1
|
Boichuk S, Dunaev P, Galembikova A, Valeeva E. Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance. Cancers (Basel) 2024; 16:3103. [PMID: 39272961 PMCID: PMC11394061 DOI: 10.3390/cancers16173103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
2
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
3
|
Boichuk S, Dunaev P, Skripova V, Galembikova A, Bikinieva F, Shagimardanova E, Gazizova G, Deviatiiarov R, Valeeva E, Mikheeva E, Vasilyeva M, Kopnin P, Strelnikov V, Kiyamova R. Unraveling the Mechanisms of Sensitivity to Anti-FGF Therapies in Imatinib-Resistant Gastrointestinal Stromal Tumors (GIST) Lacking Secondary KIT Mutations. Cancers (Basel) 2023; 15:5354. [PMID: 38001614 PMCID: PMC10670741 DOI: 10.3390/cancers15225354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow 127051, Russia
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Vera Skripova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Firyuza Bikinieva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
- Loginov Moscow Clinical Scientific Center, Moscow 111123, Russia
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
| | - Ekaterina Mikheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Maria Vasilyeva
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Pavel Kopnin
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Vladimir Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow 115522, Russia;
| | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| |
Collapse
|
4
|
Di Vito A, Ravegnini G, Gorini F, Aasen T, Serrano C, Benuzzi E, Coschina E, Monesmith S, Morroni F, Angelini S, Hrelia P. The multifaceted landscape behind imatinib resistance in gastrointestinal stromal tumors (GISTs): A lesson from ripretinib. Pharmacol Ther 2023:108475. [PMID: 37302758 DOI: 10.1016/j.pharmthera.2023.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal sarcomas and the gold-standard treatment is represented by tyrosine kinase inhibitors (TKIs). Unfortunately, first-line treatment with the TKI imatinib usually promotes partial response or stable disease rather than a complete response, and resistance appears in most patients. Adaptive mechanisms are immediately relevant at the beginning of imatinib therapy, and they may represent the reason behind the low complete response rates observed in GISTs. Concurrently, resistant subclones can silently continue to grow or emerge de novo, becoming the most representative populations. Therefore, a slow evolution of the primary tumor gradually occurs during imatinib treatment, enriching heterogeneous imatinib resistant clonal subpopulations. The identification of secondary KIT/PDGFRA mutations in resistant GISTs prompted the development of novel multi-targeted TKIs, leading to the approval of sunitinib, regorafenib, and ripretinib. Although ripretinib has broad anti-KIT and -PDGFRA activity, it failed to overcome sunitinib as second-line treatment, suggesting that imatinib resistance is more multifaceted than initially thought. The present review summarizes several biological aspects suggesting that heterogeneous adaptive and resistance mechanisms can also be driven by KIT or PDGFRA downstream mediators, alternative kinases, as well as ncRNAs, which are not targeted by any TKI, including ripretinib. This may explain the modest effect observed with ripretinib and all anti-GIST agents in patients.
