1
|
Zhang H, Li S, Chen F, Ma X, Liu M. The therapeutic effect of PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG albumin nanospheres combined with magnetic fluid hyperthermia on hepatoma. Front Oncol 2023; 13:1080519. [PMID: 37091158 PMCID: PMC10113636 DOI: 10.3389/fonc.2023.1080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is one of the most prevalent and deadly malignant tumors with serious clinical and socioeconomic consequences. Although gene therapy holds great promise in the treatment of hepatoma, its clinical applications are hindered by uncontrolled gene transmission and transcription.MethodsThe pY-ads-8-5HRE-cfosp-IFNG plasmid was constructed and identified by double enzyme digestion and gene sequencing. The expression of pYr-ads-8-5HRE-cfosp-IFNG in HepG2 cells was detected by quantitative PCR. PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG albumin nanospheres were prepared and characterized. In vitro heating test of magnetic albumin nanospheres in an alternating magnetic field (AMF) was carried out. The therapeutic effect of PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG albumin nanospheres on hepatocellular carcinoma was investigated by cell and animal experiments. After treatment, mice blood was collected for clinical biochemical analysis and histopathological evaluation of major organs was performed to assess potential adverse effects of treatment.ResultsDouble enzyme digestion and gene sequencing showed that the pY-ads-8-5HRE-cfosp-IFNG plasmid was constructed successfully. QPCR results showed that the IFNγ transcript level in the PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG group was higher than that in the PEI-Fe3O4/pYr-ads-8-cfosp-IFNG group after being treated with hypoxia (P<0.05). TEM revealed that the self-prepared PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG albumin nanospheres exhibit an approximately spherical or elliptical shape. The hydrodynamic size of the albumin nanospheres was 139.7 nm. The maximum temperature of 0.25 mg/mL solution is stable at about 44°C, which is suitable for tumor thermal therapy without damaging normal tissues. The relative cell inhibition rate of the radiation-gene therapy and MFH combination group was higher than that of other control groups in CCK8 experiment. (P<0.05) Flow cytometry showed that the apoptosis rate and necrosis rate of the combined treatment group were 42.32% and 35.73%, respectively, higher than those of the other groups. (P<0.05) In animal experiments, the mass and volume inhibition rates of the combined treatment group were 66.67% and 72.53%, respectively, higher than those of other control groups. (P<0.05) Clinical biochemical analysis and histopathological evaluation showed no abnormality.ConclusionsThe results indicated the successful construction of the radiation-induced plasmid and demonstrated that the hypoxia enhancer could augment the expression of INFγ in a hypoxia environment. Gene therapy combined with magnetic fluid hyperthermia (MFH) has exhibited excellent outcomes in both cell and animal studies. Our experiments demonstrated that the PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG albumin nanospheres system is a comprehensive treatment method for hepatoma, which can effectively combine immune genre therapy with hyperthermia.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Suping Li
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Fei Chen
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, China
| | - Mingying Liu
- School of Health Management, Xihua University, Chengdu, China
- *Correspondence: Mingying Liu,
| |
Collapse
|
2
|
Longo R, Vertuccio L, Speranza V, Pantani R, Raimondo M, Calabrese E, Guadagno L. Nanometric Mechanical Behavior of Electrospun Membranes Loaded with Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1252. [PMID: 37049345 PMCID: PMC10097362 DOI: 10.3390/nano13071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
This work analyzes on nanoscale spatial domains the mechanical features of electrospun membranes of Polycaprolactone (PCL) loaded with Functionalized Magnetite Nanoparticles (FMNs) produced via an electrospinning process. Thermal and structural analyses demonstrate that FMNs affect the PCL crystallinity and its melting temperature. HarmoniX-Atomic Force Microscopy (H-AFM), a modality suitable to map the elastic modulus on nanometric domains of the sample surface, evidences that the FMNs affect the local mechanical properties of the membranes. The mechanical modulus increases when the tip reveals the magnetite nanoparticles. That allows accurate mapping of the FMNs distribution along the nanofibers mat through the analysis of a mechanical parameter. Local mechanical modulus values are also affected by the crystallinity degree of PCL influenced by the filler content. The crystallinity increases for a low filler percentage (<5 wt.%), while, higher magnetite amounts tend to hinder the crystallization of the polymer, which manifests a lower crystallinity. H-AFM analysis confirms this trend, showing that the distribution of local mechanical values is a function of the filler amount and crystallinity of the fibers hosting the filler. The bulk mechanical properties of the membranes, evaluated through tensile tests, are strictly related to the nanometric features of the complex nanocomposite system.
