1
|
Mahootiha M, Tak D, Ye Z, Zapaishchykova A, Likitlersuang J, Climent Pardo JC, Boyd A, Vajapeyam S, Chopra R, Prabhu SP, Liu KX, Elhalawani H, Nabavizadeh A, Familiar A, Mueller S, Aerts HJWL, Bandopadhayay P, Ligon KL, Haas-Kogan D, Poussaint TY, Qadir HA, Balasingham I, Kann BH. Multimodal deep learning improves recurrence risk prediction in pediatric low-grade gliomas. Neuro Oncol 2025; 27:277-290. [PMID: 39211987 PMCID: PMC11726244 DOI: 10.1093/neuonc/noae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning (DL) of magnetic resonance imaging (MRI) tumor features could improve postoperative pLGG risk stratification. METHODS We used a pretrained DL tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from 2 institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained 3 DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with (1) clinical features, (2) DL-MRI features, and (3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan-Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. RESULTS Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, P < .0001). CONCLUSIONS DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.
Collapse
Affiliation(s)
- Maryamalsadat Mahootiha
- Faculty of Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Divyanshu Tak
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Zezhong Ye
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Zapaishchykova
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Jirapat Likitlersuang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan Carlos Climent Pardo
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Aidan Boyd
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Sridhar Vajapeyam
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rishi Chopra
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin X Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Nabavizadeh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ariana Familiar
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Hugo J W L Aerts
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tina Y Poussaint
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hemin Ali Qadir
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Benjamin H Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Skarne N, D'Souza RCJ, Palethorpe HM, Bradbrook KA, Gomez GA, Day BW. Personalising glioblastoma medicine: explant organoid applications, challenges and future perspectives. Acta Neuropathol Commun 2025; 13:6. [PMID: 39799339 PMCID: PMC11724554 DOI: 10.1186/s40478-025-01928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches. Recent technological developments have permitted the maintenance, expansion and cryopreservation of GBM explant organoid (GBO) tissue. GBOs represent a translational leap forward and are currently the state-of-the-art in 3D in vitro culture system, retaining brain cancer heterogeneity, and transiently maintaining the immune infiltrate and tumour microenvironment (TME). Here, we provide a review of existing brain cancer organoid technologies, in vivo xenograft approaches, evaluate in-detail the key advantages and limitations of this rapidly emerging technology, and consider solutions to overcome these difficulties. GBOs currently hold significant promise, with the potential to emerge as the key translational tool to synergise and enhance next-generation omics efforts and guide personalised medicine approaches for brain cancer patients into the future.
Collapse
Affiliation(s)
- Niclas Skarne
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia.
| | - Rochelle C J D'Souza
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia
| | - Helen M Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Kylah A Bradbrook
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Bryan W Day
- Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Biomedical Sciences and Faculty of Medicine, The University of Queensland, Brisbane, 4072, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059, Australia.
| |
Collapse
|
3
|
Lemmen J, Albertine N, Abdi M, Mohan N, Keitany K, Eliasson-Hofvander M, Kaspers G, Njuguna F. Pediatric Brain Tumors in Western Kenya: Patient Outcomes and Healthcare Providers' Perspectives. Pediatr Blood Cancer 2025:e31544. [PMID: 39797541 DOI: 10.1002/pbc.31544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Pediatric brain tumors are understudied compared to other pediatric malignancies in low- and middle-income countries. Care delivery is inherently dependent on collaboration between multiple departments. This study aimed to present baseline data of pediatric neuro-oncology care in Western Kenya and illustrate barriers and facilitators of multidisciplinary care. METHODS We performed a mixed-methods study using medical records and interviews. Children below age 19 years, managed for a brain tumor at the neurosurgery or pediatric oncology departments between 2015 and 2022, were included. Various cadres (consultants, residents, medical officers, clinical officers, nurses, counselors) and teams (neurosurgery, pediatric oncology, radio-oncology, radiology, pathology) involved in pediatric brain tumor care participated. RESULTS Seventy-nine brain tumor patients were identified. The most prevalent confirmed diagnosis was medulloblastoma (n = 21). Most patients underwent surgery (n = 60; 76%). Event-free survival rate at 2 years was 13%. Abandonment was the most common (n = 36; 46%) treatment failure. Multidisciplinary consultation occurred more frequently between 2020 and 2022 than between 2015 and 2019 (OR 2.7 [95% CI: 1.0-6.9; p = 0.04]). Barriers and potential facilitators of multidisciplinary management were resources, diagnostic and therapeutic flow, standards, knowledge, information comprehension, and work relationships. Themes interacted at a governmental, facility, and community levels. CONCLUSION This baseline overview of pediatric neuro-oncology care in Western Kenya showed that survival of children with pediatric brain tumors was poor and treatment abandonment was common. Strengthening the capacity at different organizational levels will improve continuity of care and expand the knowledge to support holistic multidisciplinary care for children with brain tumors in Kenya.
Collapse
Affiliation(s)
- Jesse Lemmen
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Njie Albertine
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Miyaada Abdi
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nilesh Mohan
- Department of Neurosurgery, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Kibet Keitany
- Department of Pathology, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | | | - Gertjan Kaspers
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Festus Njuguna
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Department of Child Health and Pediatrics, Moi University School of Medicine, Eldoret, Kenya
| |
Collapse
|
4
|
Zelt S, Cooney T, Yu S, Daral S, Krebs B, Markan R, Manley P, Kieran M, Govinda Raju S. Disease burden and healthcare utilization in pediatric low-grade glioma: A United States retrospective study of linked claims and electronic health records. Neurooncol Pract 2024; 11:583-592. [PMID: 39279771 PMCID: PMC11398936 DOI: 10.1093/nop/npae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Despite high long-term survival rates, pediatric low-grade gliomas (pLGGs) are linked with significant tumor- and treatment-associated morbidities that may persist throughout life. The aims of this descriptive cross-sectional pilot study were to characterize health conditions among a cohort of patients with pLGG and explore the feasibility of quantifying disease burden and healthcare resource utilization (HRU). Methods Optum® Market Clarity Data were used to identify patients aged ≤18 years with an ICD-10 code for brain neoplasm, ≥1 physician notes, and with evidence of pLGG recorded between January 1, 2017 and June 30, 2018. Outcomes including health characteristics, HRU, medications, and procedures were assessed at 6-month intervals over 36 months. Results One hundred and fifty-four patients were identified with pLGG and over half experienced headache/migraine, respiratory infection, pain, or behavioral issues during the 36-month study period. The most common comorbidities were ocular/visual (including blindness), mental health disorders, seizures, and behavioral/cognition disorders. Most symptoms and comorbidities persisted or increased during the study period, indicating long-term health deficits. HRU, including speciality care visits, filled prescriptions, and administered medications, was common; 74% of patients had prescriptions for anti-infectives, 56% antiemetics, and 52% required pain or fever relief. Sixty-five percent of patients underwent treatment to control their pLGG, the most common being brain surgery. Little decline was observed in medication use during the study period. Conclusions Patients with pLGG have complex healthcare needs requiring high HRU, often over a long time. Patients need to be optimally managed to minimize disease- and treatment-related burden and HRU.
Collapse
Affiliation(s)
- Susan Zelt
- Day One Biopharmaceuticals, Inc., Brisbane, California, USA (S.Z., T.C., S.Y., P.M., M.K., S.G.R.)
| | - Tabitha Cooney
- Day One Biopharmaceuticals, Inc., Brisbane, California, USA (S.Z., T.C., S.Y., P.M., M.K., S.G.R.)
| | - Sandie Yu
- Day One Biopharmaceuticals, Inc., Brisbane, California, USA (S.Z., T.C., S.Y., P.M., M.K., S.G.R.)
| | - Shailaja Daral
- Optum Lifesciences, Inc., Eden Prairie, Minnesota, USA (S.D., B.K., R.M.)
| | - Blake Krebs
- Optum Lifesciences, Inc., Eden Prairie, Minnesota, USA (S.D., B.K., R.M.)
| | - Riddhi Markan
- Optum Lifesciences, Inc., Eden Prairie, Minnesota, USA (S.D., B.K., R.M.)
| | - Peter Manley
- Day One Biopharmaceuticals, Inc., Brisbane, California, USA (S.Z., T.C., S.Y., P.M., M.K., S.G.R.)
| | - Mark Kieran
- Day One Biopharmaceuticals, Inc., Brisbane, California, USA (S.Z., T.C., S.Y., P.M., M.K., S.G.R.)
| | - Sandya Govinda Raju
- Day One Biopharmaceuticals, Inc., Brisbane, California, USA (S.Z., T.C., S.Y., P.M., M.K., S.G.R.)