Collapse
Affiliation(s)
- Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cesar Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy; Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
5
|
Chen Y, Zhang R, Mi D, Wang Q, Huang T, Dong X, Zhang H, Xiao H, Shi S. SPK1/S1P axis confers gastrointestinal stromal tumors (GISTs) resistance of imatinib. Gastric Cancer 2023; 26:26-43. [PMID: 35999321 PMCID: PMC9398498 DOI: 10.1007/s10120-022-01332-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imatinib mesylate (IM) is highly effective in the treatment of gastrointestinal stromal tumors (GISTs). However, the most of GISTs patients develop secondary drug resistance after 1-3 years of IM treatment. The aim of this study was to explore the IM-resistance mechanism via the multi-scope combined with plasma concentration of IM, genetic polymorphisms and plasma sensitive metabolites. METHODS This study included a total of 40 GISTs patients who had been regularly treated and not treated with IM. The plasma samples were divided into three experiments, containing therapeutic drug monitoring (TDM), OCT1 genetic polymorphisms and non-targeted metabolomics. According to the data of above three experiments, the IM-resistant cell line, GIST-T1/IMR cells, was constructed for verification the IM-resistance mechanism. RESULTS The results of non-targeted metabolomics analysis suggested that the sphingophospholipid metabolic pathway including the SPK1/S1P axis was inferred in IM-insensitive patients with GISTs. A GIST cell line (GIST-T1) was immediately induced as an IM resistance cell model (GIST-T1/IMR) and we found that blocking the signal pathway of SPK1/S1P in the GIST-T1/IMR could sensitize treatment of IM and reverse the IM-resistance. CONCLUSIONS Our findings suggest that IM secondary resistance is associated with the elevation of S1P, and blockage the signaling pathway of SPK1/S1P warrants evaluation as a potential therapeutic strategy in IM-resistant GISTs. The design of this study from blood management, group information collection, IM plasma concentration with different elements, identification of sphingolipid metabolism and lastly verification the function of SPK1/S1P in the IM-resistance GISTs cells.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, 611137, People's Republic of China
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Rui Zhang
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Dandan Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, 611137, People's Republic of China
| | - Qiuju Wang
- Department of Clinical Laboratory, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Tingwenli Huang
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Xinwei Dong
- Department of Clinical Pharmacy, Nantong Tumor Hospital, Nantong, 226300, People's Republic of China
| | - Hongwei Zhang
- Department of Anesthesiology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
6
|
Andrzejewska M, Czarny J, Derwich K. Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 14:4989. [PMID: 36291774 PMCID: PMC9599787 DOI: 10.3390/cancers14204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Gastrointestinal stromal tumor is the most common mesenchymal neoplasm of the gastrointestinal tract, usually found in elderly adults. It is infrequent among pediatric patients and usually differs biologically from adult-type diseases presenting mutations of KIT and PDGFR genes. In this population, more frequent is the wild-type GIST possessing SDH, TRK, RAS, NF1 mutations, among others. Both tumor types require individualized treatment with kinase inhibitors that are still being tested in the pediatric population due to the different neoplasm biology. We review the latest updates to the management of pediatric gastrointestinal tumors with a particular focus on the advances in molecular biology of the disease that enables the definition of possible resistance. Emerging treatment with kinase inhibitors that could serve as targeted therapy is discussed, especially with multikinase inhibitors of higher generation, the effectiveness of which has already been confirmed in the adult population.
Collapse
Affiliation(s)
- Marta Andrzejewska
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Jakub Czarny
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
7
|
Papadakos SP, Tsagkaris C, Papadakis M, Papazoglou AS, Moysidis DV, Zografos CG, Theocharis S. Angiogenesis in gastrointestinal stromal tumors: From bench to bedside. World J Gastrointest Oncol 2022; 14:1469-1477. [PMID: 36160752 PMCID: PMC9412926 DOI: 10.4251/wjgo.v14.i8.1469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are rare neoplasms with an estimated incidence from 0.78 to 1-1.5 patients per 100000. They most commonly occur in the elderly during the eighth decade of life affecting predominantly the stomach, but also the small intestine, the omentum, mesentery and rectosigmoid. The available treatments for GIST are associated with a significant rate of recurrent disease and adverse events. Thorough understanding of GIST’s pathophysiology and translation of this knowledge into novel regimens or drug repurposing is essential to counter this challenge. The present review summarizes the existing evidence about the role of angiogenesis in GIST’s development and progression and discusses its clinical underpinnings.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens 10679, Greece
| | | | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal 42283, Germany
| | - Andreas S Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Constantinos G Zografos
- First Department of Surgery, Athens Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, University of Athens, Athens 11527, Greece
| |
Collapse
|
8
|
Schöffski P, Gebreyohannes Y, Van Looy T, Manley P, Growney JD, Squires M, Wozniak A. In Vivo Evaluation of Fibroblast Growth Factor Receptor Inhibition in Mouse Xenograft Models of Gastrointestinal Stromal Tumor. