1
|
Ryu HJ, Lee C, Yoon SO. Epigenetic and Immune Profile Characteristics in Sinonasal Undifferentiated Carcinoma. Cancer Med 2024; 13:e70413. [PMID: 39565059 PMCID: PMC11577451 DOI: 10.1002/cam4.70413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Sinonasal undifferentiated carcinoma (SNUC) is a rare and highly aggressive malignancy originating in the nasal cavity and paranasal sinuses. Its pathogenesis and immune characteristics remain poorly understood. OBJECTIVES This study investigates the molecular aspects of SNUC, focusing on tumorigenesis and immunity. METHODS For this purpose, spatial transcriptome analysis was employed to compare the gene expression profiles of SNUC tumor cells with those of normal epithelial cells, as well as to compare tumor-infiltrating immune cells with immune cells from normal, tumor-free tissue areas. For validation, next-generation sequencing tests and clinical sample studies were conducted. RESULTS Spatial transcriptome analysis revealed notable upregulation of EZH2 and the histone family gene such as H3C2 (H3-clustered histone 2) in SNUC tumor cells. Additionally, gene set enrichment analysis identified significant activations in the histone deacetylase (HDAC) signaling pathway, histone acetyltransferase (HAT) pathway, polycomb repressive complex 2 (PRC2), and DNA methylation pathways. A notable decrease was observed in downregulated genes and pathways, including the mucin family of protein genes, the keratin protein gene, and the mucin glycosylation pathway. Next-generation sequencing did not reveal specific genetic mutations within these pathways, although mutations such as IDH2 R172S were noted. Clinical SNUC tissues confirmed increased immunoexpression of EZH2 and PRC2 markers. Analysis of tumor immunity revealed a characteristic immune cell signature, with a notable predominance of naïve B cells, macrophages, CD8 memory T cells, and Tregs in the SNUC microenvironment, alongside the increased expression of LAG3 in tumor-infiltrating immune cells. CONCLUSION Our study suggests epigenetic mechanisms, particularly via EZH2, play a crucial role in SNUC carcinogenesis. Furthermore, distinctive immune cell profiles in SNUC point to potential immune-related characteristics of this malignancy.
Collapse
Affiliation(s)
- Hyang Joo Ryu
- Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulKorea
| | - Chung Lee
- Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulKorea
| | - Sun Och Yoon
- Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulKorea
| |
Collapse
|
2
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
3
|
DeSouza NR, Jarboe T, Carnazza M, Quaranto D, Islam HK, Tiwari RK, Geliebter J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. BIOLOGY 2024; 13:304. [PMID: 38785786 PMCID: PMC11118935 DOI: 10.3390/biology13050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Thyroid Cancer (TC) is the most common endocrine malignancy, with increasing incidence globally. Papillary thyroid cancer (PTC), a differentiated form of TC, accounts for approximately 90% of TC and occurs predominantly in women of childbearing age. Although responsive to current treatments, recurrence of PTC by middle age is common and is much more refractive to treatment. Undifferentiated TC, particularly anaplastic thyroid cancer (ATC), is the most aggressive TC subtype, characterized by it being resistant and unresponsive to all therapeutic and surgical interventions. Further, ATC is one of the most aggressive and lethal malignancies across all cancer types. Despite the differences in therapeutic needs in differentiated vs. undifferentiated TC subtypes, there is a critical unmet need for the identification of molecular biomarkers that can aid in early diagnosis, prognosis, and actionable therapeutic targets for intervention. Advances in the field of cancer genomics have enabled for the elucidation of differential gene expression patterns between tumors and healthy tissue. A novel category of molecules, known as non-coding RNAs, can themselves be differentially expressed, and extensively contribute to the up- and downregulation of protein coding genes, serving as master orchestrators of regulated and dysregulated gene expression patterns. These non-coding RNAs have been identified for their roles in driving carcinogenic patterns at various stages of tumor development and have become attractive targets for study. The identification of specific genes that are differentially expressed can give insight into mechanisms that drive carcinogenic patterns, filling the gaps of deciphering molecular and cellular processes that modulate TC subtypes, outside of well-known driver mutations.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
Chen J, Tang S, Zheng Q, Li J, Jiang H, Lu H, Liao G, Li K, Liang Y. The competitive mechanism of EZH1 and EZH2 in promoting oral squamous cell carcinoma. Exp Cell Res 2024; 436:113957. [PMID: 38309675 DOI: 10.1016/j.yexcr.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Enhancer of Zeste Homolog 1 (EZH1) and Enhancer of Zeste Homolog 2 (EZH2) are the key components of polycomb repressive complex 2 (PRC2); however, the roles of these proteins in oral squamous cell carcinoma (OSCC) have yet to be elucidated. In this study, we aimed to determine the respective roles of these proteins in OSCC by investigating the expression levels of EZH1 and EZH2 in OSCC tissues (N = 63) by immunohistochemistry. In addition, we used lentiviruses to construct stable OSCC cell lines that overexpressed EZH1 and EZH2. Then, we investigated these cell lines for cell viability, colony formation capacity, stemness, and epithelial-mesenchymal transition (EMT). Binding competition between EZH1 and EZH2 with PRC2 was further evaluated using Co-immunoprecipitation (Co-IP). Compared with normal tissues, the expression levels of EZH2 in OSCC tissues was up-regulated, while the expression of EZH1 was down-regulated. EZH2 enhanced cell viability, colony formation capacity, stemness, and EMT, while EZH1 did not. Furthermore, analysis indicated that EZH1 and EZH2 bound competitively to PRC2 and influenced the methylation status of H3K27. In conclusion, our findings verified that EZH1 and EZH2 play opposing roles in OSCC and that EZH1 and EZH2 compete as the key component of PRC2, thus affecting the characteristics of OSCC via the methylation of H3K27.
Collapse
Affiliation(s)
- Jianghai Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Shanshan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Qiuhan Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Jingyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Hong Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Kan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan West Street, Guangzhou, 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong-Shan Er Road 74, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
De Martino M, Pellecchia S, Decaussin-Petrucci M, Testa D, Meireles Da Costa N, Pallante P, Chieffi P, Fusco A, Esposito F. Drug-induced inhibition of HMGA and EZH2 activity as a possible therapy for anaplastic thyroid carcinoma. Cell Cycle 2023; 22:2552-2565. [PMID: 38165007 PMCID: PMC10936675 DOI: 10.1080/15384101.2023.2298027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive and lethal neoplasms in humans, and just limited progresses have been made to extend patient survival and decrease ATC-associated mortality. Thus, the identification of novel therapeutic strategies for treating ATC is needed. Recently, our group has identified two proteins with oncogenic activity, namely HMGA1 and EZH2, with pivotal roles in ATC cancer progression. Therefore, we tested the ability of trabectedin, a HMGA1-targeting drug, and GSK126, an inhibitor of EZH2 enzymatic activity, to impair cell viability of four ATC-derived cell lines. In the present study, we first confirmed the overexpression of HMGA1 and EZH2 in all ATC-derived cell lines and tissues compared to the normal primary thyroid cells and tissues. Then, treatment of the ATC cell lines with trabectedin and GSK126 resulted in a drastic induction of apoptotic cell death, which increased when the ATC cell lines were treated with a combination of both drugs. Conversely, normal primary human thyroid cells did not show any significant reduction in their viability when exposed to the same drugs. Noteworthy, both drugs induced the deregulation of EZH2- and HMGA1-controlled genes. Altogether, these findings propose the combination of trabectedin and GSK126 as possible novel strategy for ATC therapy.
Collapse
Affiliation(s)
- Marco De Martino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR) c/o, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Simona Pellecchia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR) c/o, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Domenico Testa
- Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, Department of Anesthesiology, Surgical and Emergency Science, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, Brazil
| | - Pierlorenzo Pallante
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR) c/o, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Paolo Chieffi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR) c/o, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, Rio de Janeiro, Brazil
| | - Francesco Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR) c/o, Università degli Studi di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
8
|
De Martino M, Pellecchia S, Esposito F, Liotti F, Credendino SC, Prevete N, Decaussin-Petrucci M, Chieffi P, De Vita G, Melillo RM, Fusco A, Pallante P. The lncRNA RMST is drastically downregulated in anaplastic thyroid carcinomas where exerts a tumor suppressor activity impairing epithelial-mesenchymal transition and stemness. Cell Death Discov 2023; 9:216. [PMID: 37393309 DOI: 10.1038/s41420-023-01514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy and comprises a wide range of lesions subdivided into differentiated (DTC) and undifferentiated thyroid cancer (UTC), mainly represented by the anaplastic thyroid carcinoma (ATC). This is one of the most lethal malignancies in humankind leading invariably to patient death in few months. Then, a better comprehension of the mechanisms underlying the development of ATC is required to set up new therapeutic approaches. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not code for proteins. They show a strong regulatory function at both transcriptional and post-transcriptional level and are emerging as key players in regulating developmental processes. Their aberrant expression has been linked to several biological processes, including cancer, making them potential diagnostic and prognostic markers. We have recently analyzed the lncRNA expression profile in ATC through a microarray technique and have identified rhabdomyosarcoma 2-associated transcript (RMST) as one of the most downregulated lncRNA in ATC. RMST has been reported to be deregulated in a series of human cancers, to play an anti-oncogenic role in triple-negative breast cancer, and to modulate neurogenesis by interacting with SOX2. Therefore, these findings prompted us to investigate the role of RMST in ATC development. In this study we show that RMST levels are strongly decreased in ATC, but only slightly in DTC, indicating that the loss of this lncRNA could be related to the loss of the differentiation and high aggressiveness. We also report a concomitant increase of SOX2 levels in the same subset of ATC, that inversely correlated with RMST levels, further supporting the RMST/SOX2 relationship. Finally, functional studies demonstrate that the restoration of RMST in ATC cells reduces cell growth, migration and the stemness properties of ATC stem cells. In conclusion, these findings support a critical role of RMST downregulation in ATC development.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Napoli, Italy
| | - Simona Pellecchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Francesco Esposito
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Federica Liotti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Sara Carmela Credendino
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Nella Prevete
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali (DiSMeT), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Myriam Decaussin-Petrucci
- Service d'Anatomie et Cytologie Pathologiques, Centre de Biologie Sud, Groupement Hospitalier Lyon Sud, Universite Lyon 1, 69495, Pierre Bénite, France
| | - Paolo Chieffi
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Napoli, Italy
| | - Gabriella De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Rosa Marina Melillo
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy.
- Instituto Nacional de Cancer, 37908, Laboratorio de Carcinogênese Molecular, Rua Andre Cavalcanti 37, Centro, 20231-050, Rio de Janeiro, Brazil.
| | - Pierlorenzo Pallante
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy.
| |
Collapse
|
9
|
Zhang W, Nie Q, Zhang X, Huang L, Pang G, Chu J, Yuan X. miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer. Expert Opin Ther Targets 2023; 27:1285-1297. [PMID: 38155599 DOI: 10.1080/14728222.2023.2293750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis. RESEARCH DESIGN & METHODS Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships. RESULTS Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis. CONCLUSION EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Qiwei Nie
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Xuling Zhang
- Department of Nursing, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Xiaoxu Yuan
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
10
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
11
|
Spirito L, Maturi R, Credendino SC, Manfredi C, Arcaniolo D, De Martino M, Esposito F, Napolitano L, Di Bello F, Fusco A, Pallante P, De Sio M, De Vita G. Differential Expression of LncRNA in Bladder Cancer Development. Diagnostics (Basel) 2023; 13:diagnostics13101745. [PMID: 37238229 DOI: 10.3390/diagnostics13101745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer, with urothelial carcinoma representing about 90% of all BC, including neoplasms and carcinomas of different grades of malignancy. Urinary cytology has a significant role in BC screening and surveillance, although it has a low detection rate and high dependence on the pathologist's experience. The currently available biomarkers are not implemented into routine clinical practice due to high costs or low sensitivity. In recent years, the role of lncRNAs in BC has emerged, even though it is still poorly explored. We have previously shown that the lncRNAs Metallophosphoesterase Domain-Containing 2 Antisense RNA 1 (MPPED2-AS1), Rhabdomyosarcoma-2 Associated Transcript (RMST), Kelch-like protein 14 antisense (Klhl14AS) and Prader Willi/Angelman region RNA 5 (PAR5) are involved in the progression of different types of cancers. Here, we investigated the expression of these molecules in BC, first by interrogating the GEPIA database and observing a different distribution of expression levels between normal and cancer specimens. We then measured them in a cohort of neoplastic bladder lesions, either benign or malignant, from patients with suspicion of BC undergoing transurethral resection of bladder tumor (TURBT). The total RNA from biopsies was analyzed using qRT-PCR for the expression of the four lncRNA genes, showing differential expression of the investigated lncRNAs between normal tissue, benign lesions and cancers. In conclusion, the data reported here highlight the involvement of novel lncRNAs in BC development, whose altered expression could potentially affect the regulatory circuits in which these molecules are involved. Our study paves the way for testing lncRNA genes as markers for BC diagnosis and/or follow-up.