| |
Collapse
|
5
|
Strauss I, Gabay S, Roth J. Laser interstitial thermal therapy (LITT) for pediatric low-grade glioma-case presentations and lessons learned. Childs Nerv Syst 2024; 40:3119-3127. [PMID: 38703238 PMCID: PMC11511763 DOI: 10.1007/s00381-024-06419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The surgical treatment of brain tumors has developed over time, offering customized strategies for patients and their specific lesions. One of the most recent advances in pediatric neuro-oncological surgery is laser interstitial thermal therapy (LITT). However, its effectiveness and indications are still being evaluated. The aim of this work is to review the current literature on LITT for pediatric low-grade gliomas (pLGG) and evaluate our initial results in this context. METHODS We retrospectively reviewed our pediatric neurosurgery database for patients who received LITT treatment between November 2019 and December 2023. We collected data on the indications for LITT, technical issues during the procedure, and clinical and radiological follow-up. RESULTS Three patients underwent 5 LITT procedures for pLGG. The lesion was thalamo-peduncular in one patient, cingulate in one, and deep parietal in one patient. Two patients had a previous open resection done and were diagnosed with pLGG. One patient underwent a stereotaxic biopsy during the LITT procedure that was non-diagnostic. The same patient underwent a later open resection of the tumor in the cingulate gyrus. There were no surgical complications and all patients were discharged home on the first post-operative day. The follow-up period was between 20 and 40 months. Radiological follow-up showed a progressive reduction of the tumor in patients with LGG. CONCLUSION Laser interstitial thermal therapy is a minimally invasive treatment that shows promise in treating deep-seated pLGG in children. The treatment has demonstrated a reduction in tumor volume, and the positive results continue over time. LITT can be used as an alternative treatment for tumors located in areas that are difficult to access surgically or in cases where other standard treatment options have failed.
Collapse
Affiliation(s)
- Ido Strauss
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Segev Gabay
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jonathan Roth
- Pediatric Neurosurgery and Pediatric Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
van Roessel IMAA, Gorter JE, Bakker B, van den Heuvel-Eibrink MM, Lequin MH, van der Lugt J, Meijer L, Schouten-van Meeteren AYN, van Santen HM. Bone health in childhood low-grade glioma: an understudied problem. Endocr Connect 2024; 13:e240224. [PMID: 39140359 PMCID: PMC11466249 DOI: 10.1530/ec-24-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Objective Children with a supratentorial midline low-grade glioma (LGG) may be at risk for impaired bone health due to hypothalamic-pituitary dysfunction, obesity, exposure to multiple treatment modalities, and/or decreased mobility. The presence of impaired bone health and/or its severity in this population has been understudied. We aimed to identify the prevalence and risk factors for bone problems in children with supratentorial midline LGG. Materials and methods A retrospective study was performed in children with supratentorial midline (suprasellar or thalamic) LGG between 1 January 2003 and 1 January 2022, visiting the Princess Máxima Center for Pediatric Oncology. Impaired bone health was defined as the presence of vertebral fractures and/or very low bone mineral density (BMD). Results In total, 161 children were included, with a median age at tumor diagnosis of 4.7 years (range: 0.1-17.9) and a median follow-up of 6.1 years (range: 0.1-19.9). Five patients (3.1%) had vertebral fractures. In 99 patients, BMD was assessed either by Dual Energy X-ray Absorptiometry (n = 12) or Bone Health Index (n = 95); 34 patients (34.3%) had a low BMD (≤ -2.0). Impaired visual capacity was associated with bone problems in multivariable analysis (OR: 6.63, 95% CI: 1.83-24.00, P = 0.004). Conclusion In this retrospective evaluation, decreased BMD was prevalent in 34.3% of children with supratentorial midline LGG. For the risk of developing bone problems, visual capacity seems highly relevant. Surveillance of bone health must be an aspect of awareness in the care and follow-up of children with a supratentorial midline LGG. Significance statement Patients with supratentorial midline LGG may encounter various risk factors for impaired bone health. Bone problems in survivors of childhood supratentorial midline LGG are, however, understudied. This is the first paper to address the prevalence of bone problems in this specific patient population, revealing visual problems as an important risk factor. Diencephalic syndrome historyand/or weight problems associated with hypothalamic dysfunction were related to bone problems in univariate analyses. The results of this study can be used in the development of guidelines to adequately screen and treat these patients to subsequently minimizing bone problems as one of the endocrine complications.
Collapse
Affiliation(s)
- I M A A van Roessel
- Department of Pediatric Neuro-oncology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
- Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center, Lundlaan, EA Utrecht, The Netherlands
| | - J E Gorter
- Department of Pediatric Neuro-oncology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
- Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center, Lundlaan, EA Utrecht, The Netherlands
| | - B Bakker
- Department of Pediatric Neuro-oncology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
- Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center, Lundlaan, EA Utrecht, The Netherlands
| | - M M van den Heuvel-Eibrink
- Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
- Wilhelmina Children’s Hospital, University Medical Center, Lundlaan, EA Utrecht, The Netherlands
| | - M H Lequin
- Department of Radiology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
- Department of Radiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J van der Lugt
- Department of Pediatric Neuro-oncology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
| | - L Meijer
- Department of Pediatric Neuro-oncology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
| | | | - H M van Santen
- Department of Pediatric Neuro-oncology, Princess Máxima Center, Heidelberglaan, CS Utrecht, The Netherlands
- Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center, Lundlaan, EA Utrecht, The Netherlands
| |
Collapse
|
7
|
Dietvorst S, Narayan A, Agbor C, Hennigan D, Gorodezki D, Bianchi F, Mallucci C, Frassanito P, Padayachy L, Schuhmann MU. Role of intraoperative ultrasound and MRI to aid grade of resection of pediatric low-grade gliomas: accumulated experience from 4 centers. Childs Nerv Syst 2024; 40:3165-3172. [PMID: 39012356 DOI: 10.1007/s00381-024-06532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Pediatric low-grade gliomas (pLGG) are the most common brain tumors in children and achieving complete resection (CR) in pLGG is the most important prognostic factor. There are multiple intraoperative tools to optimize the extent of resection (EOR). This article investigates and discusses the role of intraoperative ultrasound (iUS) and intraoperative magnetic resonance imaging (iMRI) in the surgical treatment of pLGG. METHODS The tumor registries at Tuebingen, Rome and Pretoria were searched for pLGG with the use of iUS and data on EOR. The tumor registries at Liverpool and Tuebingen were searched for pLGG with the use of iMRI where preoperative CR was the surgical intent. Different iUS and iMRI machines were used in the 4 centers. RESULTS We included 111 operations which used iUS and 182 operations using iMRI. Both modalities facilitated intended CR in hemispheric supra- and infratentorial location in almost all cases. In more deep-seated tumor location like supratentorial midline tumors, iMRI has advantages over iUS to visualize residual tumor. Functional limitations limiting CR arising from eloquent involved or neighboring brain tissue apply to both modalities in the same way. In the long-term follow-up, both iUS and iMRI show that achieving a complete resection on intraoperative imaging significantly lowers recurrence of disease (chi-square test, p < 0.01). CONCLUSION iUS and iMRI have specific pros and cons, but both have been proven to improve achieving CR in pLGG. Due to advances in image quality, cost- and time-efficiency, and efforts to improve the user interface, iUS has emerged as the most accessible surgical adjunct to date to aid and guide tumor resection. Since the EOR has the most important effect on long-term outcome and disease control of pLGG in most locations, we strongly recommend taking all possible efforts to use iUS in any surgery, independent of intended resection extent and iMRI if locally available.