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.L.); (V.S.); (R.P.); (M.R.); (E.C.)
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy;
| | - Vito Speranza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.L.); (V.S.); (R.P.); (M.R.); (E.C.)
| | - Roberto Pantani
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.L.); (V.S.); (R.P.); (M.R.); (E.C.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.L.); (V.S.); (R.P.); (M.R.); (E.C.)
| | - Elisa Calabrese
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.L.); (V.S.); (R.P.); (M.R.); (E.C.)
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.L.); (V.S.); (R.P.); (M.R.); (E.C.)
| |
Collapse
|
3
|
Zhang M, Bao S, Qiu G, Liang J, Wang Q, Zhu X, Qin G, Liu J, Zhao C. An Magnetic-Targeting Nano-Diagnosis and Treatment Platform for TNBC. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:101-119. [PMID: 36761696 PMCID: PMC9904310 DOI: 10.2147/bctt.s387793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Purpose In this experiment, we constructed a magnetic targeting nano-diagnosis and treatment platform of doxorubicin (DOX) combined with iron nanoparticles, and explored their application value and mechanism in the treatment of Triple Negative Breast Cancer (TNBC), as well as its new diagnosis and treatment mode in Magnetic Resonance Imaging (MRI). Patients and Methods Hollow mesoporous nanoparticles (HFON) were synthesized by solvothermal method, and loaded the drug DOX (DOX@HFON) to treat TNBC. The experiments in vivo and in vitro were carried out according to the characteristics of the materials. In vitro experiments, the killing effect of the drug on cells was verified by cell viability CCK8, ROS generation level, LPO evaluation and flow cytometry; the MRI effect and targeted anti-tumor therapy effect were studied by in vivo experiments; then the tumor tissue sections were detected by Ki-67, CD31, ROS, LPO and TUNEL immunofluorescence detection; H&E staining and blood biochemical tests were used to evaluate the biosafety of the materials. Results Through a series of characterization tests, it is confirmed that the nano-materials prepared in this experiment have positive drug loading properties. MDA-MB-231 cells had great phagocytic ability to DOX@HFON under Confocal Laser Scanning Microscope (CLSM). Experiments in vitro confirmed that DOX and Fe were released and concentrated in cells, and a large number of ROS production and induction of LPO were detected by DCFH-DA and C11-BODIPY probes in cells. Apoptosis experiments further confirmed that DOX@HFON induced apoptosis, autophagy and ferroptosis. In the vivo experiment, the anti-tumor therapy effect of MAGNET@DOX@HFON group was the most significant, and in MRI also proved that the drug had great tendency and imaging ability in tumor tissue. Conclusion The new magnetic targeting nano-diagnosis and treatment platform prepared in this experiment is expected to become a new treatment model for TNBC.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shengxian Bao
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guanhua Qiu
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jingchen Liang
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Qin Wang
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqi Zhu
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guchun Qin
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Junjie Liu
- Department of Ultrasound and Department of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China,Correspondence: Junjie Liu; Chang Zhao, Email ;
| | - Chang Zhao
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
4
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
pH-Regulated Strategy and Mechanism of Antibody Orientation on Magnetic Beads for Improving Capture Performance of Staphylococcus Species. Foods 2022; 11:foods11223599. [PMID: 36429188 PMCID: PMC9689862 DOI: 10.3390/foods11223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Immunomagnetic beads (IMBs) have been widely used to capture and isolate target pathogens from complex food samples. The orientation of the antibody immobilized on the surface of magnetic beads (MBs) is closely related to the effective recognition with an antigen. We put forward an available strategy to orient the antibody on the surface of MBs by changing the charged amino group ratio of the reactive amino groups at optimal pH value. Quantum dots labeling antigen assay, antigen-binding fragment (Fab) accessibility assay and lysine mimicking were used for the first time to skillfully illustrate the antibody orientation mechanism. This revealed that the positively charged ε-NH2 group of lysine on the Fc relative to the uncharged amino terminus on Fab was preferentially adsorbed on the surface of MBs with a negatively charged group at pH 8.0, resulting in antigen binding sites of antibody fully exposed. This study contributes to the understanding of the antibody orientation on the surface of MBs and the potential application of IMBs in the separation and detection of pathogenic bacteria in food samples.
