell proliferation, survival, and signaling. Here, we systematically searched the literature to find data on proline metabolism in malignant glial tumors. Despite limited availability, existing studies have found several ways in which proline metabolism may affect the development of gliomas, involving the maintenance of redox balance, providing essential glutamate, and affecting major signaling pathways. Metabolomic profiling has revealed the importance of proline as a link to basic cell metabolic cycles and shown it to be correlated with overall survival. Emerging knowledge on the role of proline in general oncology encourages further studies on malignant gliomas. Abstract Background: Proline has attracted growing interest because of its diverse influence on tumor metabolism and the discovery of the regulatory mechanisms that appear to be involved. In contrast to general oncology, data on proline metabolism in central nervous system malignancies are limited. Materials and Methods: We performed a systematic literature review of the MEDLINE and EMBASE databases according to PRISMA guidelines, searching for articles concerning proline metabolism in malignant glial tumors. From 815 search results, we identified 14 studies pertaining to this topic. Results: The role of the proline cycle in maintaining redox balance in IDH-mutated gliomas has been convincingly demonstrated. Proline is involved in restoring levels of glutamate, the main glial excitatory neurotransmitter. Proline oxidase influences two major signaling pathways: p53 and NF- κB. In metabolomics studies, the metabolism of proline and its link to the urea cycle was found to be a prognostic factor for survival and a marker of malignancy. Data on the prolidase concentration in the serum of glioblastoma patients are contradictory. Conclusions: Despite a paucity of studies in the literature, the available data are interesting enough to encourage further research, especially in terms of extrapolating what we have learned of proline functions from other neoplasms to malignant gliomas.
Collapse
|
15
|
Kazberuk A, Chalecka M, Palka J, Surazynski A. Nonsteroidal Anti-Inflammatory Drugs as PPARγ Agonists Can Induce PRODH/POX-Dependent Apoptosis in Breast Cancer Cells: New Alternative Pathway in NSAID-Induced Apoptosis. Int J Mol Sci 2022; 23:ijms23031510. [PMID: 35163433 PMCID: PMC8835909 DOI: 10.3390/ijms23031510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are considered to be therapeutics in cancer prevention because of their inhibitory effect on cyclooxygenases (COX), which are frequently overexpressed in many types of cancer. However, it was also demonstrated that NSAIDs provoked a proapoptotic effect in COX knocked-out cancer cells. Here, we suggest that this group of drugs may provoke antineoplastic activity through the activation of PPARγ, which induces proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that catalyzes proline degradation, during which ATP or reactive oxygen species (ROS) are generated. We have found that NSAIDs induced PRODH/POX and PPARγ expressions (as demonstrated by Western Blot or immunofluorescence analysis) and cytotoxicity (as demonstrated by MTT, cytometric assay, and DNA biosynthesis assay) in breast cancer MCF7 cells. Simultaneously, the NSAIDs inhibited collagen biosynthesis, supporting proline for PRODH/POX-induced ROS-dependent apoptosis (as demonstrated by an increase in the expression of apoptosis markers). The data suggest that targeting proline metabolism and the PRODH/POX–PPARγ axis can be considered a novel approach for breast cancer treatment.
Collapse
|
16
|
Misiura M, Ościłowska I, Bielawska K, Pałka J, Miltyk W. PRODH/POX-Dependent Celecoxib-Induced Apoptosis in MCF-7 Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14090874. [PMID: 34577574 PMCID: PMC8471327 DOI: 10.3390/ph14090874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023] Open
Abstract
Celecoxib (Cx), an inhibitor of cyclooxygenase 2, induces apoptosis of cancer cells. However, the mechanism of the chemopreventive effect remains not fully understood. We aimed to investigate the role of PRODH/POX that is involved in the regulation of apoptosis induced by celecoxib. MCF-7 breast cancer cell line and the corresponding MCF-7 cell line with silenced PRODH/POX (MCF-7shPRODH/POX) were used. The effects of Cx on cell viability, proliferation, and cell cycle were evaluated. The expressions of protein markers for apoptosis (Bax, caspase 9, and PARP) and autophagy (Atg5, Beclin 1, and LC3A/B) were investigated by Western immunoblotting. To analyze the proline metabolism, collagen biosynthesis, prolidase activity, proline concentration, and the expression of proline-related proteins were evaluated. The generation of ATP, ROS, and the ratio of NAD+/NADH and NADP+/NADPH were determined to test the effect of Cx on energetic metabolism in breast cancer cells. It has been found that Cx attenuated MCF-7 cell proliferation via arresting the cell cycle. Cx induced apoptosis in MCF-7 breast cancer cells, while in MCF-7shPRODH/POX, autophagy occurred more predominantly. In MCF-7 breast cancer cells, Cx affected proline metabolism through upregulation of proline biosynthesis, PRODH/POX and PYCRs expressions, PEPD activity, and downregulation of collagen biosynthesis. In MCF-7shPRODH/POX clones, these processes, as well as energetic metabolism, were remarkably suppressed. The data for the first time suggest that celecoxib induces apoptosis through upregulation of PRODH/POX in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Magdalena Misiura
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilińskiego1, 15-089 Bialystok, Poland; (M.M.); (K.B.)
