1
|
Kansara S, Sawant P, Kaur T, Garg M, Pandey AK. LncRNA-mediated orchestrations of alternative splicing in the landscape of breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195017. [PMID: 38341138 DOI: 10.1016/j.bbagrm.2024.195017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Alternative splicing (AS) is a fundamental post-transcriptional process in eukaryotes, enabling a single gene to generate diverse mRNA transcripts, thereby enhancing protein variability. This process involves the excision of introns and the joining of exons in pre-mRNA(s) to form mature mRNA. The resulting mature mRNAs exhibit various combinations of exons, contributing to functional diversity. Dysregulation of AS can substantially modulate protein functions, impacting the onset and progression of numerous diseases, including cancer. Non-coding RNAs (ncRNAs) are distinct from protein-coding RNAs and consist of short and long types. Long non-coding RNAs (lncRNAs) play an important role in regulating several cellular processes, particularly alternative splicing, according to new research. This review provides insight into the latest discoveries concerning how lncRNAs influence alternative splicing within the realm of breast cancer. Additionally, it explores potential therapeutic strategies focused on targeting lncRNAs.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Prajwali Sawant
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Taranjeet Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
2
|
Sudhakar SRN, Wu L, Patel S, Zovoilis A, Davie JR. Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a), a mark of super-enhancers. Biochem Cell Biol 2024; 102:145-158. [PMID: 38011682 DOI: 10.1139/bcb-2023-0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a) is an active histone mark catalyzed by protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase in vertebrates catalyzing asymmetric dimethylation of arginine. H4R3me2a stimulates the activity of lysine acetyltransferases such as CBP/p300, which catalyze the acetylation of H3K27, a mark of active enhancers, super-enhancers, and promoters. There are a few studies on the genomic location of H4R3me2a. In chicken polychromatic erythrocytes, H4R3me2a is found in introns and intergenic regions and binds to the globin locus control region (a super-enhancer) and globin regulatory regions. In this report, we analyzed chromatin immunoprecipitation sequencing data for the genomic location of H4R3me2a in the breast cancer cell line MCF7. As in avian cells, MCF7 H4R3me2a is present in intronic and intergenic regions. Nucleosomes with H4R3me2a and H3K27ac next to nucleosome-free regions are found at super-enhancers, enhancers, and promoter regions of expressed genes. Genes with critical roles in breast cancer cells have broad domains of nucleosomes with H4R3me2a, H3K27ac, and H3K4me3. Our results are consistent with PRMT1-mediated H4R3me2a playing a key role in the chromatin organization of regulatory regions of vertebrate genomes.
Collapse
Affiliation(s)
- Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Li Wu
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada
| | - Shrinal Patel
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Athanasios Zovoilis
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Arriaga-Canon C, Contreras-Espinosa L, Aguilar-Villanueva S, Bargalló-Rocha E, García-Gordillo JA, Cabrera-Galeana P, Castro-Hernández C, Jiménez-Trejo F, Herrera LA. The Clinical Utility of lncRNAs and Their Application as Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087426. [PMID: 37108589 PMCID: PMC10138835 DOI: 10.3390/ijms24087426] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Given their tumor-specific and stage-specific gene expression, long non-coding RNAs (lncRNAs) have demonstrated to be potential molecular biomarkers for diagnosis, prognosis, and treatment response. Particularly, the lncRNAs DSCAM-AS1 and GATA3-AS1 serve as examples of this because of their high subtype-specific expression profile in luminal B-like breast cancer. This makes them candidates to use as molecular biomarkers in clinical practice. However, lncRNA studies in breast cancer are limited in sample size and are restricted to the determination of their biological function, which represents an obstacle for its inclusion as molecular biomarkers of clinical utility. Nevertheless, due to their expression specificity among diseases, such as cancer, and their stability in body fluids, lncRNAs are promising molecular biomarkers that could improve the reliability, sensitivity, and specificity of molecular techniques used in clinical diagnosis. The development of lncRNA-based diagnostics and lncRNA-based therapeutics will be useful in routine medical practice to improve patient clinical management and quality of life.
