1
|
Soares S, Aires F, Monteiro A, Pinto G, Faria I, Sales G, Correa-Duarte MA, Guerreiro S, Fernandes R. Radiotherapy Metastatic Prostate Cancer Cell Lines Treated with Gold Nanorods Modulate miRNA Signatures. Int J Mol Sci 2024; 25:2754. [PMID: 38474003 DOI: 10.3390/ijms25052754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNA (miRNA) modulation has been identified as a promising strategy for improving the response of human prostate cancer (PCa) to radiotherapy (RT). Studies have shown that mimics or inhibitors of miRNAs could modulate the sensitivity of PCa cells to RT. In addition, pegylated gold nanoparticles have been studied as a therapeutic approach to treat PCa cells and/or vehicles for carrying miRNAs to the inside of cells. Therefore, we evaluated the capacity of hypofractionated RT and pegylated gold nanorods (AuNPr-PEG) to modulate the miRNA signature on PCa cells. Thus, RT-qPCR was used to analyze miRNA-95, miRNA-106-5p, miRNA-145-5p, and miRNA-541-3p on three human metastatic prostate cell lines (PC3, DU145, and LNCaP) and one human prostate epithelial cell line (HprEpiC, a non-tumor cell line) with and without treatment. Our results showed that miRNA expression levels depend on cell type and the treatment combination applied using RT and AuNPr-PEG. In addition, cells pre-treated with AuNPr-PEG and submitted to 2.5 Gy per day for 3 days decreased the expression levels of miRNA-95, miRNA-106, miRNA-145, and miRNA-541-3p. In conclusion, PCa patients submitted to hypofractionated RT could receive personalized treatment based on their metastatic cellular miRNA signature, and AuNPr-PEG could be used to increase metastatic cell radiosensitivity.
Collapse
Affiliation(s)
- Sílvia Soares
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- Faculty of Chemistry, University of Vigo, 36310 Vigo, Spain
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Fátima Aires
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Gabriela Pinto
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Isabel Faria
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
| | - Goreti Sales
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| | - Miguel A Correa-Duarte
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Susana Guerreiro
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, 4200-465 Porto, Portugal
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Rúben Fernandes
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- UFP@RISE, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
2
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Soares S, Guerreiro SG, Cruz-Martins N, Faria I, Baylina P, Sales MG, Correa-Duarte MA, Fernandes R. The Influence of miRNAs on Radiotherapy Treatment in Prostate Cancer - A Systematic Review. Front Oncol 2021; 11:704664. [PMID: 34414113 PMCID: PMC8369466 DOI: 10.3389/fonc.2021.704664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
In the last years, extensive investigation on miRNomics have shown to have great advantages in cancer personalized medicine regarding diagnosis, treatment and even clinical outcomes. Prostate cancer (PCa) is the second most common male cancer and about 50% of all PCa patients received radiotherapy (RT), despite some of them develop radioresistance. Here, we aim to provide an overview on the mechanisms of miRNA biogenesis and to discuss the functional impact of miRNAs on PCa under radiation response. As main findings, 23 miRNAs were already identified as being involved in genetic regulation of PCa cell response to RT. The mechanisms of radioresistance are still poorly understood, despite it has been suggested that miRNAs play an important role in cell signaling pathways. Identification of miRNAs panel can be thus considered an upcoming and potentially useful strategy in PCa diagnosis, given that radioresistance biomarkers, in both prognosis and therapy still remains a challenge.
