1
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. Int J Mol Sci 2024; 25:12191. [PMID: 39596256 PMCID: PMC11594831 DOI: 10.3390/ijms252212191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph tyrosine kinase receptor family that has been linked to various biological processes. In tumors, EphA2 overexpression is associated with noncanonical pathway activation, tumor progression, and a poor prognosis, which has emphasized its importance as a marker of malignancy. Studies on numerous cancer models have highlighted EphA2's dual and often contradictory action, which can be attributed to EphA2's interactions involving multiple pathways and different ligands, as well as the heterogeneity of the tumor microenvironment. In this review, we summarize the main mechanisms underlying EphA2 dysregulation in cancer, highlighting its molecular complexity. Then, we analyze therapies that have been developed over time to counteract its action. We discuss the limitations of the described approaches, emphasizing the fact that the goal of new options is high specificity without losing therapeutic efficacy. For this reason, immunotherapy or the emerging field of targeted protein degradation with proteolysis-targeting chimeras (PROTACs) may represent a promising solution that can be developed based on a deeper understanding of the molecular mechanisms sustaining EphA2 oncogenic activity.
Collapse
Affiliation(s)
- Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| |
Collapse
|
3
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
4
|
Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today 2024; 29:103989. [PMID: 38663580 DOI: 10.1016/j.drudis.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
5
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
6
|
Ye S, Wang X, Chen R. A novel classification predicts prognosis and drug sensitivity in osteosarcoma based on alterations in gene sets. Aging (Albany NY) 2024; 16:4579-4590. [PMID: 38428404 PMCID: PMC10968677 DOI: 10.18632/aging.205614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Osteosarcoma is a cancer originating in the bone cells, specifically in the osteoblasts. Previous studies mainly focused on particular molecules but the whole pathway network. We comprehensively analyzed the enrichment score of each signal pathway and identified a novel classification by 20 machine learning algorithms. Furthermore, differences in tumor immune infiltration cells and drug sensitivity were compared in low and high groups. We identified a model consisting of four signaling pathways that predict the prognosis and the immune status of the tumor microenvironment and drug sensitivity in osteosarcoma patients. The novel classification may be used in clinical applications to predict prognosis and drug sensitivity.
Collapse
Affiliation(s)
- Shuxi Ye
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Xiaopeng Wang
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Rongchun Chen
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Gouda MA, Zarzour MA, Vaporciyan AA, Kairemo K, Chuang HH, Subbiah V. Activity of pazopanib in EWSR1-NFATC2 translocation-associated bone sarcoma. Oncoscience 2023; 10:44-53. [PMID: 37736255 PMCID: PMC10511123 DOI: 10.18632/oncoscience.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Pazopanib is a multi-kinase inhibitor that is currently approved for treatment of advanced renal cell carcinoma and chemotherapy-refractory soft tissue sarcoma. In this case report, we discuss the case of a patient with a EWSR1-NFATC2 fusion positive bone sarcoma who had exceptional tumor control through using pazopanib and surgery for an overall duration exceeding 5 years. We also review the literature on EWSR1-NFATC2 translocation-associated sarcomas and use of pazopanib in bone sarcomas.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria A. Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ara A. Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kalevi Kairemo
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hubert H. Chuang
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sarah Cannon Research Institute, Nashville, TN 37203, USA
| |
Collapse
|
8
|
Wang L, Li W, Pan Y. The Eph/Ephrin system in primary bone tumor and bone cancer pain. Aging (Albany NY) 2023; 15:7324-7332. [PMID: 37413995 PMCID: PMC10415561 DOI: 10.18632/aging.204852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
The family of Eph receptor tyrosine kinases and their Ephrin ligands system constitutes a bidirectional signaling pathway. Eph/Ephrin system coordinate a wide spectrum of pathologic processes during development, metastasis, prognosis, drug resistance and angiogenesis in carcinogenesis. Chemotherapy, surgery and radiotherapy are the most commonly used clinical treatments for primary bone tumors. Therefore, surgical resection is often unable to completely eliminate the tumor, and this is the main cause of metastasis and postoperative recurrence. A growing body of literature has been published lately revitalizing our scientific interest towards the role of Eph/Ephrins in pathogenesis and the treatment of bone tumor and bone cancer pain. This study mainly reviewed the roles of Eph/Ephrin system that has both tumor-suppressing and -promoting roles in primary bone tumors and bone cancer pain. Understanding the intracellular mechanisms of Eph/Ephrin system in tumorigenesis and metastasis of bone tumors might provide a foundation for the development of Eph/Ephrin targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wei Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Yong Pan