Collapse
Affiliation(s)
- Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Sergio Aguilar-Villanueva
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Enrique Bargalló-Rocha
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - José Antonio García-Gordillo
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Paula Cabrera-Galeana
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C.P. 14080, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
| | | | - L A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C.P. 64710, Mexico
| |
Collapse
|
5
|
Bates ML, Vasileva A, Flores LDM, Pryakhina Y, Buckman M, Tomasson MH, DeRuisseau LR. Sex differences in cardiovascular disease and dysregulation in Down syndrome. Am J Physiol Heart Circ Physiol 2023; 324:H542-H552. [PMID: 36800509 PMCID: PMC10042600 DOI: 10.1152/ajpheart.00544.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
This meta-analysis, which consisted of a scoping review and retrospective medical record review, is focused on potential sex differences in cardiovascular diseases in patients with Down syndrome. We limited our review to peer-reviewed, primary articles in the English language, in the PubMed and Web of Science databases from 1965 to 2021. Guidelines for scoping reviews were followed throughout the process. Four categorical domains were identified and searched using additional keywords: 1) congenital heart disease, 2) baseline physiology and risk factors, 3) heart disease and hypertension, and 4) stroke and cerebrovascular disease. Articles were included if they reported male and female distinct data, participants with Down syndrome, and one of our keywords. The retrospective medical record review was completed using 75 participating health care organizations to identify the incidence of congenital and cardiovascular diseases and to quantify cardiovascular risk factors in male and female patients. Female patients with Down syndrome are at higher risk of hypertension, ischemic heart disease, and cerebrovascular disease. The risk of congenital heart disease is higher in males with Down syndrome at all ages included in our analyses. Some of the male-to-female sex differences in cardiovascular disease risk in the general patient population are not present, or reversed in the Down syndrome population. This information should be considered for future investigations and ongoing patient care.NEW & NOTEWORTHY In patients with Down syndrome (DS), CHD is the leading cause of death <20 yr old and cardiovascular disease is a leading cause of death in individuals >20 yr old. Men with DS live longer than women. It is unknown if sex differences are present in cardiovascular disease and dysregulation in DS across the lifespan. We observed higher risk of hypertension, ischemic heart disease, and cerebrovascular disease in females and a higher risk of CHD in males with DS.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Anastasiia Vasileva
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Laura D M Flores
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Yana Pryakhina
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| | - Michelle Buckman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Michael H Tomasson
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| |
Collapse
|
6
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
7
|
A Regulatory Axis between Epithelial Splicing Regulatory Proteins and Estrogen Receptor α Modulates the Alternative Transcriptome of Luminal Breast Cancer. Int J Mol Sci 2022; 23:ijms23147835. [PMID: 35887187 PMCID: PMC9319905 DOI: 10.3390/ijms23147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein-protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.
Collapse
|
8
|
Xu SM, Curry-Hyde A, Sytnyk V, Janitz M. RNA polyadenylation patterns in the human transcriptome. Gene 2022; 816:146133. [PMID: 34998928 DOI: 10.1016/j.gene.2021.146133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
The eukaryotic transcriptome undergoes various post-transcriptional modifications which assists gene expression. Polyadenylation is a molecular process occurring at the 3'-end of the RNA molecule which involves the poly(A) polymerase attaching adenine monophosphate molecules in a chain-like fashion to assemble a poly(A) tail. Multiple RNA isoforms are produced with differing 3'-UTR and exonic compositions through alternative polyadenylation (APA) which enhances the diversification of alternatively spliced mRNA transcripts. To study polyadenylation patterns, novel methods have been developed using short-read and long-read sequencing technologies to analyse the 3'-ends of the transcript. Recent studies have identified unique polyadenylation patterns in different cellular functions, including oncogenic activity, which could prove valuable in the understanding of medical genetics, particularly in the discovery of biomarkers in diseased states. We present a review of current literature reporting on polyadenylation and the biological relevance in the mammalian transcriptome, with a focus on the human transcriptome. Additionally, we have explored the various methods available to detect polyadenylation patterns using second and third generation sequencing technologies.
Collapse
Affiliation(s)
- Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246261. [PMID: 34944881 PMCID: PMC8699117 DOI: 10.3390/cancers13246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.
Collapse
|
10
|
Selem NA, Youness RA, Gad MZ. What is beyond LncRNAs in breast cancer: A special focus on colon cancer-associated Transcript-1 (CCAT-1). Noncoding RNA Res 2021; 6:174-186. [PMID: 34938928 PMCID: PMC8666458 DOI: 10.1016/j.ncrna.2021.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play a vital role in the process of malignant transformation. In breast cancer (BC), lncRNAs field is currently under intensive investigations. Yet, the role of lncRNAs as promising diagnostic and/or prognostic biomarkers and as therapeutic target/tool among BC patients still needs a special focus from the biomedical scientists. In BC, triple negative breast cancer patients (TNBC) are the unlucky group as they are always represented with the worst prognosis and the highest mortality rates. For that reason, a special focus on TNBC and associated lncRNAs was addressed in this review. Colon cancer-associated transcript 1 (CCAT-1) is a newly discovered oncogenic lncRNA that has been emerged as a vital biomarker for diagnosis, prognosis and therapeutic interventions in multiple malignancies and showed differential expression among TNBC patients. In this review, the authors shed the light onto the general role of lncRNAs in BC and the specific functional activities, molecular mechanisms, competing endogenous ncRNA role of CCAT-1 in TNBC.
Collapse
Affiliation(s)
- Noha A. Selem
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
11
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Ebrahimzadeh K. A Review on the Carcinogenic Roles of DSCAM-AS1. Front Cell Dev Biol 2021; 9:758513. [PMID: 34708048 PMCID: PMC8542687 DOI: 10.3389/fcell.2021.758513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts with fundamental roles in the carcinogenesis. DSCAM Antisense RNA 1 (DSCAM−AS1) is an example of this group of transcripts which has been firstly identified in an attempt to find differentially expressed transcripts between breast tumor cells and benign breast samples. The pathogenic roles of DSCAM-AS1 have been vastly assessed in breast cancer, yet its roles are not restricted to this type of cancer. Independent studies in non-small cell lung cancer, colorectal cancer, osteosarcoma, hepatocellular carcinoma, melanoma and cervical cancer have validated participation of DSCAM-AS1 in the carcinogenic processes. miR-577, miR-122-5p, miR-204-5p, miR-136, miR−137, miR−382, miR−183, miR−99, miR-3173-5p, miR-874-3p, miR-874-3p, miR-150-5p, miR-2467-3p, miR-216b, miR-384, miR-186-5p, miR-338-3p, miR-877-5p and miR-101 are among miRNAs which interact with DSCAM-AS1. Moreover, this lncRNA has interactions with Wnt/β-catenin pathway. The current study aims at summarization of the results of studies which focused on the assessment of oncogenic role of DSCAM-AS1.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gholipour M, Taheri M, Mehvari Habibabadi J, Nazer N, Sayad A, Ghafouri-Fard S. Dysregulation of lncRNAs in autoimmune neuropathies. Sci Rep 2021; 11:16061. [PMID: 34373511 PMCID: PMC8352925 DOI: 10.1038/s41598-021-95466-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and Guillain-Barré syndrome (GBS) are inflammatory neuropathies with different clinical courses but similar underlying mechanisms. Long non-coding RNAs (lncRNAs) might affect pathogenesis of these conditions. In the current project, we have selected HULC, PVT1, MEG3, SPRY4-IT1, LINC-ROR and DSCAM-AS1 lncRNAs to appraise their transcript levels in the circulation of CIDP and GBS cases versus controls. Expression of HULC was higher in CIDP patients compared with healthy persons (Ratio of mean expression (RME) = 7.62, SE = 0.72, P < 0.001). While expression of this lncRNA was not different between female CIDP cases and female controls, its expression was higher in male CIDP cases compared with male controls (RME = 13.50, SE = 0.98, P < 0.001). Similarly, expression of HULC was higher in total GBS cases compared with healthy persons (RME = 4.57, SE = 0.65, P < 0.001) and in male cases compared with male controls (RME = 5.48, SE = 0.82, P < 0.001). Similar pattern of expression was detected between total cases and total controls. PVT1 was up-regulated in CIDP cases compared with controls (RME = 3.04, SE = 0.51, P < 0.001) and in both male and female CIDP cases compared with sex-matched controls. Similarly, PVT1 was up-regulated in GBS cases compared with controls (RME = 2.99, SE = 0.55, P vale < 0.001) and in total patients compared with total controls (RME = 3.02, SE = 0.43, P < 0.001). Expression levels of DSCAM-AS1 and SPRY4-IT1 were higher in CIDP and GBS cases compared with healthy subjects and in both sexes compared with gender-matched healthy persons. Although LINC-ROR was up-regulated in total CIDP and total GBS cases compared with controls, in sex-based comparisons, it was only up-regulated in male CIDP cases compared with male controls (RME = 3.06, P = 0.03). Finally, expression of MEG3 was up-regulated in all subgroups of patients versus controls except for male GBS controls. SPRY4-IT could differentiate CIDP cases from controls with AUC = 0.84, sensitivity = 0.63 and specificity = 0.97. AUC values of DSCAM-AS1, MEG3, HULC, PVT1 and LINC-ROR were 0.80, 0.75, 0.74, 0.73 and 0.72, respectively. In differentiation between GBS cases and controls, SPRY4-IT and DSCAM-AS1 has the AUC value of 0.8. None of lncRNAs could appropriately differentiate between CIDP and GBS cases. Combination of all lncRNAs could not significantly enhance the diagnostic power. Taken together, these lncRNAs might be involved in the development of CIDP or GBS.