Collapse
Affiliation(s)
- Lorenzo Spirito
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Rufina Maturi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Sara Carmela Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Celeste Manfredi
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Davide Arcaniolo
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Marco De Martino
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Napoli, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
| | - Luigi Napolitano
- Urology Unit, Department of Neurosciences, Reproductive Sciences, and Odontostomatology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Di Bello
- Urology Unit, Department of Neurosciences, Reproductive Sciences, and Odontostomatology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
| | - Marco De Sio
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Zhang K, Wang J, He Z, Qiu X, Sa R, Chen L. Epigenetic Targets and Their Inhibitors in Thyroid Cancer Treatment. Pharmaceuticals (Basel) 2023; 16:ph16040559. [PMID: 37111316 PMCID: PMC10142462 DOI: 10.3390/ph16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Although biologically targeted therapies based on key oncogenic mutations have made significant progress in the treatment of locally advanced or metastatic thyroid cancer, the challenges of drug resistance are urging us to explore other potentially effective targets. Herein, epigenetic modifications in thyroid cancer, including DNA methylation, histone modifications, non-coding RNAs, chromatin remodeling and RNA alterations, are reviewed and epigenetic therapeutic agents for the treatment of thyroid cancer, such as DNMT (DNA methyltransferase) inhibitors, HDAC (histone deacetylase) inhibitors, BRD4 (bromodomain-containing protein 4) inhibitors, KDM1A (lysine demethylase 1A) inhibitors and EZH2 (enhancer of zeste homolog 2) inhibitors, are updated. We conclude that epigenetics is promising as a therapeutic target in thyroid cancer and further clinical trials are warranted.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Junyao Wang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Ziyan He
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xian Qiu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1 Xinmin St., Changchun 130021, China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
13
|
Kuser-Abali G, Zhang Y, Szeto P, Zhao P, Masoumi-Moghaddam S, Fedele CG, Leece I, Huang C, Cheung JG, Ameratunga M, Noguchi F, Andrews MC, Wong NC, Schittenhelm RB, Shackleton M. UHRF1/UBE2L6/UBR4-mediated ubiquitination regulates EZH2 abundance and thereby melanocytic differentiation phenotypes in melanoma. Oncogene 2023; 42:1360-1373. [PMID: 36906655 PMCID: PMC10121471 DOI: 10.1038/s41388-023-02631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Cellular heterogeneity in cancer is linked to disease progression and therapy response, although mechanisms regulating distinct cellular states within tumors are not well understood. We identified melanin pigment content as a major source of cellular heterogeneity in melanoma and compared RNAseq data from high-pigmented (HPCs) and low-pigmented melanoma cells (LPCs), suggesting EZH2 as a master regulator of these states. EZH2 protein was found to be upregulated in LPCs and inversely correlated with melanin deposition in pigmented patient melanomas. Surprisingly, conventional EZH2 methyltransferase inhibitors, GSK126 and EPZ6438, had no effect on LPC survival, clonogenicity and pigmentation, despite fully inhibiting methyltransferase activity. In contrast, EZH2 silencing by siRNA or degradation by DZNep or MS1943 inhibited growth of LPCs and induced HPCs. As the proteasomal inhibitor MG132 induced EZH2 protein in HPCs, we evaluated ubiquitin pathway proteins in HPC vs LPCs. Biochemical assays and animal studies demonstrated that in LPCs, the E2-conjugating enzyme UBE2L6 depletes EZH2 protein in cooperation with UBR4, an E3 ligase, via ubiquitination at EZH2's K381 residue, and is downregulated in LPCs by UHRF1-mediated CpG methylation. Targeting UHRF1/UBE2L6/UBR4-mediated regulation of EZH2 offers potential for modulating the activity of this oncoprotein in contexts in which conventional EZH2 methyltransferase inhibitors are ineffective.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Youfang Zhang
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Pacman Szeto
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Peinan Zhao
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | - Isobel Leece
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jen G Cheung
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Malaka Ameratunga
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Fumihito Noguchi
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miles C Andrews
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mark Shackleton
- Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Alfred Health, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Multiomics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Biosci Rep 2023; 43:232355. [PMID: 36545914 PMCID: PMC9842950 DOI: 10.1042/bsr20222230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a significant epigenetic regulator that plays a critical role in the development and progression of cancer. However, the multiomics features and immunological effects of EZH2 in pan-cancer remain unclear. Transcriptome and clinical raw data of pan-cancer samples were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and subsequent data analyses were conducted by using R software (version 4.1.0). Furthermore, numerous bioinformatics analysis databases also reapplied to comprehensively explore and elucidate the oncogenic mechanism and therapeutic potential of EZH2 from pan-cancer insight. Finally, quantitative reverse transcription polymerase chain reaction and immunohistochemical assays were performed to verify the differential expression of EZH2 gene in various cancers at the mRNA and protein levels. EZH2 was widely expressed in multiple normal and tumor tissues, predominantly located in the nucleoplasm. Compared with matched normal tissues, EZH2 was aberrantly expressed in most cancers either at the mRNA or protein level, which might be caused by genetic mutations, DNA methylation, and protein phosphorylation. Additionally, EZH2 expression was correlated with clinical prognosis, and its up-regulation usually indicated poor survival outcomes in cancer patients. Subsequent analysis revealed that EZH2 could promote tumor immune evasion through T-cell dysfunction and T-cell exclusion. Furthermore, expression of EZH2 exhibited a strong correlation with several immunotherapy-associated responses (i.e., immune checkpoint molecules, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) status, and neoantigens), suggesting that EZH2 appeared to be a novel target for evaluating the therapeutic efficacy of immunotherapy.
Collapse
|
15
|
Construction and Characterization of n6-Methyladenosine-Related lncRNA Prognostic Signature and Immune Cell Infiltration in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7495183. [PMID: 36213821 PMCID: PMC9536954 DOI: 10.1155/2022/7495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Kidney renal clear cell carcinoma (KIRC) lacks effective prognostic biomarkers and the role and mechanism of N6-methyladenosine (m6A) modification of long noncoding RNAs (lncRNAs) in KIRC remain unclear. Methods. We extracted standard mRNA-sequencing and clinical data from the TCGA database. The prognostic risk model was obtained by Lasso regression and Cox regression. We randomly divided the samples into training and test sets, each taking half of the cases. Based on Lasso regression and Cox regression for training set, the prognostic risk signature was constructed; risk scores were calculated with the R package “glmnet.” Based on the median value of the prognostic risk score, risk scores were calculated for each patient and we divided all KIRC samples into high-risk and low-risk groups. Then, high- and low-risk subtypes were established and their prognosis, clinical features, and immune infiltration microenvironment were evaluated in test set and the entire sampled data set. The reliability of the prognostic model was confirmed by receiver operating characteristic curve analysis. Results. We found 28 prognostic m6A-related lncRNAs and established a m6A-related lncRNAs prognostic signature.