Collapse
Affiliation(s)
- Sofie Dietvorst
- Department of Neurosurgery, Alder Hey Children's Hospital NHS Trust, Eaton Road, Liverpool, L12 2AP, UK.
| | - Armen Narayan
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
| | - Cyril Agbor
- Brain Tumor and Translational Neuroscience Centre, Department of Neurosurgery, University of Pretoria, Pretoria, South Africa
| | - Dawn Hennigan
- Department of Neurosurgery, Alder Hey Children's Hospital NHS Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - David Gorodezki
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Federico Bianchi
- Pediatric Neurosurgery, Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Conor Mallucci
- Department of Neurosurgery, Alder Hey Children's Hospital NHS Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Paolo Frassanito
- Pediatric Neurosurgery, Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Llewellyn Padayachy
- Brain Tumor and Translational Neuroscience Centre, Department of Neurosurgery, University of Pretoria, Pretoria, South Africa
- Pediatric Neurosurgery Unit, Department of Neurosurgery, Steve Biko Academic Hospital Pretoria, Pretoria, South Africa
| | - Martin Ulrich Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Chesney KM, Keating GF, Patel N, Kilburn L, Fonseca A, Wu CC, Nazarian J, Packer RJ, Donoho DA, Oluigbo C, Myseros JS, Keating RF, Syed HR. The role of focused ultrasound for pediatric brain tumors: current insights and future implications on treatment strategies. Childs Nerv Syst 2024; 40:2333-2344. [PMID: 38702518 DOI: 10.1007/s00381-024-06413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Focused ultrasound (FUS) is an innovative and emerging technology for the treatment of adult and pediatric brain tumors and illustrates the intersection of various specialized fields, including neurosurgery, neuro-oncology, radiation oncology, and biomedical engineering. OBJECTIVE The authors provide a comprehensive overview of the application and implications of FUS in treating pediatric brain tumors, with a special focus on pediatric low-grade gliomas (pLGGs) and the evolving landscape of this technology and its clinical utility. METHODS The fundamental principles of FUS include its ability to induce thermal ablation or enhance drug delivery through transient blood-brain barrier (BBB) disruption, emphasizing the adaptability of high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU) applications. RESULTS Several ongoing clinical trials explore the potential of FUS in offering alternative therapeutic strategies for pathologies where conventional treatments fall short, specifically centrally-located benign CNS tumors and diffuse intrinsic pontine glioma (DIPG). A case illustration involving the use of HIFU for pilocytic astrocytoma is presented. CONCLUSION Discussions regarding future applications of FUS for the treatment of gliomas include improved drug delivery, immunomodulation, radiosensitization, and other technological advancements.
Collapse
Affiliation(s)
- Kelsi M Chesney
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Gregory F Keating
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Nirali Patel
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Lindsay Kilburn
- Brain Tumor Institute, Children's National Hospital, Washington, DC, USA
| | - Adriana Fonseca
- Brain Tumor Institute, Children's National Hospital, Washington, DC, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Javad Nazarian
- Brain Tumor Institute, Children's National Hospital, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, Washington, DC, USA
| | - Daniel A Donoho
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - John S Myseros
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Robert F Keating
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
- Department of Neurosurgery, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hasan R Syed
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA.
- Department of Neurosurgery, George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Bhangale PN, Kashikar SV, Kasat PR, Shrivastava P, Kumari A. A Comprehensive Review on the Role of MRI in the Assessment of Supratentorial Neoplasms: Comparative Insights Into Adult and Pediatric Cases. Cureus 2024; 16:e67553. [PMID: 39310617 PMCID: PMC11416707 DOI: 10.7759/cureus.67553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) is a critical diagnostic tool in assessing supratentorial neoplasms, offering unparalleled detail and specificity in brain imaging. Supratentorial neoplasms in the cerebral hemispheres, basal ganglia, thalamus, and other structures above the tentorium cerebelli present significant diagnostic and therapeutic challenges. These challenges vary notably between adult and pediatric populations due to differences in tumor types, biological behavior, and patient management strategies. This comprehensive review explores the role of MRI in diagnosing, planning treatment, monitoring response, and detecting recurrence in supratentorial neoplasms, providing comparative insights into adult and pediatric cases. The review begins with an overview of the epidemiology and pathophysiology of these tumors in different age groups, followed by a detailed examination of standard and advanced MRI techniques, including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and magnetic resonance spectroscopy (MRS). We discuss the specific imaging characteristics of various neoplasms and the importance of tailored approaches to optimize diagnostic accuracy and therapeutic efficacy. The review also addresses the technical and interpretative challenges unique to pediatric imaging and the implications for long-term patient outcomes. By highlighting the comparative utility of MRI in adult and pediatric cases, this review aims to enhance the understanding of its pivotal role in managing supratentorial neoplasms. It underscores the necessity of age-specific diagnostic and therapeutic strategies. Emerging MRI technologies and future research directions are also discussed, emphasizing the potential for advancements in personalized imaging approaches and improved patient care across all age groups.
Collapse
Affiliation(s)
- Paritosh N Bhangale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyal Shrivastava
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anjali Kumari
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Gorodezki D, Schuhmann MU, Ebinger M, Schittenhelm J. Dissecting the Natural Patterns of Progression and Senescence in Pediatric Low-Grade Glioma: From Cellular Mechanisms to Clinical Implications. Cells 2024; 13:1215. [PMID: 39056798 PMCID: PMC11274692 DOI: 10.3390/cells13141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in these tumors may shape the understanding of the molecular mechanisms determining the versatile progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth on the tumor microenvironment. In this work, we provide an overview of the current understanding of the multilayered cellular mechanisms and clinical factors determining the natural progression patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for advanced stratification for the management of these tumors within a multimodal treatment approach.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Tak D, Garomsa BA, Zapaishchykova A, Ye Z, Vajapeyam S, Mahootiha M, Climent Pardo JC, Smith C, Familiar AM, Chaunzwa T, Liu KX, Prabhu S, Bandopadhayay P, Nabavizadeh A, Mueller S, Aerts HJ, Haas-Kogan D, Poussaint TY, Kann BH. Longitudinal risk prediction for pediatric glioma with temporal deep learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.04.24308434. [PMID: 38978642 PMCID: PMC11230342 DOI: 10.1101/2024.06.04.24308434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence pattern and severity are heterogeneous and challenging to predict with established clinical and genomic markers. Resultingly, almost all children undergo frequent, long-term, magnetic resonance (MR) brain surveillance regardless of individual recurrence risk. Deep learning analysis of longitudinal MR may be an effective approach for improving individualized recurrence prediction in gliomas and other cancers but has thus far been infeasible with current frameworks. Here, we propose a self-supervised, deep learning approach to longitudinal medical imaging analysis, temporal learning, that models the spatiotemporal information from a patient's current and prior brain MRs to predict future recurrence. We apply temporal learning to pediatric glioma surveillance imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that longitudinal imaging analysis with temporal learning improves recurrence prediction performance by up to 41% compared to traditional approaches, with improvements in performance in both low- and high-grade glioma. We find that recurrence prediction accuracy increases incrementally with the number of historical scans available per patient. Temporal deep learning may enable point-of-care decision-support for pediatric brain tumors and be adaptable more broadly to patients with other cancers and chronic diseases undergoing surveillance imaging.
Collapse
|
12
|
Sathyakumar S, Martinez M, Perreault S, Legault G, Bouffet E, Jabado N, Larouche V, Renzi S. Advances in pediatric gliomas: from molecular characterization to personalized treatments. Eur J Pediatr 2024; 183:2549-2562. [PMID: 38558313 DOI: 10.1007/s00431-024-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments. Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments. What is Known: • Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population. What is New: • Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas. • The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.
Collapse
Affiliation(s)
| | - Matthew Martinez
- Department of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Perreault
- Division of Pediatric Neurology, Department of Neurosciences, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Geneviève Legault
- Department of Pediatrics, Division of Neurology, Montreal Children's Hospital - McGill University Health Center, Montreal, Québec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Valérie Larouche
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada
| | - Samuele Renzi
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada.
| |
Collapse
|
13
|
Das S, Ahlawat S, Panda AK, Sarangi J, Jain P, Gupta RK, Vaishya S, Patir R. Pediatric high grade gliomas: A comprehensive histopathological, immunohistochemical and molecular integrated approach in routine practice. Pathol Res Pract 2024; 258:155347. [PMID: 38763090 DOI: 10.1016/j.prp.2024.155347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Pediatric high grade gliomas have undergone remarkable changes in recent time with discovery of new molecular pathways. They have been added separately in current WHO 2021 blue book. All the entities show characteristic morphology and immunohistochemistry. Methylation data correctly identifies these entities into particular group of clusters. The pediatric group high grade glioma comprises- Diffuse midline glioma, H3K27-altered; Diffuse hemispheric glioma, H3G34-mutant; Diffuse pediatric-type high-grade glioma, H3-wild type & IDH-wild type; Infant hemispheric glioma and Epithelioid glioblastoma/Grade 3 pleomorphic xanthoastrocytoma and very rare IDH-mutant astrocytoma. However it is not always feasible to perform these molecular tests where cost-effective diagnosis is a major concern. Here we discuss the major entities with their characteristic histopathology, immunohistochemistry and molecular findings that may help to reach to suggest the diagnosis and help the clinician for appropriate treatment strategies. We have also made a simple algorithmic flow chart integrated with histopathology, immunohistochemistry and molecular characteristics for better understanding.