Collapse
Affiliation(s)
- Sílvia Soares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Faculty of Chemistry, University of Vigo, Vigo, Spain.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra, Portugal
| | - Isabel Faria
- School of Health, Polytechnic of Porto, Porto, Portugal
| | - Pilar Baylina
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Biomark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Miguel A Correa-Duarte
- Faculty of Chemistry, University of Vigo, Vigo, Spain.,CINBIO, University of Vigo, Vigo, Spain.,Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Vigo, Spain
| | - Rúben Fernandes
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
4
|
Yue S, Sun K, Li S, Liu Y, Zhu Q, Chen Y, Yuan D, Wen T, Ge M, Yu Q. The establishment of an immunosensor for the detection of SPOP. Sci Rep 2021; 11:12571. [PMID: 34131189 PMCID: PMC8206368 DOI: 10.1038/s41598-021-91944-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
In this paper, we first synthesis three-dimensional jasmine-like Cu@L-aspartic acid(L-ASP) inorganic–organic hybrid nanoflowers to load palladium-platinum nanoparticles (Pd–Pt NPs) as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein. Scanning electron microscope, fourier transform infrared, energy dispersive spectrometer, X-ray photoelectron spectroscopy analysis was used to characterize the newly synthesized materials. The newly formed Cu@L-Asp/Pd-PtNPs can catalyze the decomposition of hydrogen peroxide and exhibit excellent catalytic performance. When different concentration of speckle-type POZ domain protein is captured by speckle-type POZ domain protein antibody linked to the surface of Cu@L-Asp/Pd–Pt NPs, the current signal decreases with the increase concentration of speckle-type POZ domain protein. After optimization, the speckle-type POZ domain protein immunosensor exhibited a good linear response over a concentration range from 0.1–1 ng mL−1 with a low detection limit of 19 fg mL−1. The proposed sensor demonstrates good stability within 28 days, acceptable reproducibility (RSD = 0.52%) and selectivity to the speckle-type POZ domain protein in the presence of possible interfering substances and has potential application for detecting other intracellular macromolecular substances.
Collapse
Affiliation(s)
- Song Yue
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Kexin Sun
- Department of Ophthalmology, Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing, 400016, People's Republic of China
| | - Siyuan Li
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yi Liu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Qihao Zhu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yiyu Chen
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Dong Yuan
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Tao Wen
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Mingjian Ge
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Qiubo Yu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
5
|
Doldi V, El Bezawy R, Zaffaroni N. MicroRNAs as Epigenetic Determinants of Treatment Response and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2021; 13:2380. [PMID: 34069147 PMCID: PMC8156532 DOI: 10.3390/cancers13102380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men worldwide, and the fifth leading cause of male cancer-related deaths in western countries. PC is a very heterogeneous disease, meaning that optimal clinical management of individual patients is challenging. Depending on disease grade and stage, patients can be followed in active surveillance protocols or undergo surgery, radiotherapy, hormonal therapy, and chemotherapy. Although therapeutic advancements exist in both radiatiotherapy and chemotherapy, in a considerable proportion of patients, the treatment remains unsuccessful, mainly due to tumor poor responsiveness and/or recurrence and metastasis. microRNAs (miRNAs), small noncoding RNAs that epigenetically regulate gene expression, are essential actors in multiple tumor-related processes, including apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition, invasion, and metastasis. Given that these processes are deeply involved in cell response to anti-cancer treatments, miRNAs have been considered as key determinants of tumor treatment response. In this review, we provide an overview on main PCa-related miRNAs and describe the biological mechanisms by which specific miRNAs concur to determine PCa response to radiation and drug therapy. Additionally, we illustrate whether miRNAs can be considered novel therapeutic targets or tools on the basis of the consequences of their expression modulation in PCa experimental models.
Collapse
Affiliation(s)
| | | | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (R.E.B.)
| |
Collapse
|
6
|
Maekawa M, Higashiyama S. The Roles of SPOP in DNA Damage Response and DNA Replication. Int J Mol Sci 2020; 21:ijms21197293. [PMID: 33023230 PMCID: PMC7582541 DOI: 10.3390/ijms21197293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Speckle-type BTB/POZ protein (SPOP) is a substrate recognition receptor of the cullin-3 (CUL3)/RING type ubiquitin E3 complex. To date, approximately 30 proteins have been identified as ubiquitinated substrates of the CUL3/SPOP complex. Pathologically, missense mutations in the substrate-binding domain of SPOP have been found in prostate and endometrial cancers. Prostate and endometrial cancer-associated SPOP mutations lose and increase substrate-binding ability, respectively. Expression of these SPOP mutants, thus, causes aberrant turnovers of the substrate proteins, leading to tumor formation. Although the molecular properties of SPOP and its cancer-associated mutants have been intensively elucidated, their cellular functions remain unclear. Recently, a number of studies have uncovered the critical role of SPOP and its mutants in DNA damage response and DNA replication. In this review article, we summarize the physiological functions of SPOP as a “gatekeeper” of genome stability.
Collapse
Affiliation(s)
- Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan;
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
- Correspondence: ; Tel.: +81-89-960-5254
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan;
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| |
Collapse
|