The signature showed a better predictive ability than other clinical indicators, including tumor node metastasis classification (TNM), histological, and pathological stages. In the high-risk group, M0 macrophages, CD8+ T cells, and regulatory T cells had significantly higher scores. Contrarily, in the low-risk group, activated dendritic cells, M1 macrophages, mast resting cells, and monocytes had significantly higher scores. In the high-risk group, LSECtin was overexpressed. In the low-risk group, PD-L1 was overexpressed. Moreover, high-risk patients may benefit more from AZ628. Conclusions. In conclusion, prognosis prediction of patients with KIRC and new insights for immunotherapy are provided by the m6A-related lncRNA prognostic signature.
Collapse
|
16
|
Wang H. Role of EZH2 in adipogenesis and obesity: Current state of the art and implications - A review. Medicine (Baltimore) 2022; 101:e30344. [PMID: 36086687 PMCID: PMC10980444 DOI: 10.1097/md.0000000000030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is characterized by excessive accumulation of adiposity and has been implicated in a strong predisposition to metabolic disorders and cancer, constituting one of the major public health issues worldwide. The formation of new mature adipocytes through differentiation of progenitor or precursor cells during adipogenesis can lead to the expansion of adipose tissue. Recent studies have revealed that the intrinsic risk of obesity arises not only through genetic variants but also through epigenetic predisposition. Enhancer of zeste homolog 2 (EZH2) is an enzymatic catalytic component of polycomb repressive complex 2 that acts as an epigenetic modulator in the regulation of gene expression. EZH2 can modulate the expression of its target genes by the trimethylation of Lys-27 in histone 3 or methylation of non-histone proteins. Emerging evidence has shown the important role played by EZH2 in adipogenesis and obesity. This review provides the latest knowledge about the involvement of EZH2 in the process of adipogenesis and obesity involving adipocyte differentiation, extract key concepts, and highlight open questions toward a better understanding of EZH2 function and the molecular mechanisms underlying obesity.
Collapse
Affiliation(s)
- Haixia Wang
- Zhejiang Changzheng Vocational and Technical College, Hangzhou, P. R. China
| |
Collapse
|
17
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
18
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Ortiz-Ortiz J, Torres-Rojas FI, Ávila-López PA. Integrated bioinformatics analysis reveals that EZH2-rich domains promote transcriptional repression in cervical cancer. EXCLI JOURNAL 2022; 21:852-868. [PMID: 36172073 PMCID: PMC9489889 DOI: 10.17179/excli2022-5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Cervical cancer is the third female cancer most common worldwide. The carcinogenic process involves an alteration of the mechanisms associated with transcription. Several studies have reported an oncogenic role of the polycomb complex subunit, EZH2. However, the role of EZH2 in cervical cancer is unknown. Hence, the objective of this study was to determine the role of EZH2 in transcriptional regulation in cervical cancer. The EZH2 expression and the methylation status of its promoter were analyzed in The Cancer Genome Atlas. The EZH2 enrichment profile was analyzed using chromatin immunoprecipitation with massively parallel DNA sequencing data provided by ENCODE project. The chromatin compartments were identified in the 4D Nucleome Data Portal. The functional annotation was examined in Enrichr. We report that EZH2 expression is increased in cervical cancer which is associated with hypomethylation of its promoter. EZH2 is enriched at promoter and distal intergenic regions. We identified that EZH2 defines chromatin domains enriched with H3K27me3 within repressive compartments in the HeLa-S3 cell line. Additionally, high EZH2 expression is associated with the repression of the senescent phenotype in cervical cancer patients. Our results suggest the participation of EZH2 in the generation of domains with a silencer function in cervical cancer, which regulate the expression of genes associated with cellular senescence.
Collapse
Affiliation(s)
- Eric G. Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, México
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, México
| | - Francisco I. Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, México
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA,*To whom correspondence should be addressed: Pedro A. Ávila-López, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Telephone number: +52 55 6098 2694, E-mail:
| |
Collapse
|
19
|
Bisserier M, Brojakowska A, Saffran N, Rai AK, Lee B, Coleman M, Sebastian A, Evans A, Mills PJ, Addya S, Arakelyan A, Garikipati VNS, Hadri L, Goukassian DA. Astronauts Plasma-Derived Exosomes Induced Aberrant EZH2-Mediated H3K27me3 Epigenetic Regulation of the Vitamin D Receptor. Front Cardiovasc Med 2022; 9:855181. [PMID: 35783863 PMCID: PMC9243458 DOI: 10.3389/fcvm.2022.855181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
There are unique stressors in the spaceflight environment. Exposure to such stressors may be associated with adverse effects on astronauts' health, including increased cancer and cardiovascular disease risks. Small extracellular vesicles (sEVs, i.e., exosomes) play a vital role in intercellular communication and regulate various biological processes contributing to their role in disease pathogenesis. To assess whether spaceflight alters sEVs transcriptome profile, sEVs were isolated from the blood plasma of 3 astronauts at two different time points: 10 days before launch (L-10) and 3 days after return (R+3) from the Shuttle mission. AC16 cells (human cardiomyocyte cell line) were treated with L-10 and R+3 astronauts-derived exosomes for 24 h. Total RNA was isolated and analyzed for gene expression profiling using Affymetrix microarrays. Enrichment analysis was performed using Enrichr. Transcription factor (TF) enrichment analysis using the ENCODE/ChEA Consensus TF database identified gene sets related to the polycomb repressive complex 2 (PRC2) and Vitamin D receptor (VDR) in AC16 cells treated with R+3 compared to cells treated with L-10 astronauts-derived exosomes. Further analysis of the histone modifications using datasets from the Roadmap Epigenomics Project confirmed enrichment in gene sets related to the H3K27me3 repressive mark. Interestingly, analysis of previously published H3K27me3-chromatin immunoprecipitation sequencing (ChIP-Seq) ENCODE datasets showed enrichment of H3K27me3 in the VDR promoter. Collectively, our results suggest that astronaut-derived sEVs may epigenetically repress the expression of the VDR in human adult cardiomyocytes by promoting the activation of the PRC2 complex and H3K27me3 levels.
Collapse
Affiliation(s)
- Malik Bisserier
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Agnieszka Brojakowska
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Nathaniel Saffran
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Amit Kumar Rai
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brooke Lee
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Matthew Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela Evans
- Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, La Jolla, CA, United States
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Russian-Armenian University, Yerevan, Armenia
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Lahouaria Hadri
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - David A. Goukassian
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| |
Collapse
|
20
|
Maimaiti A, Tuerhong M, Wang Y, Aisha M, Jiang L, Wang X, Mahemuti Y, Aili Y, Feng Z, Kasimu M. An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma. Mol Cell Biochem 2022; 477:1417-1438. [DOI: 10.1007/s11010-022-04368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
21
|
Zhang T, Feng C, Zhang X, Sun B, Bian Y. Abnormal expression of long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) participates in the pathological mechanism of atherosclerosis by regulating miR-224-3p. Bioengineered 2022; 13:2648-2657. [PMID: 35067166 PMCID: PMC8974166 DOI: 10.1080/21655979.2021.2023995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Study shows that long non-coding RNA (lncRNA) plays a regulatory role in cardiovascular diseases, and the mechanism of rhabdomyosarcoma 2-associated transcript (RMST) in atherosclerosis (AS) is still unclear. This study aimed to evaluate the expression of RMST and its possible role in the occurrence of AS. RMST and miR-224-3p level in serum and human umbilical vein endothelial cells (HUVECs) were determined by real-time quantitative PCR (RT-qPCR). In vitro atherosclerotic cell model was achieved by treating HUVECs with ox-LDL. Receiver operating characteristic (ROC) curve assessed the diagnostic value of RMST in AS, and Pearson correlation coefficient estimated the correlation of RMST with carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cfPWV). Cell counting kit-8 (CCK-8) assay and Enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the effect of RMST on cell viability and inflammatory response. The luciferase analysis was used to validate the relationship between RMST and miR-224-3p. The results showed that in serum and HUVECs, RMST levels were increased, while miR-224-3p level was decreased. ROC curve suggested that RMST had clinical diagnostic value for AS. Besides, CIMT and cfPWV were positively correlated with RMST levels, respectively. In HUVECs, RMST-knockdown notably improved the cell viability and inhibited the production of inflammatory factors. Moreover, miR-224-3p was the target of RMST. In conclusion, RMST has the potential to be a diagnostic marker for AS. RMST-knockdown contributes to the enhancement of cell viability and the inhibition of inflammatory response, which may provide new insights into the conquest of AS.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Endocrinology, People’s Hospital of Rizhao, Shandong, China
| | - Cuina Feng
- Department of Cardiology, Affiliated Hospital of Hebei University, Hebei, China
| | - Xiang Zhang
- Department of Cardiology, People’s Hospital of Rizhao, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Shandong, China
| | - Ying Bian
- Department of General Breast Surgery, Affiliated Hospital of Hebei University, Hebei, China
| |
Collapse
|
22
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
23
|
Hao A, Wang Y, Stovall DB, Wang Y, Sui G. Emerging Roles of LncRNAs in the EZH2-regulated Oncogenic Network. Int J Biol Sci 2021; 17:3268-3280. [PMID: 34512145 PMCID: PMC8416728 DOI: 10.7150/ijbs.63488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a life-threatening disease, but cancer therapies based on epigenetic mechanisms have made great progress. Enhancer of zeste homolog 2 (EZH2) is the key catalytic component of Polycomb repressive complex 2 (PRC2) that mediates the tri-methylation of lysine 27 on histone 3 (H3K27me3), a well-recognized marker of transcriptional repression. Mounting evidence indicates that EZH2 is elevated in various cancers and associates with poor prognosis. In addition, many studies revealed that EZH2 is also involved in transcriptional repression dependent or independent of PRC2. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to regulate numerous and diverse signaling pathways in oncogenesis. In this review, we firstly discuss functional interactions between EZH2 and lncRNAs that determine PRC2-dependent and -independent roles of EZH2. Secondly, we summarize the lncRNAs regulating EZH2 expression at transcription, post-transcription and post-translation levels. Thirdly, we review several oncogenic pathways cooperatively regulated by lncRNAs and EZH2, including the Wnt/β-catenin and p53 pathways. In conclusion, lncRNAs play a key role in the EZH2-regulated oncogenic network with many fertile directions to be explored.
Collapse
Affiliation(s)
- Aixin Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yunxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, the United States
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
24
|
Zhang D, Liu X, Li Y, Sun L, Liu SS, Ma Y, Zhang H, Wang X, Yu Y. LINC01189-miR-586-ZEB1 feedback loop regulates breast cancer progression through Wnt/β-catenin signaling pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:455-467. [PMID: 34513288 PMCID: PMC8408558 DOI: 10.1016/j.omtn.2021.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
Non-coding RNAs play essential roles in breast cancer progression by regulating proliferation, differentiation, invasion, and metastasis. However, our understanding of most microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in breast cancer is still limited. miR-586 has been identified as an important factor in the progression of some types of cancer, but its exact function and relative regulation mechanisms in breast cancer development need to be further investigated. In this study, we showed miR-586 functioned as an oncogene by promoting breast cancer proliferation and metastasis both in vitro and in vivo. Meanwhile, miR-586 induced Wnt/β-catenin activation by directly targeting Wnt/β-catenin signaling antagonists SFRP1 and DKK2/3. Moreover, we demonstrated that LINC01189 functioned as a tumor suppressor and inhibited breast cancer progression through inhibiting an epithelial-mesenchymal transition (EMT)-like phenotype by sponging miR-586. In addition, β-catenin/TCF4 transactivated ZEB1, resulting in a transcriptional repression of LINC01189 expression. In conclusion, our data uncovered the LINC01189-miR-586-ZEB1 feedback loop and provided a novel mechanism participating in the regulation of Wnt/β-catenin signaling in breast cancer progression.
Collapse
Affiliation(s)
- Di Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xiaofeng Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yun Li
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Li Sun
- Department of Breast Surgery, the Affiliated Changzhou No. 2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
| | - Shu-Shu Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430000, China
- Hubei Provincial Clinical Research Center for Breast Cancer, Hubei 430000, China
| | - Yue Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Huan Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Corresponding author: Xin Wang, The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China.
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Corresponding author: Yue Yu, The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China.
| |
Collapse
|
25
|
Zhu J, Liu C, Wang D, Cao X, Wang S, Liu Y, Wang J, Li P, He Q. The Emerging Landscapes of Long Noncoding RNA in Thyroid Carcinoma: Biological Functions and Clinical Significance. Front Oncol 2021; 11:706011. [PMID: 34447696 PMCID: PMC8383148 DOI: 10.3389/fonc.2021.706011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is one of the most prevalent primary endocrine tumors, and its incidence is steadily and gradually increasing worldwide. Accumulating evidence has revealed the critical functions of long noncoding RNAs (lncRNAs) in the tumorigenesis and development of TC. Many TC-associated lncRNAs have been documented to be implicated in TC malignant behaviors, including abnormal cell proliferation, enhanced stem cell properties and aggressiveness, and resistance to therapeutics, through interaction with proteins, DNA, or RNA or encoding small peptides. Therefore, further elucidating the lncRNA dysregulation sheds additional insights into TC tumorigenesis and progression and opens new avenues for the early diagnosis and clinical therapy of TC. In this review, we summarize the abnormal expression of lncRNA in TC and the fundamental characteristics in TC tumorigenesis and development. Additionally, we introduce the potential prognostic and therapeutic significance of lncRNAs in TC.