Collapse
Affiliation(s)
- Sumanta Das
- Agilus diagnostic Ltd, Fortis Memorial Research Institute, Gurugram, India.
| | - Sunita Ahlawat
- Agilus diagnostic Ltd, Fortis Memorial Research Institute, Gurugram, India
| | - Arun Kumar Panda
- Agilus diagnostic Ltd, Fortis Memorial Research Institute, Gurugram, India
| | - Jayati Sarangi
- Agilus diagnostic Ltd, Fortis Memorial Research Institute, Gurugram, India
| | - Priti Jain
- Agilus diagnostic Ltd, Fortis Memorial Research Institute, Gurugram, India
| | - Rakesh Kumar Gupta
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Sandeep Vaishya
- Department of Neurosurgery, Fortis Memorial Research Institute, GurugramI, India
| | - Rana Patir
- Department of Neurosurgery, Fortis Memorial Research Institute, GurugramI, India
| |
Collapse
|
14
|
Deng Z, Luo J, Ma J, Jin YN, Yu YV. Glutathione metabolism-related gene signature predicts prognosis and treatment response in low-grade glioma. Aging (Albany NY) 2024; 16:9518-9546. [PMID: 38819225 PMCID: PMC11210255 DOI: 10.18632/aging.205881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Cancer cells can induce molecular changes that reshape cellular metabolism, creating specific vulnerabilities for targeted therapeutic interventions. Given the importance of reactive oxygen species (ROS) in tumor development and drug resistance, and the abundance of reduced glutathione (GSH) as the primary cellular antioxidant, we examined an integrated panel of 56 glutathione metabolism-related genes (GMRGs) across diverse cancer types. This analysis revealed a remarkable association between GMRGs and low-grade glioma (LGG) survival. Unsupervised clustering and a GMRGs-based risk score (GS) categorized LGG patients into two groups, linking elevated glutathione metabolism to poorer prognosis and treatment outcomes. Our GS model outperformed established clinical prognostic factors, acting as an independent prognostic factor. GS also exhibited correlations with pro-tumor M2 macrophage infiltration, upregulated immunosuppressive genes, and diminished responses to various cancer therapies. Experimental validation in glioma cell lines confirmed the critical role of glutathione metabolism in glioma cell proliferation and chemoresistance. Our findings highlight the presence of a unique metabolic susceptibility in LGG and introduce a novel GS system as a highly effective tool for predicting the prognosis of LGG.
Collapse
Affiliation(s)
- Zaidong Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Luo
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Ma
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Maleszewska M, Wojnicki K, Mieczkowski J, Król SK, Jacek K, Śmiech M, Kocyk M, Ciechomska IA, Bujko M, Siedlecki J, Kotulska K, Grajkowska W, Zawadzka M, Kaminska B. DMRTA2 supports glioma stem-cell mediated neovascularization in glioblastoma. Cell Death Dis 2024; 15:228. [PMID: 38509074 PMCID: PMC10954651 DOI: 10.1038/s41419-024-06603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Due to its fast proliferation, diffusive growth and therapy resistance survival times are less than two years for patients with IDH-wildtype GBM. GBM is noted for the considerable cellular heterogeneity, high stemness indices and abundance of the glioma stem-like cells known to support tumor progression, therapeutic resistance and recurrence. Doublesex- and mab-3-related transcription factor a2 (DMRTA2) is involved in maintaining neural progenitor cells (NPC) in the cell cycle and its overexpression suppresses NPC differentiation. Despite the reports showing that primary GBM originates from transformed neural stem/progenitors cells, the role of DMRTA2 in gliomagenesis has not been elucidated so far. Here we show the upregulation of DMRTA2 expression in malignant gliomas. Immunohistochemical staining showed the protein concentrated in small cells with high proliferative potential and cells localized around blood vessels, where it colocalizes with pericyte-specific markers. Knock-down of DMRTA2 in human glioma cells impairs proliferation but not viability of the cells, and affects the formation of the tumor spheres, as evidenced by strong decrease in the number and size of spheres in in vitro cultures. Moreover, the knockdown of DMRTA2 in glioma spheres affects the stabilization of the glioma stem-like cell-dependent tube formation in an in vitro angiogenesis assay. We conclude that DMRTA2 is a new player in gliomagenesis and tumor neovascularization and due to its high expression in malignant gliomas could be a biomarker and potential target for new therapeutic strategies in glioblastoma.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia K Król
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karol Jacek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Śmiech
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Kocyk
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Janusz Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Zawadzka
- Laboratory of Neuromuscular Plasticity, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Gesaka SR, Okemwa PM, Mwachaka PM. Histological types of brain tumors diagnosed at the Kenyatta National Hospital between 2016 and 2019: a retrospective study. Discov Oncol 2024; 15:39. [PMID: 38368566 PMCID: PMC10874916 DOI: 10.1007/s12672-024-00893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
PURPOSE To determine the histological types of brain tumors diagnosed at the Kenyatta National Hospital, Nairobi, Kenya. METHODS This retrospective study retrieved patient-archived records at the Kenyatta National Hospital for the period 2016-2019. The histological types of brain tumors were assessed according to age, sex, and the WHO classification for CNS tumors using the GNU PSPP version 1.6.2-g78a33 software. Results were presented in tables and figures. RESULTS During the study period, brain tumors appeared to increase gradually; however, there was a decline in 2018. During the study period, 345 brain tumor records were retrieved. Data on age were missing 33 records; hence, 312 records were included for age analyses. The mean age for the pediatrics and adults was 9 (± 5 SD) and 45 (± 14 SD) years, respectively. 88 (28.2%) and 224 (71.8%) tumors were diagnosed among pediatrics and adults, respectively. Most tumors, 60 (19.2%) were reported in patients aged ≤ 10 years, followed by 55 (17.6%), 48 (15.4%), and 47 (15.1%) in patients aged 31-40, 51-60, and 41-50, years, respectively. In both pediatrics and adults, most tumors were diagnosed in females aged ≤ 10 years and 31-40 years, respectively. Overall, two peaks were observed in patients aged 5-15 years and 40-45 years. Gliomas, 43 (48.9%) and medulloblastomas, 21 (23.9%) were the most common tumors in pediatrics, whereas meningiomas, 107 (47.8%) and gliomas, 70 (31.3%) were the most common tumors in adults. Most pediatric and adult tumors were benign with 50 (56.8%) and 157 (70.1%) cases, respectively. Low-grade gliomas and medulloblastomas were the commonest benign and malignant tumors among pediatrics, with 31 (62%) and 21 (55.3%) cases, respectively. Conversely, meningiomas and high-grade gliomas were the most common benign and malignant tumors in adults, with 106 (67.5%) and 44 (65.7%) cases, respectively. CONCLUSION This study highlights the existing burden of brain tumors in Kenya and data from KNH may be representative of the national burden of BTs. This study lays a foundation for subsequent clinical and epidemiological studies and emphasizes the need to adopt existing reporting standards to help realize a complete picture of the burden of brain tumors in Kenya.
Collapse
Affiliation(s)
| | | | - Philip Maseghe Mwachaka
- Department of Human Anatomy and Medical Physiology, University of Nairobi, Nairobi, Kenya
- Neurosurgery Division, Kenyatta National Hospital, Nairobi, Kenya
| |
Collapse
|
17
|
Johns DA, Williams RJ, Smith CM, Nadaminti PP, Samarasinghe RM. Novel insights on genetics and epigenetics as clinical targets for paediatric astrocytoma. Clin Transl Med 2024; 14:e1560. [PMID: 38299304 PMCID: PMC10831580 DOI: 10.1002/ctm2.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Paediatric and adult astrocytomas are notably different, where clinical treatments used for adults are not as effective on children with the same form of cancer and these treatments lead to adverse long-term health concerns. Integrative omics-based studies have shown the pathology and fundamental molecular characteristics differ significantly and cannot be extrapolated from the more widely studied adult disease. Recent clinical advances in our understanding of paediatric astrocytomas, with the aid of next-generation sequencing and epigenome-wide profiling, have led to the identification of key canonical mutations that vary based on the tumour location and age of onset. These driver mutations, in particular the identification of the recurrent histone H3 mutations in high-grade tumours, have confirmed the important role epigenetic dysregulations play in cancer progression. This review summarises the current updates of the classification, epidemiology, pathogenesis and clinical management of paediatric astrocytoma based on their grades and the ongoing clinical trials. It also provides novel insights on genetic and epigenetic alterations as diagnostic biomarkers, highlighting the potential of targeting these pathways as therapeutics for this devastating childhood cancer.
