1
|
Winter L, Kustermann M, Ernhofer B, Höger H, Bittner RE, Schmidt WM. Proteins implicated in muscular dystrophy and cancer are functional constituents of the centrosome. Life Sci Alliance 2022; 5:e202201367. [PMID: 35790299 PMCID: PMC9259872 DOI: 10.26508/lsa.202201367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant expression of dystrophin, utrophin, dysferlin, or calpain-3 was originally identified in muscular dystrophies (MDs). Increasing evidence now indicates that these proteins might act as tumor suppressors in myogenic and non-myogenic cancers. As DNA damage and somatic aneuploidy, hallmarks of cancer, are early pathological signs in MDs, we hypothesized that a common pathway might involve the centrosome. Here, we show that dystrophin, utrophin, dysferlin, and calpain-3 are functional constituents of the centrosome. In myoblasts, lack of any of these proteins caused excess centrosomes, centrosome misorientation, nuclear abnormalities, and impaired microtubule nucleation. In dystrophin double-mutants, these defects were significantly aggravated. Moreover, we demonstrate that also in non-myogenic cells, all four MD-related proteins localize to the centrosome, including the muscle-specific full-length dystrophin isoform. Therefore, MD-related proteins might share a convergent function at the centrosome in addition to their diverse, well-established muscle-specific functions. Thus, our findings support the notion that cancer-like centrosome-related defects underlie MDs and establish a novel concept linking MDs to cancer.
Collapse
Affiliation(s)
- Lilli Winter
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Monika Kustermann
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Büsra Ernhofer
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Harald Höger
- Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Reginald E Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Exp Cell Res 2022; 416:113133. [DOI: 10.1016/j.yexcr.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
|
3
|
Brito A, Merle C, Lagarde P, Faustin B, Devin A, Lartigue L, Chibon F. Cell fusion enhances energy metabolism of mesenchymal tumor hybrid cells to sustain their proliferation and invasion. BMC Cancer 2021; 21:863. [PMID: 34320948 PMCID: PMC8317390 DOI: 10.1186/s12885-021-08561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell-to-cell fusion is emerging as a key element of the metastatic process in various cancer types. We recently showed that hybrids made from the spontaneous merging of pre-malignant (IMR90 E6E7, i.e. E6E7) and malignant (IMR90 E6E7 RST, i.e. RST) mesenchymal cells recapitulate the main features of human undifferentiated pleomorphic sarcoma (UPS), with a highly rearranged genome and increased spreading capacities. To better characterize the intrinsic properties of these hybrids, we investigated here their metabolic energy profile compared to their parents. RESULTS Our results unveiled that hybrids harbored a Warburg-like metabolism, like their RST counterparts. However, hybrids displayed a much greater metabolic activity, enhancing glycolysis to proliferate. Interestingly, modifying the metabolic environmental conditions through the use of 5-aminoimidazole-4-carbox-amide-1-β-D-ribofuranoside (AICAR), an activator of the 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK), specifically reduced the growth of hybrids, and also abrogated the invasive capacity of hybrids displaying enhanced glycolysis. Furthermore, AICAR efficiently blocked the tumoral features related to the aggressiveness of human UPS cell lines. CONCLUSION Altogether, our findings strongly suggest that hybrids rely on higher energy flux to proliferate and that a drug altering this metabolic equilibrium could impair their survival and be potentially considered as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ariadna Brito
- Cancer Research Center in Toulouse (CRCT), INSERM U1037, 31037, Toulouse, France
- University of Toulouse 3, Paul Sabatier, 118 route Narbonne, 31062 Cedex 9, Toulouse, France
| | - Candice Merle
- Cancer Research Center in Toulouse (CRCT), INSERM U1037, 31037, Toulouse, France
- University of Toulouse 3, Paul Sabatier, 118 route Narbonne, 31062 Cedex 9, Toulouse, France
| | - Pauline Lagarde
- INSERM U1218, 299 cours de l'Argonne, F-33076, Bordeaux, France
- University of Bordeaux, 146 rue Léo Saignat, F-33000, Bordeaux, France
- Department of Biopathology, Bergonie Institute, 229 cours de l'Argonne, F-33076, Bordeaux, France
| | - Benjamin Faustin
- CNRS UMR 5164, 33000, Bordeaux, France
- Immunology Discovery, Janssen Research and Development, San Diego, CA, USA
| | - Anne Devin
- CNRS UMR 5095, 1 Rue Camille Saint-Saëns, F-33077, Bordeaux Cedex, France
| | - Lydia Lartigue
- INSERM U1218, 299 cours de l'Argonne, F-33076, Bordeaux, France
- University of Bordeaux, 146 rue Léo Saignat, F-33000, Bordeaux, France
| | - Frederic Chibon
- Cancer Research Center in Toulouse (CRCT), INSERM U1037, 31037, Toulouse, France.
- INSERM U1218, 299 cours de l'Argonne, F-33076, Bordeaux, France.
- Department of Biopathology, Bergonie Institute, 229 cours de l'Argonne, F-33076, Bordeaux, France.
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, Toulouse, France.
| |
Collapse
|
4
|
Merle C, Lagarde P, Lartigue L, Chibon F. Acquisition of cancer stem cell capacities after spontaneous cell fusion. BMC Cancer 2021; 21:241. [PMID: 33678155 PMCID: PMC7938600 DOI: 10.1186/s12885-021-07979-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cancer stem/Initiating cell (CS/IC) hypothesis argues that CS/ICs are responsible of tumour initiation, drug resistance, metastasis or disease relapse. Their detection in several cancers supports this concept. However, their origin is still misunderstood. Cell fusion is shown to take part in the formation of CS/ICs, i.e. fusion between mesenchymal stem cell and cancer cell. In a previous paper, we described that fusion leads to hybrids with metastatic capacity. This process triggered genomic rearrangements in hybrid cells together with increased metastasis development. Here, we hypothesize that cell fusion could be strong enough to provoke a cellular reprogramming and the acquisition of CS/IC properties, promoting metastasis formation. Methods After spontaneous cell fusion between E6E7 (IMR90 with the oncogenes E6 and E7) and RST (IMR90 fully transformed) cell lines, hybrid cells were selected by dual antibiotic selection. Cancer stem cells capacities were evaluated regarding capacity to form spheres, expression of stem cell markers and the presence of ALDHhigh cells. Results Our data show that after cell fusion, all hybrids contain a percentage of cells with CS/ICs properties, regarding. Importantly, we lastly showed that NANOG inhibition in H1 hybrid decreases this migration capacity while having no effect on the corresponding parental cells. Conclusions Altogether these results indicate that the combination of CS/ICs properties and genomic rearrangement in hybrids is likely to be key to tumour progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07979-2.
Collapse
Affiliation(s)
- Candice Merle
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31037, Toulouse, France.,University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Pauline Lagarde
- INSERM U1218, 229 cours de l'Argonne, F-33076, Bordeaux, France
| | - Lydia Lartigue
- INSERM U1218, 229 cours de l'Argonne, F-33076, Bordeaux, France.,University of Bordeaux, 146 rue Léo Saignat, F-33000, Bordeaux, France
| | - Frédéric Chibon
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31037, Toulouse, France. .,Institut Claudius Régaud, IUCT-Oncopole, Toulouse, France. .,Present address: CRCT-IUCT-O, 2 avenue Hubert Curien, 31037, Toulouse Cedex 1, France.
| |
Collapse
|