Collapse
Affiliation(s)
- Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
14
|
Pisignano G, Ladomery M. Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Noncoding RNA 2021; 7:ncrna7010021. [PMID: 33799493 PMCID: PMC8005942 DOI: 10.3390/ncrna7010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: (G.P.); (M.L.)
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
- Correspondence: (G.P.); (M.L.)
| |
Collapse
|
15
|
Tahmouresi F, Razmara E, Pakravan K, Mossahebi-Mohammadi M, Rouhollah F, Montazeri M, Sarrafzadeh A, Fahimi H, Babashah S. Upregulation of the long noncoding RNAs DSCAM-AS1 and MANCR is a potential diagnostic marker for breast carcinoma. Biotechnol Appl Biochem 2020; 68:1250-1256. [PMID: 33012018 DOI: 10.1002/bab.2048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) is one of the most common malignancies among women in the world. There is a global attempt to diagnose BC as early as possible. Long noncoding RNAs (lncRNAs) are emerging as novel targets and biomarkers for BC diagnosis and prognosis. Aberrant expression of lncRNAs is associated with BC development, making them a potential tumor marker for BC. To investigate this possibility, we determined the expression levels of Down syndrome cell adhesion molecule-antisense RNA-1 (DSCAM-AS1) and mitotically-associated long non-coding RNA (MANCR) lncRNAs in BC tissues. This case-control study included 50 paired tumor and adjacent nontumor tissues from female BC patients. The total RNA was isolated and the expression levels of MANCR and DSCAM-AS1 lncRNAs were assessed using quantitative real-time reverse transcription-PCR. Potential correlations between lncRNA levels and clinicopathological characteristics were also analyzed. DSCAM-AS1 and MANCR lncRNAs were significantly upregulated in BC tumor tissues compared with the adjacent nontumor tissues. We also found the significant upregulation of DSCAM-AS1 in advanced tumor-node-metastasis stage (TNM III) of BC tumor tissues. Furthermore, the expression of DSCAM-AS1 and MANCR in HER-2 positive patients was significantly higher than HER-2 negative affected individuals. Receiver operating characteristic curve analysis showed a satisfactory diagnostic efficacy (P value < 0.0001), which means that DSCAM-AS1 and MANCR lncRNAs can potentially serve as a biomarker. The present study might provide further approval for the clinical diagnostic significance of DSCAM-AS1 and MANCR lncRNAs that their high expressions were associated with aggressive clinical parameters of BC.
Collapse
Affiliation(s)
- Fatemeh Tahmouresi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Montazeri
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Briata P, Gherzi R. Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Noncoding RNA 2020; 6:ncrna6030040. [PMID: 32957640 PMCID: PMC7549350 DOI: 10.3390/ncrna6030040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell.
Collapse
|
17
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
|
18
|
Li XF, Shen WZ, Jin X, Ren P, Zhang J. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations. Sci Rep 2020; 10:11236. [PMID: 32641854 PMCID: PMC7343825 DOI: 10.1038/s41598-020-67908-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) have shown promise against non-small cell lung cancers (NSCLCs) in clinics but the utility is often short-lived because of T790M mutations in EGFR that help evade TKIs’ action. Osimertinib is the third and latest generation TKI that targets EGFRs with T790M mutations. However, there are already reports on acquired resistance against Osimertinib. Recent work has revealed the role that miRNAs, particularly tumor suppressor let-7c, play in the invasiveness and acquired resistance of NSCLCs, but the mechanistic details, particularly in Osimertinib resistance, remain elusive. Using two cells lines, H1975 (endogenous T790M mutation) and HCC827-T790M (with acquired T790M mutation), we found that let-7c is a regulator of EMT, as well as it affects CSC phenotype. In both the cell lines, transfection with pre-let-7c led to reversal of EMT as studied through EMT markers e-cadherin and ZEB1. This resulted in reduced proliferation and invasion. Conversely, reduced expression of let-7c through anti-let-7c transfections significantly increased proliferation and invasion of lung cancer cells. Expression of let-7c was functionally relevant as EMT correlated with resistance to Osimertinib. High let-7c expression reversed EMT and made cells sensitive to Osimertinib, and vice versa. WNT1 and TCF-4 were found to be two targets of let-7c which were epigenetic suppressed by let-7c through increased methylation. In vivo, pre-let-7c inhibited while anti-let-7c potentiated tumor growth and WNT1 and TCF-4 were downregulated in xenografts with pre-let-7c. Silencing of both WNT1 and TCF-4 resulted in potentiation of Osimertinib action. Our results suggest an important role of let-7c in regulating EMT and the resulting Osimertinib resistance in T790M NSCLCs. More clinical studies need to be performed to fully understand the translational relevance of this novel mechanism.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Chaoyang, Changchun, 130021, Jilin, People's Republic of China.
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|