Collapse
Affiliation(s)
- Dona A. Johns
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Richard J. Williams
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- The Graeme Clark Institute, The University of MelbourneMelbourneVICAustralia
| | - Craig M. Smith
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Pavani P. Nadaminti
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, ParkvilleMelbourneVictoriaAustralia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
18
|
Chau L, Nael A, Sato M, Crawford JR. Rare AGK-BRAF gene fusion in an adolescent with supratentorial pleomorphic xanthoastrocytoma. BMJ Case Rep 2024; 17:e258878. [PMID: 38238163 PMCID: PMC10806860 DOI: 10.1136/bcr-2023-258878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Affiliation(s)
- Lianne Chau
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ali Nael
- Department of Pathology, Children's Hospital of Orange County, Orange, California, USA
- Pathology, University of California Irvine Medical Center, Orange, California, USA
| | - Mariko Sato
- Pediatrics, Children's Hospital Orange County, Orange, California, USA
| | - John Ross Crawford
- Pediatrics, Children's Hospital Orange County, Orange, California, USA
- Pediatrics, University of California Irvine, Irvine, California, USA
| |
Collapse
|
19
|
Gonzalez-Vega M, M. Lebert B, Campion S, Wagner A, Aguilar-Bonilla A, A. Smith A. Fibroblast growth factor receptor 1 gene mutation as a potential risk factor for spontaneous intracranial hemorrhage in pediatric low-grade glioma patients. Neurooncol Adv 2024; 6:vdae074. [PMID: 38903142 PMCID: PMC11187772 DOI: 10.1093/noajnl/vdae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) mutations have been associated with poorer prognoses in pediatric central nervous system tumor patients. A recent study highlighted a link between FGFR1 mutations and spontaneous intracranial hemorrhage (ICH), demonstrating that all patients with an FGFR1 alteration experienced hemorrhage at some point during their course of treatment. Methods The current study examined 50 out of 67 pediatric patients with low-grade gliomas (LGGs) who had genomic testing between 2011 and 2022 at our institution to determine whether a correlation exists between FGFR1 mutations and spontaneous ICH. Results We found that of the 50 patients with genomic data, 7 (14%) experienced ICH, and an additional spontaneous hemorrhage was recorded; however, no genomic testing was performed for this case. Five of the seven patients (71.4%) had an FGFR1 modification. In our patient population, 6 expressed a detectable FGFR1 mutation (66.7% [4/6] had N546K alteration, 16.7% [1/6] FGFR1 exons duplication, and 16.7% [1/6] had a variant of unknown significance [VUS]). The patient with the FGFR1 VUS had no reported spontaneous hemorrhage. Statistical analysis found a significant association between FGFR1 and spontaneous intracranial hemorrhage (P-value = < .0001). In the patient population, all cases of PTPN11 alterations (n = 3) co-occurred with FGFR1 mutations. Conclusions Our case series highlights this link between the FGFR1 mutation and spontaneous intracranial hemorrhage in pediatric LGGs.
Collapse
Affiliation(s)
- Maxine Gonzalez-Vega
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| | - Brittany M. Lebert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| | - Stephani Campion
- Department of Administration and Quality, Orlando Health - Orlando Health Advanced Rehabilitation Institute, Ocoee, Florida, USA
| | - Aaron Wagner
- Department of Pathology, Orlando Health - Orlando Regional Medical Center, Orlando, Florida, USA
| | - Ana Aguilar-Bonilla
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
- Department of Pediatric Hematology Oncology, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| | - Amy A. Smith
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
- Department of Pediatric Hematology Oncology, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| |
Collapse
|
20
|
Lago C, Federico A, Leva G, Mack NL, Schwalm B, Ballabio C, Gianesello M, Abballe L, Giovannoni I, Reddel S, Rossi S, Leone N, Carai A, Mastronuzzi A, Bisio A, Soldano A, Quintarelli C, Locatelli F, Kool M, Miele E, Tiberi L. Patient- and xenograft-derived organoids recapitulate pediatric brain tumor features and patient treatments. EMBO Mol Med 2023; 15:e18199. [PMID: 38037472 DOI: 10.15252/emmm.202318199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Brain tumors are the leading cause of cancer-related death in children. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of pediatric brain cancers are limited and hard to establish. We present a protocol that enables efficient generation, expansion, and biobanking of pediatric brain cancer organoids. Utilizing our protocol, we have established patient-derived organoids (PDOs) from ependymomas, medulloblastomas, low-grade glial tumors, and patient-derived xenograft organoids (PDXOs) from medulloblastoma xenografts. PDOs and PDXOs recapitulate histological features, DNA methylation profiles, and intratumor heterogeneity of the tumors from which they were derived. We also showed that PDOs can be xenografted. Most interestingly, when subjected to the same routinely applied therapeutic regimens, PDOs respond similarly to the patients. Taken together, our study highlights the potential of PDOs and PDXOs for research and translational applications for personalized medicine.
Collapse
Affiliation(s)
- Chiara Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gloria Leva
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Norman L Mack
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Benjamin Schwalm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Matteo Gianesello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Luana Abballe
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | | | - Sofia Reddel
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicolas Leone
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, CIBIO, Trento, Italy
- Trento Institute for Fundamental Physics and Application, TIFPA, Trento, Italy
| | - Alessia Soldano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Concetta Quintarelli
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelina Miele
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| |
Collapse
|
21
|
Malbari F. Pediatric Neuro-oncology. Continuum (Minneap Minn) 2023; 29:1680-1709. [PMID: 38085894 DOI: 10.1212/con.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This article reviews the most common pediatric brain tumors, neurocutaneous syndromes, treatment-related neurotoxicities, and the long-term outcomes of survivors. LATEST DEVELOPMENTS In the era of molecular diagnostics, the classification, management, and prognostication of pediatric brain tumors and neurocutaneous syndromes has been refined, resulting in advancements in patient management. Molecular diagnostics have been incorporated into the most recent World Health Organization 2021 classification. This knowledge has allowed for novel therapeutic approaches targeting the biology of these tumors with the intent to improve overall survival, decrease treatment-related morbidity, and improve quality of life. Advances in management have led to better survival, but mortality remains high and significant morbidity persists. Current clinical trials focus on tumor biology targeted therapy, deescalation of therapy, and multimodal intensified approaches with targeted therapy in more high-risk tumors. ESSENTIAL POINTS Molecular diagnostics for pediatric brain tumors and neurocutaneous syndromes have led to novel therapeutic approaches targeting the biology of these tumors with the goals of improving overall survival and decreasing treatment-related morbidity. Further understanding will lead to continued refinement and improvement of tumor classification, management, and prognostication.
Collapse
|
22
|
Picard D, Felsberg J, Langini M, Stachura P, Qin N, Macas J, Reiss Y, Bartl J, Selt F, Sigaud R, Meyer FD, Stefanski A, Stühler K, Roque L, Roque R, Pandyra AA, Brozou T, Knobbe-Thomsen C, Plate KH, Roesch A, Milde T, Reifenberger G, Leprivier G, Faria CC, Remke M. Integrative multi-omics reveals two biologically distinct groups of pilocytic astrocytoma. Acta Neuropathol 2023; 146:551-564. [PMID: 37656187 PMCID: PMC10500011 DOI: 10.1007/s00401-023-02626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.
Collapse
Affiliation(s)
- Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Maike Langini
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine I, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Paweł Stachura
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute for Molecular Medicine II, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
| | - Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
| | - Jasmin Bartl
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Frauke-D Meyer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine I, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Molecular Medicine I, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - Lucia Roque
- Portuguese Cancer Institute, Unidade de Investigação em Patobiologia Molecular (UIPM), IPOLFG, Lisbon, Portugal
| | - Rafael Roque
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christiane Knobbe-Thomsen
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
| | - Alexander Roesch
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Guido Reifenberger
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Claudia C Faria
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, da Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
23
|
Katlowitz KA, Athukuri P, Sharma H, Dang H, Soni A, Khan AB, Malbari F, Gadgil N, Weiner HL. Seizure outcomes after resection of primary brain tumors in pediatric patients: a systematic review and meta-analysis. J Neurooncol 2023; 164:525-533. [PMID: 37707753 DOI: 10.1007/s11060-023-04446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Primary brain neoplasms are the most common solid tumors in pediatric patients and seizures are a common presenting symptom. Surgical intervention improves oncologic outcomes and seizure burden. A better understanding of factors that influence seizure outcomes in the surgical management of primary brain tumors of childhood can guide treatment approach thereby improving patient quality of life. METHODS We performed a systematic analysis using articles queried from PubMed, EMBASE, and Cochrane published from January 1990 to August 2022 to determine predictors of seizure outcomes in pediatric patients undergoing resection of primary brain tumors. RESULTS We identified 24 retrospective cohort studies, one prospective cohort study, and one mixed retrospective and prospective study for the systematic analysis. A total of 831 pediatric patients were available for analysis. 668 (80.4%) patients achieved seizure freedom after surgery. Complete tumor resection increased the likelihood of a seizure-free (Engel I) outcome compared to subtotal resection (OR 7.1, 95% CI 2.3-21.9). Rates of Engel I seizure outcomes did not significantly differ based on factors such as age at seizure onset, duration of epilepsy, gender, tumor laterality, or age at surgery, but trended towards significance for improved outcomes in temporal lobe tumors. CONCLUSION Primary brain tumors in the pediatric population are commonly associated with seizures. Resection of these lesions reduces seizure burden and is associated with high rates of seizure freedom. Complete resection, compared to subtotal resection, significantly increases the likelihood of seizure-free outcomes.