Collapse
Affiliation(s)
- Jian Zhu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Thyroid and Breast Surgery, The 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Changrui Liu
- Department of Thyroid and Breast Surgery, The 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Dan Wang
- Department of Thyroid and Breast Surgery, The 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Xianjiao Cao
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Wang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yixin Liu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peifeng Li
- Department of Pathology, The 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| |
Collapse
|
26
|
Poorly Differentiated and Anaplastic Thyroid Cancer: Insights into Genomics, Microenvironment and New Drugs. Cancers (Basel) 2021; 13:cancers13133200. [PMID: 34206867 PMCID: PMC8267688 DOI: 10.3390/cancers13133200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the last decades, many researchers produced promising data concerning genetics and tumor microenvironment of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). They are trying to tear the veil covering these orphan cancers, suggesting new therapeutic weapons as single or combined therapies. Abstract PDTC and ATC present median overall survival of 6 years and 6 months, respectively. In spite of their rarity, patients with PDTC and ATC represent a significant clinical problem, because of their poor survival and the substantial inefficacy of classical therapies. We reviewed the newest findings about genetic features of PDTC and ATC, from mutations occurring in DNA to alterations in RNA. Therefore, we describe their tumor microenvironments (both immune and not-immune) and the interactions between tumor and neighboring cells. Finally, we recapitulate how this upcoming evidence are changing the treatment of PDTC and ATC.
Collapse
|
27
|
De Martino M, Nicolau-Neto P, Ribeiro Pinto LF, Traverse-Glehen A, Bachy E, Gigantino V, De Cecio R, Bertoni F, Chieffi P, Fusco A, Esposito F. HMGA1 induces EZH2 overexpression in human B-cell lymphomas. Am J Cancer Res 2021; 11:2174-2187. [PMID: 34094676 PMCID: PMC8167683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023] Open
Abstract
EZH2 is an enzymatic subunit of PRC2, an epigenetic regulator that triggers the methylation of the histone H3 lysine 27 silencing the transcription of several genes. EZH2 has a critical role in cancer progression, since its overexpression has been associated with increased cancer cell invasiveness, drug resistance and poor patient survival. However, the mechanisms accounting for EZH2 overexpression in cancer remain still unclear. Intriguingly, also HMGA protein overexpression is a feature of many human malignancies and correlates with the presence of metastases and a poor outcome. The HMGA proteins, including HMGA1 and HMGA2, belong to the architectural transcription factors that play a key role in the organization of chromatin structure. Here, we report a statistically significant correlation between HMGA1 and EZH2 expression in human lymphomas. We demonstrate that HMGA1 is able to bind EZH2 promoter and induce its activity. Consistently, silencing of HMGA1 expression results in the downregulation of the EZH2 levels leading to a decreased proliferation and migration rate of human lymphoma cell lines. Therefore, these data identify HMGA1 as an EZH2 activator, suggesting a novel molecular mechanism contributing to EZH2 overexpression in human malignancies and a synergism of these proteins in cancer progression.
Collapse
Affiliation(s)
- Marco De Martino
- Institute of Endocrinology and Experimental Oncology-CNR c/o Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”Naples, Italy
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, National Cancer Institute-INCARua Andre Cavalcanti 37, Rio de Janeiro 20231-050, Brazil
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, National Cancer Institute-INCARua Andre Cavalcanti 37, Rio de Janeiro 20231-050, Brazil
- Department of Biochemistry, Roberto Alcantara Gomes Biology Institute, State University of Rio de JaneiroRio de Janeiro 20551-030, Brazil
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, Department of Pathological AnatomyLyon, France
- Claude Bernard Lyon 1 UniversityLyon, France
| | - Emmanuel Bachy
- Claude Bernard Lyon 1 UniversityLyon, France
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud HospitalPierre-Bénite, France
| | - Vincenzo Gigantino
- Pathology Unit, National Cancer Institute, IRCCS, Pascale FoundationNaples, Italy
| | - Rossella De Cecio
- Pathology Unit, National Cancer Institute, IRCCS, Pascale FoundationNaples, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USIBellinzona, Switzerland
- Oncology Institute of Southern SwitzerlandBellinzona, Switzerland
| | - Paolo Chieffi
- Department of Psychology, University of Campania “L. Vanvitelli”Caserta, Italy
| | - Alfredo Fusco
- Institute of Endocrinology and Experimental Oncology-CNR c/o Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”Naples, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology-CNR c/o Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”Naples, Italy
| |
Collapse
|
28
|
Qu S, Niu K, Wang J, Dai J, Ganguly A, Gao C, Tian Y, Lin Z, Yang X, Zhang X, Liu Z, Li H. LINC00671 suppresses cell proliferation and metastasis in pancreatic cancer by inhibiting AKT and ERK signaling pathway. Cancer Gene Ther 2021; 28:221-233. [PMID: 32801328 DOI: 10.1038/s41417-020-00213-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs) represent an emerging field of tumor biology, playing essential roles in cancer cell proliferation, invasion, and metastasis. However, the overall functional and clinical significance of most lncRNAs in pancreatic cancer is not thoroughly understood. Here, we described most of the lncRNAs with aberrant expression patterns in pancreatic cancer as detected by microarray. Quantitative real-time polymerase chain reaction further verified that the expression of LINC00671 was decreased in pancreatic cancer cell lines and patient samples. Furthermore, lower LINC00671 expression was associated with reduced tumor differentiation, aggressiveness, and poor prognosis. Functionally, LINC00671 overexpression inhibited pancreatic cancer cell proliferation, invasion, and migration in vitro, and reduced tumor growth in vivo. LINC00671 is mainly located in the cytoplasm. RNA sequencing and bioinformatics analyses indicated that LINC00671 binds to multiple miRNAs and therefore could be involved in multiple tumor-associated pathways, such as the AMPK signaling pathway and PI3K-Akt signaling pathway. Western blotting and immunohistochemistry further confirmed that LINC00671 overexpression suppressed the AKT, ERK, and epithelial-mesenchymal transition pathways. Overall, these results indicated that LINC00671 acts as a novel tumor suppressor in pancreatic cancer. Our findings may provide a new potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jimin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science, Bejing Institute of Lifeomics, Beijing, China
| | - Yuzi Tian
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengcai Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
29
|
Guan Y, Li Y, Yang QB, Yu J, Qiao H. LncRNA ABCC6P1 promotes proliferation and migration of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:664. [PMID: 33987362 PMCID: PMC8106106 DOI: 10.21037/atm-21-505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background LncRNAs play an important regulatory function in the occurrence and progression of papillary thyroid cancer (PTC). This study aimed to investigate the role and mechanism of ATP binding cassette subfamily C member 6 pseudogene 1 (ABCC6P1) in PTC. Methods Cancerous and paracancer normal thyroid tissues were collected from 18 patients with PTC, who were operated at the Second Affiliated Hospital of Harbin Medical University. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to investigate the levels of ABCC6P1. Cell proliferation was evaluated using Cell Counting Kit-8 (CCK-8) and colony formation assays. Wound healing and Transwell invasion assays were performed to examine cell migratory and invasive ability. Western blotting analysis was used to detect the expression levels of EMT-related markers and Wnt/β-catenin signaling pathway-related proteins. Results The expression of ABCC6P1 was upregulated in PTC tissues and cells. ABCC6P1 silencing could significantly suppress the proliferation, colony formation ability, migratory and invasive ability in PTC cells. Moreover, knockdown of ABCC6P1 induced cell cycle arrest at G0/G1 phase and inhibited epithelial-mesenchymal transition (EMT) process of PTC cells by increasing the E-cadherin expression, but downregulating N-cadherin and vimentin expression. In addition, knockdown of ABCC6P1 caused a significant decrease in levels of Wnt/β-catenin signaling pathway members (including β-catenin, c-myc, and cyclin D1) in PTC cells. Conclusions Our study confirms that ABCC6P1 exerts an oncogenic activity in PTC which may be mediated by the Wnt/β-catenin pathway, suggesting that ABCC6P1 may be a promising therapeutic target for PTC.