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (I.O.); (J.P.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilińskiego1, 15-089 Bialystok, Poland; (M.M.); (K.B.)
| | - Jerzy Pałka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (I.O.); (J.P.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilińskiego1, 15-089 Bialystok, Poland; (M.M.); (K.B.)
- Correspondence: ; Tel.: +48-85-748-5845
| |
Collapse
|
17
|
Liu Y, Mao C, Liu S, Xiao D, Shi Y, Tao Y. Proline dehydrogenase in cancer: apoptosis, autophagy, nutrient dependency and cancer therapy. Amino Acids 2021; 53:1891-1902. [PMID: 34283310 DOI: 10.1007/s00726-021-03032-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
L-proline catabolism is emerging as a key pathway that is critical to cellular metabolism, growth, survival, and death. Proline dehydrogenase (PRODH) enzyme, which catalyzes the first step of proline catabolism, has diverse functional roles in regulating many pathophysiological processes, including apoptosis, autophagy, cell senescence, and cancer metastasis. Notably, accumulated evidence demonstrated that PRODH plays complex role in many types of cancers. In this review, we briefly introduce the function of PRODH, then its expression in different types of cancer. We next discuss the regulation of PRODH in cancer, the downstream pathways of PRODH and the therapies that are under investigation. Finally, we propose novel insights for future perspectives on the modulation of PRODH.
Collapse
Affiliation(s)
- Yating Liu
- Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, Central South University, the 3rd Xiangya Hospital, Changsha, 410000, People's Republic of China.,Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Center for Geriatric Disorders, National Clinical Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
18
|
Zhang Z, Ji J, Liu H. Drug Repurposing in Oncology: Current Evidence and Future Direction. Curr Med Chem 2021; 28:2175-2194. [PMID: 33109032 DOI: 10.2174/0929867327999200820124111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time. METHODS This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids. RESULTS Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro. CONCLUSION These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.
Collapse
Affiliation(s)
- Zhenzhan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Palka J, Oscilowska I, Szoka L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 2021; 53:1917-1925. [PMID: 33818628 PMCID: PMC8651534 DOI: 10.1007/s00726-021-02968-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Recent studies on the regulatory role of amino acids in cell metabolism have focused on the functional significance of proline degradation. The process is catalysed by proline dehydrogenase/proline oxidase (PRODH/POX), a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate (P5C). During this process, electrons are transferred to electron transport chain producing ATP for survival or they directly reduce oxygen, producing reactive oxygen species (ROS) inducing apoptosis/autophagy. However, the mechanism for switching survival/apoptosis mode is unknown. Although PRODH/POX activity and energetic metabolism were suggested as an underlying mechanism for the survival/apoptosis switch, proline availability for this enzyme is also important. Proline availability is regulated by prolidase (proline supporting enzyme), collagen biosynthesis (proline utilizing process) and proline synthesis from glutamine, glutamate, α-ketoglutarate (α-KG) and ornithine. Proline availability is dependent on the rate of glycolysis, TCA and urea cycles, proline metabolism, collagen biosynthesis and its degradation. It is well established that proline synthesis enzymes, P5C synthetase and P5C reductase as well as collagen prolyl hydroxylases are up-regulated in most of cancer types and control rates of collagen biosynthesis. Up-regulation of collagen prolyl hydroxylase and its exhaustion of ascorbate and α-KG may compete with DNA and histone demethylases (that require the same cofactors) to influence metabolic epigenetics. This knowledge led us to hypothesize that up-regulation of prolidase and PRODH/POX with inhibition of collagen biosynthesis may represent potential pharmacotherapeutic approach to induce apoptosis or autophagic death in cancer cells. These aspects of proline metabolism are discussed in the review as an approach to understand complex regulatory mechanisms driving PRODH/POX-dependent apoptosis/survival.
Collapse
Affiliation(s)
- Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| |
Collapse
|
20
|
Kuo MT, Chen HHW, Feun LG, Savaraj N. Targeting the Proline-Glutamine-Asparagine-Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010072. [PMID: 33477430 PMCID: PMC7830038 DOI: 10.3390/ph14010072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Proline, glutamine, asparagine, and arginine are conditionally non-essential amino acids that can be produced in our body. However, they are essential for the growth of highly proliferative cells such as cancers. Many cancers express reduced levels of these amino acids and thus require import from the environment. Meanwhile, the biosynthesis of these amino acids is inter-connected but can be intervened individually through the inhibition of key enzymes of the biosynthesis of these amino acids, resulting in amino acid starvation and cell death. Amino acid starvation strategies have been in various stages of clinical applications. Targeting asparagine using asparaginase has been approved for treating acute lymphoblastic leukemia. Targeting glutamine and arginine starvations are in various stages of clinical trials, and targeting proline starvation is in preclinical development. The most important obstacle of these therapies is drug resistance, which is mostly due to reactivation of the key enzymes involved in biosynthesis of the targeted amino acids and reprogramming of compensatory survival pathways via transcriptional, epigenetic, and post-translational mechanisms. Here, we review the interactive regulatory mechanisms that control cellular levels of these amino acids for amino acid starvation therapy and how drug resistance is evolved underlying treatment failure.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| | - Helen H. W. Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Lynn G. Feun
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Niramol Savaraj
- Division of Hematology and Oncology, Miami Veterans Affairs Heaithcare System, Miami, FL 33136, USA;
| |
Collapse
|
21
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|