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
9
|
Zhang Y, Popel AS, Bazzazi H. Combining Multikinase Tyrosine Kinase Inhibitors Targeting the Vascular Endothelial Growth Factor and Cluster of Differentiation 47 Signaling Pathways Is Predicted to Increase the Efficacy of Antiangiogenic Combination Therapies. ACS Pharmacol Transl Sci 2023; 6:710-726. [PMID: 37200806 PMCID: PMC10186363 DOI: 10.1021/acsptsci.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 05/20/2023]
Abstract
Angiogenesis is a critical step in tumor growth, development, and invasion. Nascent tumor cells secrete vascular endothelial growth factor (VEGF) that significantly remodels the tumor microenvironment through interaction with multiple receptors on vascular endothelial cells, including type 2 VEGF receptor (VEGFR2). The complex pathways initiated by VEGF binding to VEGFR2 lead to enhanced proliferation, survival, and motility of vascular endothelial cells and formation of a new vascular network, enabling tumor growth. Antiangiogenic therapies that inhibit VEGF signaling pathways were among the first drugs that targeted stroma rather than tumor cells. Despite improvements in progression-free survival and higher response rates relative to chemotherapy in some types of solid tumors, the impact on overall survival (OS) has been limited, with the majority of tumors eventually relapsing due to resistance or activation of alternate angiogenic pathways. Here, we developed a molecularly detailed computational model of endothelial cell signaling and angiogenesis-driven tumor growth to investigate combination therapies targeting different nodes of the endothelial VEGF/VEGFR2 signaling pathway. Simulations predicted a strong threshold-like behavior in extracellular signal-regulated kinases 1/2 (ERK1/2) activation relative to phosphorylated VEGFR2 levels, as continuous inhibition of at least 95% of receptors was necessary to abrogate phosphorylated ERK1/2 (pERK1/2). Combinations with mitogen-activated protein kinase/ERK kinase (MEK) and spingosine-1-phosphate inhibitors were found to be effective in overcoming the ERK1/2 activation threshold and abolishing activation of the pathway. Modeling results also identified a mechanism of resistance whereby tumor cells could reduce pERK1/2 sensitivity to inhibitors of VEGFR2 by upregulation of Raf, MEK, and sphingosine kinase 1 (SphK1), thus highlighting the need for deeper investigation of the dynamics of the crosstalk between VEGFR2 and SphK1 pathways. Inhibition of VEGFR2 phosphorylation was found to be more effective at blocking protein kinase B, also known as AKT, activation; however, to effectively abolish AKT activation, simulations identified Axl autophosphorylation or the Src kinase domain as potent targets. Simulations also supported activating cluster of differentiation 47 (CD47) on endothelial cells as an effective combination partner with tyrosine kinase inhibitors to inhibit angiogenesis signaling and tumor growth. Virtual patient simulations supported the effectiveness of CD47 agonism in combination with inhibitors of VEGFR2 and SphK1 pathways. Overall, the rule-based system model developed here provides new insights, generates novel hypothesis, and makes predictions regarding combinations that may enhance the OS with currently approved antiangiogenic therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hojjat Bazzazi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
10
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
11
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
12
|
Jimenez L, Amenabar C, Mayoral-Varo V, Mackenzie TA, Ramos MC, Silva A, Calissi G, Grenho I, Blanco-Aparicio C, Pastor J, Megías D, Ferreira BI, Link W. mTORC2 Is the Major Second Layer Kinase Negatively Regulating FOXO3 Activity. Molecules 2022; 27:molecules27175414. [PMID: 36080182 PMCID: PMC9457944 DOI: 10.3390/molecules27175414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Forkhead box O (FOXO) proteins are transcription factors involved in cancer and aging and their pharmacological manipulation could be beneficial for the treatment of cancer and healthy aging. FOXO proteins are mainly regulated by post-translational modifications including phosphorylation, acetylation and ubiquitination. As these modifications are reversible, activation and inactivation of FOXO factors is attainable through pharmacological treatment. One major regulatory input of FOXO signaling is mediated by protein kinases. Here, we use specific inhibitors against different kinases including PI3K, mTOR, MEK and ALK, and other receptor tyrosine kinases (RTKs) to determine their effect on FOXO3 activity. While we show that inhibition of PI3K efficiently drives FOXO3 into the cell nucleus, the dual PI3K/mTOR inhibitors dactolisib and PI-103 induce nuclear FOXO translocation more potently than the PI3Kδ inhibitor idelalisib. Furthermore, specific inhibition of mTOR kinase activity affecting both mTORC1 and mTORC2 potently induced nuclear translocation of FOXO3, while rapamycin, which specifically inhibits the mTORC1, failed to affect FOXO3. Interestingly, inhibition of the MAPK pathway had no effect on the localization of FOXO3 and upstream RTK inhibition only weakly induced nuclear FOXO3. We also measured the effect of the test compounds on the phosphorylation status of AKT, FOXO3 and ERK, on FOXO-dependent transcriptional activity and on the subcellular localization of other FOXO isoforms. We conclude that mTORC2 is the most important second layer kinase negatively regulating FOXO activity.