Collapse
Affiliation(s)
- Yue Guan
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Bo Yang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jianbo Yu
- Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Pathology Department, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.,Longgang Central Hospital, Shenzhen, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Pellecchia S, De Martino M, Esposito F, Quintavalle C, Fusco A, Pallante P. MPPED2 is downregulated in glioblastoma, and its restoration inhibits proliferation and increases the sensitivity to temozolomide of glioblastoma cells. Cell Cycle 2021; 20:716-729. [PMID: 33734003 DOI: 10.1080/15384101.2021.1901042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal neoplasia of the central nervous system in adults. Based on the molecular signature genes, GBM has been classified in proneural, neural, mesenchymal and classical subtypes. The Metallophosphoesterase-domain-containing protein 2 (MPPED2) gene encodes a metallophosphodiesterase protein highly conserved throughout the evolution. MPPED2 downregulation, likely due to its promoter hypermethylation, has been found in several malignant neoplasias and correlated with a poor prognosis. In this study, we aimed to investigate the expression and the functional role of MPPED2 in GBM. TCGA and Gravendeel databases were employed to explore the MPPED2 expression levels in this type of tumor. We have found that MPPED2 expression is downregulated in GBM patients, showing a positive correlation with survival. Moreover, TCGA and Gravendeel data also revealed that MPPED2 expression negatively correlates with the most aggressive mesenchymal subtype. Additionally, the restoration of MPPED2 expression in U251 and GLI36 GBM cell lines decreases cell growth, migration and enhanced the sensitivity to the temozolomide, inducing apoptotic cell death, of GBM cells. These findings suggest that the restoration of MPPED2 function can be taken into consideration for an innovative GBM therapy.
Collapse
Affiliation(s)
- Simona Pellecchia
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Marco De Martino
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Esposito
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Cristina Quintavalle
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Alfredo Fusco
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Pierlorenzo Pallante
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
31
|
Zhao H, De Souza C, Kumar VE, Nambiar R, Hao D, Zhu X, Luo Y, Liu S, Zhang L, Zhu J. Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:359. [PMID: 33708986 PMCID: PMC7944284 DOI: 10.21037/atm-20-8191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with high incidence rates in recent decades. Most TC cases have good prognoses, but a high risk of recurrence and metastases poses challenges, especially for patients with high-risk factors. Currently used prognostic markers for TC involve a combination of genetic factors and overexpressed proteins. Long non-coding RNAs (lncRNAs) regulate several integral biologic processes by playing key roles in the transcription of several downstream targets maintaining cellular behavior. Prior studies have revealed that lncRNAs promote tumor cell proliferation, invasion, metastasis, and angiogenesis, making them important targets for therapeutic intervention in cancer. While the exact molecular mechanisms underlying the role of lncRNAs in modulating TC progression and recurrence is still unclear, it is important to note that some lncRNAs are upregulated in certain cancers, while others are downregulated. In the present study, we review several key lncRNAs, their association with cancer progression, and the important roles they may play as tumor suppressors or tumor promoters in tumorigenesis. We discuss the potential mechanisms of lncRNA-mediated pathogenesis that can be targeted for the treatment of TC, the existing and potential benefits of using lncRNAs as diagnostic and prognostic measures for cancer detection, and tumor burden in patients.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Regenerative Medicine and Stem Cell Research, Stanford University, Stanford, CA, USA
| | - Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Xiaofeng Zhu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shengshan Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
33
|
Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020; 12:E3264. [PMID: 33158279 PMCID: PMC7694276 DOI: 10.3390/cancers12113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most prevalent malignancy of the endocrine system and the ninth most common cancer globally. Despite the advances in the management of thyroid cancer, there are critical issues with the diagnosis and treatment of thyroid cancer that result in the poor overall survival of undifferentiated and metastatic thyroid cancer patients. Recent studies have revealed the role of different non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that are dysregulated during thyroid cancer development or the acquisition of resistance to therapeutics, and may play key roles in treatment failure and poor prognosis of the thyroid cancer patients. Here, we systematically review the emerging roles and molecular mechanisms of ncRNAs that regulate thyroid tumorigenesis and drug response. We then propose the potential clinical implications of ncRNAs as novel diagnostic and prognostic biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Samantha Peiling Yang
- Endocrinology Division, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
34
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:E3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
35
|
Liu J, Zhan Y, Wang J, Wang J, Guo J, Kong D. Long noncoding RNA LINC01578 drives colon cancer metastasis through a positive feedback loop with the NF-κB/YY1 axis. Mol Oncol 2020; 14:3211-3233. [PMID: 33040438 PMCID: PMC7718957 DOI: 10.1002/1878-0261.12819] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease-specific survival, and disease-free survival. Gain-of-function and loss-of-function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF-κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin-bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF-κB signaling. Through activation of NF-κB, LINC01578 further upregulated YY1 expression. Through activation of the NF-κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF-κB/YY1 formed a positive feedback loop. Blocking NF-κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF-κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang Zhan
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiefu Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junfeng Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiansheng Guo
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
36
|
Puxeddu E, Tallini G, Vanni R. What Is New in Thyroid Cancer: The Special Issue of the Journal Cancers. Cancers (Basel) 2020; 12:E3036. [PMID: 33086491 PMCID: PMC7603182 DOI: 10.3390/cancers12103036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of thyroid cancer has increased over the past 3 to 4 decades. Nonetheless, the mortality from thyroid cancer has remained stable. The thyroid gland may develop nodules encompassing several types of cell proliferation, from frankly benign to very aggressive forms with many intermediate challenging variants. For this reason, there is growing interest in evaluating thyroid nodules from many points of view, from the clinical to the molecular aspects, in the search for innovative diagnostic and prognostic parameters. The aim of this Special Issue was to provide an overview of recent developments in understanding the biology and molecular oncology of thyroid tumors of follicular cell derivation and their repercussions on the diagnosis, prognosis, and therapy. The contributions of many experts in the field made up a Special Issue of Cancers journal, that focusing on different aspects, including mechanistic and functional facets, gives the status of art of clinical and biological perspectives of thyroid cancer.
Collapse
Affiliation(s)
- Efisio Puxeddu
- Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40126 Bologna, Italy;
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
37
|
Huang NS, Lei BW, Tan LC, Yu PC, Shi X, Wang Y, Ji QH, Wei WJ, Lu ZW, Wang YL. Mitotically associated long non-coding RNA is a tumor promoter in anaplastic thyroid cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1226. [PMID: 33178758 PMCID: PMC7607122 DOI: 10.21037/atm-20-4530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Patients with anaplastic thyroid cancer (ATC), which is among the deadliest of all cancers, often have a poor response to traditional therapies. Currently, the role of long non-coding RNAs (lncRNAs) in ATC carcinogenesis is unclear. In this study, we analyzed the lncRNA expression profile of ATC with the aim of identifying potential molecular targets for treatment of the disease. Methods Whole transcriptome sequencing of three ATC and two normal thyroid (NT) samples was performed, and the lncRNA expression profile of ATC was analyzed. Original data as well as datasets deposited in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were used for clinical validation. Cell proliferation, Transwell, and apoptosis assays were performed using ATC cell lines. Gene Ontology (GO) and gene set enrichment analyses (GSEA) were performed to determine the dysregulated pathways. Results Whole transcriptome sequencing revealed 182 lncRNAs to be differentially expressed in ATC. One of the lncRNAs, mitotically associated long non-coding RNA (MANCR; LINC00704), was significantly overexpressed in ATC cell lines and patient samples compared with NT and papillary thyroid cancer (PTC). MANCR depletion in ATC cells significantly inhibited cancer cell proliferation and invasion, and induced apoptosis. By further analyzing the transcriptome data, we identified 451 genes co-expressed with MANCR. GO and GSEA showed that the top dysregulated pathways were related to mitosis and cell cycle. Conclusions MANCR is a tumor promoter in ATC, and its role in carcinogenesis is possibly associated with cell cycle regulation. Because MANCR expression is minimal in most normal tissues, it may serve as a potential target in the future treatment of ATC.
Collapse
Affiliation(s)
- Nai-Si Huang
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo-Wen Lei
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Cheng Tan
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Yu
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Samimi H, Sajjadi-Jazi SM, Seifirad S, Atlasi R, Mahmoodzadeh H, Faghihi MA, Haghpanah V. Molecular mechanisms of long non-coding RNAs in anaplastic thyroid cancer: a systematic review. Cancer Cell Int 2020; 20:352. [PMID: 32760219 PMCID: PMC7392660 DOI: 10.1186/s12935-020-01439-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC. METHODS "Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords. RESULTS 961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC. CONCLUSIONS lncRNAs play a crucial role in regulation of different processes involved in the development and progression of ATC. Currently, just a few lncRNAs have been identified in ATC that may serve as prognosis markers such as GAS5, MIR22HG, and CASC2. Also, because of the dysregulation of Klhl14-AS, HOTAIRM1, and PCA3 during ATC development and progression, they may act as therapeutic targets. However, for most lncRNAs, only a single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, PERFUSE Study Group, Boston, MA USA
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Iranian National Cancer Institute, Imam Khomeini Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi’s Medical Genetic Center, Shiraz, Iran
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114 Iran
| |
Collapse
|
39
|
Abstract
Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.
Collapse
Affiliation(s)
- Ran Duan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenfang Du
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
40
|
Lowly expressed lncRNA PVT1 suppresses proliferation and advances apoptosis of glioma cells through up-regulating microRNA-128-1-5p and inhibiting PTBP1. Brain Res Bull 2020; 163:1-13. [PMID: 32562719 DOI: 10.1016/j.brainresbull.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glioma is a primary intracranial malignancy with poor prognosis, of which the pathogenesis remains to be elucidated. Therein, the aim of this study is to discuss the impacts of lncRNA plasmacytoma variant translocation 1 (PVT1)/microRNA-128-1-5p (miR-128-1-5p)/polypyrimidine tract-binding protein 1 (PTBP1) axis on the biological characteristics of glioma cells. METHODS Glioma tissue samples (72 cases) and normal brain tissue samples (35 cases) were harvested. The expression of PVT1, miR-128-1-5p and PTBP1 in glioma tissues and cells was detected. Glioma cells were transfected with sh-PVT1, miR-128-1-5p mimics or miR-128-1-5p inhibitors to verify the impacts of PVT1 and miR-128-1-5p on DNA damage, cell colony formation, invasion, proliferation, migration and apoptosis of glioma U87 and U251 cells. The growth of transplanted tumor was tested by tumor xenograft in nude mice. The combination of PVT1 and miR-128-1-5p and the targeting relationship between miR-128-1-5p and PTBP1 were verified. RESULTS PVT1 and PTBP1 expression was enhanced and miR-128-1-5p expression was degraded in glioma tissues and cells. Overexpressed miR-128-1-5p and lowly-expressed PVT1 promoted DNA damage, suppressed colony formation, invasion, proliferation and migration as well as boosted apoptosis of U251 and U87 cells. Up-regulating miR-128-1-5p and down-regulating PVT1 reduced transplanted tumor volume and weight of glioma in mice. Low expression miR-128-1-5p reversed the effect of low expression PVT1 on the biological characteristics of glioma cells. PVT1 specifically bound to miR-128-1-5p and PTBP1 was the target gene of miR-128-1-5p. CONCLUSION This study suggests that down-regulated PVT1 or up-regulated miR-128-1-5p boosts apoptosis and attenuates proliferation of glioma cells by inhibiting PTBP1 expression. This study is essential for finding new therapeutic targets for glioma.
Collapse
|