Collapse
|
6
|
Lee DN, Kim YR, Kim Y, Park BJ, Lee SJ, Kim SJ, Shin JH. Therapeutic Potency of NO Loaded into Anticancer Copper Metal-Organic Framework through Nonclassical Hydrogen Bonding. ACS APPLIED BIO MATERIALS 2022; 5:4301-4309. [PMID: 36041482 DOI: 10.1021/acsabm.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) are potential exogenous scaffolds for therapeutic nitric oxide (NO) delivery because they can store drug or bioactive gas molecules within pores or on active metal sites. Herein, we employed a Cu-MOF coordinated with glutarate (glu) and 1,2-bis(4-pyridyl)ethane (bpa) to obtain NO-loaded Cu-MOF (NO⊂Cu-MOF). NO loading transformed the space group of Cu-MOF from monoclinic C2/c to triclinic P-1 through nonclassical hydrogen bonding with glu and bpa. Cu-MOF showed good stability in deionized water and phosphate-buffered saline. NO⊂Cu-MOF released up to 1.10 μmol mg-1 NO over 14.6 h at 37 °C, which is suitable for therapeutic applications. NO⊂Cu-MOF showed moderate biocompatibility with L-929 cells and significant anticancer activity against HeLa cells, suggesting an apoptosis-mediated cell death mechanism. These insights into NO bonding modes with Cu-MOF that enable controlled NO release can inspire the design of functional MOFs as hybrid NO donors for drug delivery.
Collapse
Affiliation(s)
- Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul01897, Republic of Korea
| | - Yeong Rim Kim
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| | - Youngmee Kim
- NanoBio-Energy Materials Center and Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Republic of Korea
| | - Bong Joo Park
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul01897, Republic of Korea
| | - Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul01897, Republic of Korea
| | - Sung-Jin Kim
- NanoBio-Energy Materials Center and Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Republic of Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| |
Collapse
|
7
|
Siddique S, Chow JCL. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2826. [PMID: 36014691 PMCID: PMC9416120 DOI: 10.3390/nano12162826] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 05/21/2023]
Abstract
Cancer theranostics is the combination of diagnosis and therapeutic approaches for cancer, which is essential in personalized cancer treatment. The aims of the theranostics application of nanoparticles in cancer detection and therapy are to reduce delays in treatment and hence improve patient care. Recently, it has been found that the functionalization of nanoparticles can improve the efficiency, performance, specificity and sensitivity of the structure, and increase stability in the body and acidic environment. Moreover, functionalized nanoparticles have been found to possess a remarkable theranostic ability and have revolutionized cancer treatment. Each cancer treatment modality, such as MRI-guided gene therapy, MRI-guided thermal therapy, magnetic hyperthermia treatment, MRI-guided chemotherapy, immunotherapy, photothermal and photodynamic therapy, has its strengths and weaknesses, and combining modalities allows for a better platform for improved cancer control. This is why cancer theranostics have been investigated thoroughly in recent years and enabled by functionalized nanoparticles. In this topical review, we look at the recent advances in cancer theranostics using functionalized nanoparticles. Through understanding and updating the development of nanoparticle-based cancer theranostics, we find out the future challenges and perspectives in this novel type of cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - James C L Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
8
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.