Collapse
Affiliation(s)
- Lucia Jimenez
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Amenabar
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Victor Mayoral-Varo
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA, Health Sciences Technology Park, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Maria C. Ramos
- Fundación MEDINA, Health Sciences Technology Park, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Andreia Silva
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giampaolo Calissi
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Inês Grenho
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Joaquin Pastor
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Diego Megías
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (B.I.F.); (W.L.)
| | - Wolfgang Link
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (B.I.F.); (W.L.)
| |
Collapse
|
13
|
Li Y, Sun S, Wen C, Zhong J, Jiang Q. Effect of Enterococcus faecalis OG1RF on human calvarial osteoblast apoptosis. BMC Oral Health 2022; 22:279. [PMID: 35804353 PMCID: PMC9264677 DOI: 10.1186/s12903-022-02295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Enterococcus faecalis is a dominant pathogen in the root canals of teeth with persistent apical periodontitis (PAP), and osteoblast apoptosis contributes to imbalanced bone remodelling in PAP. Here, we investigated the effect of E. faecalis OG1RF on apoptosis in primary human calvarial osteoblasts. Specifically, the expression of apoptosis-related genes and the role of anti-apoptotic and pro-apoptotic members of the BCL-2 family were examined. Methods Primary human calvarial osteoblasts were incubated with E. faecalis OG1RF at multiplicities of infection corresponding to infection time points. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, caspase-3/-8/-9 activity assay, polymerase chain reaction (PCR) array, and quantitative real-time PCR were used to assess osteoblast apoptosis. Results E. faecalis infection increased the number of early- and late-phase apoptotic cells and TUNEL-positive cells, decreased the mitochondrial membrane potential (ΔΨm), and activated the caspase-3/-8/-9 pathway. Moreover, of all 84 apoptosis-related genes in the PCR array, the expression of 16 genes was upregulated and that of four genes was downregulated in the infected osteoblasts. Notably, the mRNA expression of anti-apoptotic BCL2 was downregulated, whereas that of the pro-apoptotic BCL2L11, HRK, BIK, BMF, NOXA, and BECN1 and anti-apoptotic BCL2A1 was upregulated. Conclusions E. faecalis OG1RF infection triggered apoptosis in human calvarial osteoblasts, and BCL-2 family members acted as regulators of osteoblast apoptosis. Therefore, BCL-2 family members may act as potential therapeutic targets for persistent apical periodontitis.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Jialin Zhong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.
| |
Collapse
|
14
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Kokkali S, Tsourouflis G, Theocharis S. The EPH/Ephrin System in Bone and Soft Tissue Sarcomas' Pathogenesis and Therapy: New Advancements and a Literature Review. Int J Mol Sci 2022; 23:ijms23095171. [PMID: 35563562 PMCID: PMC9100911 DOI: 10.3390/ijms23095171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell–cell and cell–substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Department of Orthopaedics, St Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Gerasimos Tsourouflis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Correspondence:
| |
Collapse
|
15
|
Wang S, Wang Y, Huang Z, Wei H, Wang X, Shen R, Lan W, Zhong G, Lin J. Stattic sensitizes osteosarcoma cells to epidermal growth factor receptor inhibitors via blocking the interleukin 6-induced STAT3 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1670-1680. [PMID: 34693451 DOI: 10.1093/abbs/gmab146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/14/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant bone tumor with high metastatic potential, frequently affects children and adolescents. Epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors exhibit encouraging anti-tumor activity for patients with solid tumors, whereas their effects on OS remain controversial. In the present study, we aimed to elucidate the anti-tumor activity of gefitinib for OS, as well as to explore the underlying mechanisms. Gefitinib inhibits cell viability, tumor growth, cell migration, and invasion and promotes cell apoptosis and G1 cycle arrest in OS at a relatively high concentration via suppressing the PI3K/Akt and ERK pathways. However, gefitinib treatment results in the feedback activation of signal transducer and activator of transcription 3 (STAT3) induced by interleukin 6 (IL-6) secretion. Combined treatment with gefitinib and stattic, an inhibitor for STAT3 phosphorylation, engenders more evident inhibitory effects on cell proliferation, migration, and invasion and promotive effects on cell apoptosis and G1 phase arrest in OS, compared with the single exposure to gefitinib or stattic. Western blot analysis demonstrates that stattic treatment in gefitinib-treated OS abrogates the IL-6-induced STAT3 activation and subsequently further restrains the activities of EGFR, Akt, and ERK pathways in tumor cells. This study confirms that the EGFR inhibitor of gefitinib has moderate anti-tumor effects on OS through IL-6 secretion-mediated STAT3 activation. Additional administration of stattic in EGFR-targeted therapies may contribute to improve the efficacy for OS.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yunqing Wang