Collapse
Affiliation(s)
- Kalman A Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Prazwal Athukuri
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Astitva Soni
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - A Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Fatema Malbari
- Department of Pediatrics, Division of Child Neurology and Neurodevelopmental Disabilities, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
25
|
Taddei M, Esposito S, Marucci G, Erbetta A, Ferroli P, Valentini LG, Pantaleoni C, D'Arrigo S, Saletti V, Pollo B, Paterra R, Riva D, Bulgheroni S. Cognitive and Behavioral Outcome of Pediatric Low-Grade Central Nervous System Tumors Treated Only with Surgery: A Single Center Experience. Diagnostics (Basel) 2023; 13:diagnostics13091568. [PMID: 37174959 PMCID: PMC10178267 DOI: 10.3390/diagnostics13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The present mono-institutional report aimed to describe the cognitive and behavioral outcomes of low-grade central nervous system (CNS) tumors in a cohort of children treated exclusively with surgical intervention. METHODS Medical records from 2000-2020 were retrospectively analyzed. We included 38 children (mean age at first evaluation 8 years and 3 months, 16 females) who had undergone presurgical cognitive-behavioral evaluation and/or at least 6 months follow-up. Exclusion criteria were a history of traumatic brain injury, stroke, cerebral palsy or cancer-predisposing syndromes. RESULTS The sample presented cognitive abilities and behavioral functioning in the normal range, with weaknesses in verbal working memory and processing speed. The obtained results suggest that cognitive and behavioral functioning is related to pre-treatment variables (younger age at symptoms' onset, glioneuronal histological type, cortical location with preoperative seizures), timing of surgery and seizure control after surgery, and is stable when controlling for a preoperative cognitive and behavioral baseline. Younger age at onset is confirmed as a particular vulnerability in determining cognitive sequelae, and children at older ages or at longer postsurgical follow-up are at higher risk for developing behavioral disturbances. CONCLUSIONS Timely treatment is an important factor influencing the global outcome and daily functioning of the patients. Preoperative and regular postsurgical cognitive and behavioral assessment, also several years after surgery, should be included in standard clinical practices.
Collapse
Affiliation(s)
- Matilde Taddei
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Silvia Esposito
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alessandra Erbetta
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Laura Grazia Valentini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pantaleoni
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefano D'Arrigo
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Veronica Saletti
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Rosina Paterra
- Molecular Neuroncology Unit, IRCCS Carlo Besta, 20133 Milan, Italy
| | - Daria Riva
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sara Bulgheroni
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
26
|
Gorodezki D, Zipfel J, Queudeville M, Sosa J, Holzer U, Kern J, Bevot A, Schittenhelm J, Nägele T, Ebinger M, Schuhmann MU. Resection extent and BRAF V600E mutation status determine postoperative tumor growth velocity in pediatric low-grade glioma: results from a single-center cohort analysis. J Neurooncol 2022; 160:567-576. [PMID: 36319795 PMCID: PMC9758245 DOI: 10.1007/s11060-022-04176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Despite excellent long-term overall survival rates, pediatric low-grade gliomas (pLGG) show high variety of clinical behavior regarding progress or senescence post incomplete resection (IR). This study retrospectively analyzes tumor growth velocity (TGV) of pLGG before surgery and after IR to investigate the impact of surgical extent, tumor location and molecular BRAF status on postoperative residual tumor growth behavior. METHODS Of a total of 172 patients with pLGG receiving surgical treatment, 107 underwent IR (66%). Fifty-three vs 94 patients could be included in the pre- and post-operative cohort, respectively, and were observed over a mean follow-up time of 40.2 vs 60.1 months. Sequential three-dimensional MRI-based tumor volumetry of a total of 407 MRI scans was performed to calculate pre- and postoperative TGV. RESULTS Mean preoperative TGV of 0.264 cm3/month showed significant deceleration of tumor growth to 0.085 cm3/month, 0.024 cm3/month and -0.016 cm3/month after 1st, 2nd, and 3rd IR, respectively (p < 0.001). Results remained significant after excluding patients undergoing (neo)adjuvant treatment. Resection extent showed correlation with postoperative reduction of TGV (R = 0.97, p < 0.001). ROC analysis identified a residual cut-off tumor volume > 2.03 cm3 associated with a higher risk of progress post IR (sensitivity 78,6%, specificity 76.3%, AUC 0.88). Postoperative TGV of BRAF V600E-mutant LGG was significantly higher than of BRAF wild-type LGG (0.123 cm3/month vs. 0.016 cm3/month, p = 0.047). CONCLUSION This data suggests that extensive surgical resection may impact pediatric LGG growth kinetics post incomplete resection by inducing a significant deceleration of tumor growth. BRAF-V600E mutation may be a risk factor for higher postoperative TGV.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| | - Julian Zipfel
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Manon Queudeville
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
- Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jordana Sosa
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Ursula Holzer
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Neuropediatrics and Developmental Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Neuropediatrics and Developmental Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Nägele
- Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Piccardo A, Albert NL, Borgwardt L, Fahey FH, Hargrave D, Galldiks N, Jehanno N, Kurch L, Law I, Lim R, Lopci E, Marner L, Morana G, Young Poussaint T, Seghers VJ, Shulkin BL, Warren KE, Traub-Weidinger T, Zucchetta P. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:3852-3869. [PMID: 35536420 PMCID: PMC9399211 DOI: 10.1007/s00259-022-05817-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
Abstract
Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frederic H Fahey
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie Paris, Paris, France
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor J Seghers
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Barry L Shulkin
- Nuclear Medicine Department of Diagnostic Imaging St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| |
Collapse
|
28
|
NTRK2 gene fusions are uncommon in pilocytic astrocytoma. Mol Biol Rep 2022; 49:7567-7573. [PMID: 35713800 DOI: 10.1007/s11033-022-07567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pilocytic astrocytoma is the most frequent pediatric glioma. Despite its overall good prognosis, complete surgical resection is sometimes unfeasible, especially for patients with deep-seated tumors. For these patients, the identification of targetable genetic alterations such as NTRK fusions, raised as a new hope for therapy. The presence of gene fusions involving NTRK2 has been rarely reported in pilocytic astrocytoma. The aim of the present study was to investigate the frequency of NTRK2 alterations in a series of Brazilian pilocytic astrocytomas. METHODS Sixty-nine pilocytic astrocytomas, previously characterized for BRAF and FGFR1 alterations were evaluated. The analysis of NTRK2 alterations was performed using a dual color break apart fluorescence in situ hybridization (FISH) assay. RESULTS NTRK2 fusions were successfully evaluated by FISH in 62 of the 69 cases. Neither evidence of NTRK2 gene rearrangements nor NTRK2 copy number alterations were found. CONCLUSIONS NTRK2 alterations are uncommon genetic events in pilocytic astrocytomas, regardless of patients' clinicopathological and molecular features.
Collapse
|
29
|
Affiliation(s)
- Alan R Cohen
- From the Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
30
|
Samples DC, Mulcahy Levy JM, Hankinson TC. Neurosurgery for Optic Pathway Glioma: Optimizing Multidisciplinary Management. Front Surg 2022; 9:884250. [PMID: 35599811 PMCID: PMC9114802 DOI: 10.3389/fsurg.2022.884250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Optic pathway glioma (OPG) comprises 10% of pediatric brain tumors and 40% of all pediatric low-grade gliomas (pLGGs). While generally considered benign pathologically, many require interventions with chemotherapy, radiation, or targeted therapies. Management has historically foregone tissue diagnosis given the classical clinical/radiographic presentation of these tumors, inability to safely remove the lesions surgically, and efficacy and safety of available chemotherapy options. Furthermore, when considering such aspects as their delicate location, the role of surgery continues to be heavily debated. More recently, however, a greater understanding of the genetic drivers of OPGs has made operative tissue sampling a critical step in management planning, specifically for patients without Neurofibromatosis, Type I (NF1). Given the need for long-term, complex management of pediatric OPGs, it is crucial that a multidisciplinary approach is employed, and the rapidly expanding role of molecular characterization be incorporated into their management.
Collapse
Affiliation(s)
- Derek C. Samples
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, CO, United States
- Correspondence: Derek C. Samples
| | - Jean M. Mulcahy Levy
- Department of Pediatrics (Center for Cancer and Blood Disorders), University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| | - Todd C. Hankinson
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, CO, United States
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
31
|
Vajapeyam S, Brown D, Ziaei A, Wu S, Vezina G, Stern J, Panigrahy A, Patay Z, Tamrazi B, Jones J, Haque S, Enterline D, Cha S, Jones B, Yeom K, Onar-Thomas A, Dunkel I, Fouladi M, Fangusaro J, Poussaint T. ADC Histogram Analysis of Pediatric Low-Grade Glioma Treated with Selumetinib: A Report from the Pediatric Brain Tumor Consortium. AJNR Am J Neuroradiol 2022; 43:455-461. [PMID: 35210278 PMCID: PMC8910799 DOI: 10.3174/ajnr.a7433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/01/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Selumetinib is a promising MAP (mitogen-activated protein) kinase (MEK) 1/2 inhibitor treatment for pediatric low-grade gliomas. We hypothesized that MR imaging-derived ADC histogram metrics would be associated with survival and response to treatment with selumetinib. MATERIALS AND METHODS Children with recurrent, refractory, or progressive pediatric low-grade gliomas who had World Health Organization grade I pilocytic astrocytoma with KIAA1549-BRAF fusion or the BRAF V600E mutation (stratum 1), neurofibromatosis type 1-associated pediatric low-grade gliomas (stratum 3), or sporadic non-neurofibromatosis type 1 optic pathway and hypothalamic glioma (OPHG) (stratum 4) were treated with selumetinib for up to 2 years. Quantitative ADC histogram metrics were analyzed for total and enhancing tumor volumes at baseline and during treatment. RESULTS Each stratum comprised 25 patients. Stratum 1 responders showed lower values of SD of baseline ADC_total as well as a larger decrease with time on treatment in ADC_total mean, mode, and median compared with nonresponders. Stratum 3 responders showed a greater longitudinal decrease in ADC_total. In stratum 4, higher baseline ADC_total skewness and kurtosis were associated with shorter progression-free survival. When all 3 strata were combined, responders showed a greater decrease with time in ADC_total mode and median. Compared with sporadic OPHG, neurofibromatosis type 1-associated OPHG had lower values of ADC_total mean, mode, and median as well as ADC_enhancement mean and median and higher values of ADC_total skewness and kurtosis at baseline. The longitudinal decrease in ADC_total median during treatment was significantly greater in sporadic OPHG compared with neurofibromatosis type 1-associated OPHG. CONCLUSIONS ADC histogram metrics are associated with progression-free survival and response to treatment with selumetinib in pediatric low-grade gliomas.
Collapse
Affiliation(s)
- S. Vajapeyam
- From the Department of Radiology (S.V., T.Y.P.), Boston Children’s Hospital,Harvard Medical School, Boston, Massachusetts
| | - D. Brown
- Department of Radiology (D.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - A. Ziaei
- Department of Radiology (A.Z.), Boston Children’s Hospital, Boston, Massachusetts
| | - S. Wu
- Department of Biostatistics (S.W., A.O.-T.), St Jude Children’s Research Hospital, Memphis, Tennessee
| | - G. Vezina
- Department of Radiology (G.V.), Children’s National Medical Center, Washington, DC
| | - J.S. Stern
- Department of Radiology (J.S.S.), Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - A. Panigrahy
- Department of Radiology (A.P.), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Z. Patay
- Department of Diagnostic Imaging (Z.P.), St Jude Children’s Research Hospital, Memphis, Tennessee
| | - B. Tamrazi
- Department of Radiology (B.T.), Children’s Hospital Los Angeles, Los Angeles, California
| | - J.Y. Jones
- Department of Radiology (J.Y.J., M.F.), Nationwide Children’s Hospital, Columbus, Ohio
| | - S.S. Haque
- Department of Radiology (S.S.H., I.J.D.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - D.S. Enterline
- Department of Radiology (D.S.E.), Duke University School of Medicine, Durham, North Carolina
| | - S. Cha
- Department of Radiology (S.C.), University of California San Francisco, San Francisco, California
| | - B.V. Jones
- Department of Radiology (B.V.J.), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - K.W. Yeom
- Department of Radiology (K.W.Y.), Stanford University School of Medicine, Stanford, California
| | - A. Onar-Thomas
- Department of Biostatistics (S.W., A.O.-T.), St Jude Children’s Research Hospital, Memphis, Tennessee
| | - I.J. Dunkel
- Department of Radiology (S.S.H., I.J.D.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - M. Fouladi
- Department of Radiology (J.Y.J., M.F.), Nationwide Children’s Hospital, Columbus, Ohio
| | - J.R. Fangusaro
- Department of Hematology, Oncology, and Stem Cell Transplantation (J.R.F.), Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia
| | - T.Y. Poussaint
- From the Department of Radiology (S.V., T.Y.P.), Boston Children’s Hospital,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Greuter L, Guzman R, Soleman J. Pediatric and Adult Low-Grade Gliomas: Where Do the Differences Lie? CHILDREN (BASEL, SWITZERLAND) 2021; 8:1075. [PMID: 34828788 PMCID: PMC8624473 DOI: 10.3390/children8111075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Two thirds of pediatric gliomas are classified as low-grade (LGG), while in adults only around 20% of gliomas are low-grade. However, these tumors do not only differ in their incidence but also in their location, behavior and, subsequently, treatment. Pediatric LGG constitute 65% of pilocytic astrocytomas, while in adults the most commonly found histology is diffuse low-grade glioma (WHO II), which mostly occurs in eloquent regions of the brain, while its pediatric counterpart is frequently found in the infratentorial compartment. The different tumor locations require different skillsets from neurosurgeons. In adult LGG, a common practice is awake surgery, which is rarely performed on children. On the other hand, pediatric neurosurgeons are more commonly confronted with infratentorial tumors causing hydrocephalus, which more often require endoscopic or shunt procedures to restore the cerebrospinal fluid flow. In adult and pediatric LGG surgery, gross total excision is the primary treatment strategy. Only tumor recurrences or progression warrant adjuvant therapy with either chemo- or radiotherapy. In pediatric LGG, MEK inhibitors have shown promising initial results in treating recurrent LGG and several ongoing trials are investigating their role and safety. Moreover, predisposition syndromes, such as neurofibromatosis or tuberous sclerosis complex, can increase the risk of developing LGG in children, while in adults, usually no tumor growth in these syndromes is observed. In this review, we discuss and compare the differences between pediatric and adult LGG, emphasizing that pediatric LGG should not be approached and managed in the same way as adult LCG.
Collapse
Affiliation(s)
- Ladina Greuter
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Department of Neurosurgery, King’s College Hospital, NHS Foundation Trust, London SE5 9RS, UK
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Division of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Division of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
33
|
Wei J, Wang Z, Wang W, Liu X, Wan J, Yuan Y, Li X, Ma L, Liu X. Oxidative Stress Activated by Sorafenib Alters the Temozolomide Sensitivity of Human Glioma Cells Through Autophagy and JAK2/STAT3-AIF Axis. Front Cell Dev Biol 2021; 9:660005. [PMID: 34277607 PMCID: PMC8282178 DOI: 10.3389/fcell.2021.660005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The development of temozolomide (TMZ) resistance in glioma leads to poor patient prognosis. Sorafenib, a novel diaryl urea compound and multikinase inhibitor, has the ability to effectively cross the blood-brain barrier. However, the effect of sorafenib on glioma cells and the molecular mechanism underlying the ability of sorafenib to enhance the antitumor effects of TMZ remain elusive. Here, we found that sorafenib could enhance the cytotoxic effects of TMZ in glioma cells in vitro and in vivo. Mechanistically, the combination of sorafenib and TMZ induced mitochondrial depolarization and apoptosis inducing factor (AIF) translocation from mitochondria to nuclei, and this process was dependent on STAT3 inhibition. Moreover, the combination of sorafenib and TMZ inhibited JAK2/STAT3 phosphorylation and STAT3 translocation to mitochondria. Inhibition of STAT3 activation promoted the autophagy-associated apoptosis induced by the combination of sorafenib and TMZ. Furthermore, the combined sorafenib and TMZ treatment induced oxidative stress while reactive oxygen species (ROS) clearance reversed the treatment-induced inhibition of JAK2/STAT3. The results indicate that sorafenib enhanced the temozolomide sensitivity of human glioma cells by inducing oxidative stress-mediated autophagy and JAK2/STAT3-AIF axis.