Collapse
|
10
|
Dual Targeting with Cell Surface Electrical Charge and Folic Acid via Superparamagnetic Fe 3O 4@Cu 2-xS for Photothermal Cancer Cell Killing. Cancers (Basel) 2021; 13:cancers13215275. [PMID: 34771438 PMCID: PMC8582571 DOI: 10.3390/cancers13215275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary There are two critical issues in cancer hyperthermia: (1) photothermal effect and (2) cancer cell targeting efficiency. While the former can be addressed by rendering the nano carriers with significant IR absorptions, the latter is dealt with using a novel dual-targeting strategy. In this study, the Fe3O4 nanoparticle was coated with a shell of Cu2–xS; the resulting Fe3O4@Cu2–xS exhibited strong IR absorption for enhanced photothermal cancer cell killing. The Fe3O4@Cu2–xS nanoparticles are surface functionalized with amphiphilic polyethylenimine (LA-PEI) and Folic acid-TPGS (FA-TPGS) for two purposes: (1) the PEI surface coating renders the particles positively charged, enabling them to effectively bind with negatively-charged cancer cells for more intimate nano/bio contact resulting in much stronger cancer cell ablation; (2) the folic acid modification further increases the targeting efficiency via the folic receptors on the cancer cell surface. Dual-targeting with the surface electrical charge and the tumor-specific folic acid synergistically facilitates both passive and active targeting for significantly improved photothermal killing. Abstract A major challenge in cancer therapy is to achieve high cell targeting specificity for the highest therapeutic efficacy. Two major approaches have been shown to be quite effective, namely, (1) bio-marker mediated cell targeting, and (2) electrical charge driven cell binding. The former utilizes the tumor-specific moieties on nano carrier surfaces for active targeting, while the latter relies on nanoparticles binding onto the cancer cell surfaces due to differences in electrical charge. Cancer cells are known for their hallmark metabolic pattern: high rates of glycolysis that lead to negatively charged cell surfaces. In this study, the nanoparticles of Fe3O4@Cu2–xS were rendered positively charged by conjugating their surfaces with different functional groups for strong electrostatic binding onto the negatively-charged cancer cells. In addition to the positively charged surfaces, the Fe3O4@Cu2–xS nanoparticles were also modified with folic acid (FA) for biomarker-based cell targeting. The dual-targeting approach synergistically utilizes the effectiveness of both charge- and biomarker-based cell binding for enhanced cell targeting. Further, these superparamagnetic Fe3O4@Cu2–xS nanoparticles exhibit much stronger IR absorptions compared to Fe3O4, therefore much more effective in photothermal therapy.
Collapse
|
11
|
Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M, Maingle M, Patil SP, Arya N, Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug Chem 2021; 32:448-465. [PMID: 33656319 DOI: 10.1021/acs.bioconjchem.1c00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptides are signaling epitopes that control many vital biological events. Increased specificity, synthetic feasibility with concomitant lack of toxicity, and immunogenicity make this emerging class of biomolecules suitable for different applications including therapeutics, diagnostics, and biomedical engineering. Further, chitosan, a naturally occurring linear polymer composed of d-glucosamine and N-acetyl-d-glucosamine units, possesses anti-microbial, muco-adhesive, and hemostatic properties along with excellent biocompatibility. As a result, chitosan finds application in drug/gene delivery, tissue engineering, and bioimaging. Despite these applications, chitosan demonstrates limited cell adhesion and lacks biosignaling. Therefore, peptide-chitosan hybrids have emerged as a new class of biomaterial with improved biosignaling properties and cell adhesion properties. As a result, recent studies encompass increased application of peptide-chitosan hybrids as composites or conjugates in drug delivery, cell therapy, and tissue engineering and as anti-microbial material. This review discusses the recent investigations involving chitosan-peptide materials and uncovers various aspects of these interesting hybrid materials for biomedical applications.
Collapse
|
12
|
Sánchez J, Rodríguez-Reyes M, Cortés-Hernández DA, Ávila-Orta CA, Reyes-Rodríguez PY. Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|