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhen Huang
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hongxiang Wei
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinwen Wang
- Department of Orthopedics, The People's Hospital of Jiangmen City, Jiangmen 529051, China
| | - Rongkai Shen
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Wenbin Lan
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Guangxian Zhong
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jianhua Lin
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
16
|
Giordano G, Merlini A, Ferrero G, Mesiano G, Fiorino E, Brusco S, Centomo ML, Leuci V, D’Ambrosio L, Aglietta M, Sangiolo D, Grignani G, Pignochino Y. EphA2 Expression in Bone Sarcomas: Bioinformatic Analyses and Preclinical Characterization in Patient-Derived Models of Osteosarcoma, Ewing's Sarcoma and Chondrosarcoma. Cells 2021; 10:cells10112893. [PMID: 34831119 PMCID: PMC8616526 DOI: 10.3390/cells10112893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are a group of heterogeneous malignant mesenchymal tumors. Complete surgical resection is still the cornerstone of treatment, but, in the advanced/unresectable setting, their management remains challenging and not significantly improved by target- and immuno-therapies. We focused on the tyrosine kinase Eph type-A receptor-2 (EphA2), a key oncoprotein implicated in self-renewal, angiogenesis, and metastasis, in several solid tumors and thus representing a novel potential therapeutic target. Aiming at better characterizing its expression throughout the main bone sarcoma histotypes, we investigated EPHA2 expression in the Cancer Cell Lines Encyclopedia and in public datasets with clinical annotations. looking for correlations with molecular, histopathological and patients’ features and clinical outcomes in a total of 232 osteosarcomas, 197 Ewing’s sarcomas, and 102 chondrosarcomas. We observed EPHA2 expression in bone sarcoma cell lines. We demonstrated higher EPHA2 expression in tumor tissues when compared to normal counterparts. A significant correlation was found between EPHA2 expression and Huvos grade (osteosarcoma) and with worse overall survival (dedifferentiated chondrosarcoma). Next, we characterized EPHA2 expression and activation in bone sarcoma primary tissues and in patient-derived xenografts generated in our laboratory to verify their reliability as in vivo models of osteosarcoma, Ewing’s sarcoma and chondrosarcoma. Furthermore, for the first time, we demonstrated EPHA2 expression in chondrosarcoma, suggesting its potential key role in this histotype. Indeed, we observed a significant dose-dependent antitumor effect of the EphA2-inhibitor ALW-II-41-27 in patient-derived in vitro models. In conclusion, EphA2 targeting represents a promising novel therapeutic strategy against bone sarcomas.
Collapse
Affiliation(s)
- Giorgia Giordano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-0119933503
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
- Department of Computer Science, University of Torino, 10124 Torino, Italy
| | - Giulia Mesiano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Erika Fiorino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Ymera Pignochino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
17
|
Lin Z, Wu Z, Luo W. Chimeric Antigen Receptor T-Cell Therapy: The Light of Day for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13174469. [PMID: 34503279 PMCID: PMC8431424 DOI: 10.3390/cancers13174469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in leukemia and lymphoma. Furthermore, CAR-T cells have been explored in the treatment of osteosarcoma (OS). However, there is no strong comprehensive evidence to support their efficacy. Therefore, we reviewed the current evidence on CAR-T cells for OS to demonstrate their feasibility and provide new options for the treatment of OS. Abstract Osteosarcoma (OS) is the most common malignant bone tumor, arising mainly in children and adolescents. With the introduction of multiagent chemotherapy, the treatments of OS have remarkably improved, but the prognosis for patients with metastases is still poor, with a five-year survival rate of 20%. In addition, adverse effects brought by traditional treatments, including radical surgery and systemic chemotherapy, may seriously affect the survival quality of patients. Therefore, new treatments for OS await exploitation. As a novel immunotherapy, chimeric antigen receptor (CAR) T-cell therapy has achieved encouraging results in treating cancer in recent years, especially in leukemia and lymphoma. Furthermore, researchers have recently focused on CAR-T therapy in solid tumors, including OS. In this review, we summarize the safety, specificity, and clinical transformation of the targets in treating OS and point out the direction for further research.
Collapse
|
18
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
19
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|