Collapse
Affiliation(s)
- Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoge Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Zhou J, Wang P, Zhang R, Huang X, Dai H, Yuan L, Ruan J. Association of HMGA2 Polymorphisms with Glioma Susceptibility in Chinese Children. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:601-607. [PMID: 34079335 PMCID: PMC8164710 DOI: 10.2147/pgpm.s310780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Background Glioma is a malignant central nervous system tumor in children, with poor outcomes and prognosis. HMGA2 is a proto-oncogene with increased expression in various malignancies. Methods We explored the association of HMGA2 polymorphisms with glioma susceptibility in Chinese children using a case-control study (191 cases, 248 controls). HMGA2 single nucleotide polymorphisms (rs6581658 A>G; rs8756 A>C; rs968697 T>C) were genotyped using PCR-based TaqMan. Results Increased glioma susceptibility was associated with rs6581658 A>G; AG (adjusted odds ratio (OR) = 1.71, 95% confidence interval (CI) = 1.13–2.58, P = 0.010) or GG (adjusted OR = 3.12, 95% CI = 1.26–7.74, P = 0.014) genotype carriers had significantly raised glioma risk compared with AA genotype carriers. The rs6581658 AG/GG (adjusted OR = 1.85, 95% CI = 1.25–2.73, P = 0.002) and AA/GG (adjusted OR = 2.58, 95% CI = 1.05–6.33, P = 0.038) genotypes were associated with an increased risk of glioma relative to the AA genotype. Subjects with 2–3 risk genotypes had a significantly elevated risk (adjusted OR = 1.93, 95% CI = 1.31–2.84, P = 0.001) relative to those with 0–1 risk genotype. Conclusion HMGA2 rs6581658 A>G is associated with glioma susceptibility in Chinese children.
Collapse
Affiliation(s)
- Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Pan Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Ran Zhang
- Sydney School of Public Health, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Hanqi Dai
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| |
Collapse
|
35
|
Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, Colak O, Ozcan F, Gundem E, Elcim Y, Dirican B, Beyzadeoglu M. Concise review of stereotactic irradiation for pediatric glial neoplasms: Current concepts and future directions. World J Methodol 2021; 11:61-74. [PMID: 34026579 PMCID: PMC8127424 DOI: 10.5662/wjm.v11.i3.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Brain tumors, which are among the most common solid tumors in childhood, remain a leading cause of cancer-related mortality in pediatric population. Gliomas, which may be broadly categorized as low grade glioma and high grade glioma, account for the majority of brain tumors in children. Expectant management, surgery, radiation therapy (RT), chemotherapy, targeted therapy or combinations of these modalities may be used for management of pediatric gliomas. Several patient, tumor and treatment-related characteristics including age, lesion size, grade, location, phenotypic and genotypic features, symptomatology, predicted outcomes and toxicity profile of available therapeutic options should be considered in decision making for optimal treatment. Management of pediatric gliomas poses a formidable challenge to the physicians due to concerns about treatment induced toxicity. Adverse effects of therapy may include neurological deficits, hemiparesis, dysphagia, ataxia, spasticity, endocrine sequelae, neurocognitive and communication impairment, deterioration in quality of life, adverse socioeconomic consequences, and secondary cancers. Nevertheless, improved understanding of molecular pathology and technological advancements may pave the way for progress in management of pediatric glial neoplasms. Multidisciplinary management with close collaboration of disciplines including pediatric oncology, surgery, and radiation oncology is warranted to achieve optimal therapeutic outcomes. In the context of RT, stereotactic irradiation is a viable treatment modality for several central nervous system disorders and brain tumors. Considering the importance of minimizing adverse effects of irradiation, radiosurgery has attracted great attention for clinical applications in both adults and children. Radiosurgical applications offer great potential for improving the toxicity profile of radiation delivery by focused and precise targeting of well-defined tumors under stereotactic immobilization and image guidance. Herein, we provide a concise review of stereotactic irradiation for pediatric glial neoplasms in light of the literature.
Collapse
Affiliation(s)
- Omer Sager
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Ferrat Dincoglan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Onurhan Colak
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Fatih Ozcan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Esin Gundem
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Yelda Elcim
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| |
Collapse
|
36
|
Wang Y, Zhou C, Luo H, Cao J, Ma C, Cheng L, Yang Y. Prognostic implications of immune-related eight-gene signature in pediatric brain tumors. ACTA ACUST UNITED AC 2021; 54:e10612. [PMID: 34008756 PMCID: PMC8130135 DOI: 10.1590/1414-431x2020e10612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/04/2021] [Indexed: 02/14/2023]
Abstract
Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors (PBT) that may lead to novel therapeutic strategies. Participants of the cohort Pediatric Brain Tumor Atlas: CBTTC (CBTTC cohort), were randomly divided into training and validation cohorts. In the training cohort, Kaplan-Meier analysis and univariate Cox regression model were applied to preliminary screening of prognostic genes. The LASSO Cox regression model was implemented to build a multi-gene signature, which was then validated in the validation and CBTTC cohorts through Kaplan-Meier, Cox, and receiver operating characteristic curve (ROC) analyses. Also, gene set enrichment analysis (GSEA) and immune infiltrating analyses were conducted to understand function annotation and the role of the signature in the tumor microenvironment. An eight-gene signature was built, which was examined by Kaplan-Meier analysis, revealing that a significant overall survival difference was seen, either in the training or validation cohorts. The eight-gene signature was further proven to be independent of other clinic-pathologic parameters via the Cox regression analyses. Moreover, ROC analysis demonstrated that this signature owned a better predictive power of PBT prognosis. Furthermore, GSEA and immune infiltrating analyses showed that the signature had close interactions with immune-related pathways and was closely related to CD8 T cells and monocytes in the tumor environment. Identifying the eight-gene signature (CBX7, JADE2, IGF2BP3, OR2W6P, PRAME, TICRR, KIF4A, and PIMREG) could accurately identify patients' prognosis and the signature had close interactions with the immunodominant tumor environment, which may provide insight into personalized prognosis prediction and new therapies for PBT patients.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neonatology and Neonatal Intensive Care, Zhumadian Central Hospital, Zhumadian, China
| | - Chuan Zhou
- Neonatal Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
| | - Lulu Cheng
- Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Yang Yang
- Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
37
|
Khalafallah AM, Jimenez AE, Shah PP, Brem H, Mukherjee D. Effect of radiation therapy on overall survival following subtotal resection of adult pilocytic astrocytoma. J Clin Neurosci 2020; 81:340-345. [PMID: 33222942 DOI: 10.1016/j.jocn.2020.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Pilocytic astrocytoma (PCA) is a low-grade glioma that primarily presents in children, but can also present in adulthood. Ideal primary treatment for PCA is gross total resection. However, for patients who are only able to undergo subtotal resection, the optimal course of post-operative therapy remains unclear. We investigated the association of patient characteristics and radiation therapy (RT) with overall survival specifically for adult PCA patients who underwent subtotal tumor resection. METHODS Information on adult patients (age ≥18 years old) who underwent subtotal PCA resection between 2004 and 2016 was collected from the National Cancer Database (NCDB). A multivariate Cox proportional hazards model was utilized to determine factors associated with overall survival. RESULTS A total of 451 patients were identified. The mean age of our patient cohort was 36.8 years old, and the majority of patients (83.4%) did not receive RT following subtotal PCA resection. Overall median survival was >93.8 months. On multivariate analysis, patients who were older at diagnosis (hazard ratio [HR] = 1.04, 95% confidence interval [CI] = 1.02-1.06, p < 0.01), black (HR = 2.35, CI = 1.05-5.23, p = 0.037), had a Charlson/Deyo comorbidity score ≥ 1 (HR = 2.27, CI = 1.00-5.14, p = 0.049), or received RT during their initial treatment (HR = 3.77, CI = 1.77-8.03, p < 0.01) had a significantly higher risk of death following subtotal PCA resection. CONCLUSION Post-operative RT was associated with a significantly higher risk of death among adults who underwent subtotal PCA resection. Our findings provide support for further inquiry into the efficacy of RT within this patient population.
Collapse
Affiliation(s)
- Adham M Khalafallah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Adrian E Jimenez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Pavan P Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States.
| |
Collapse
|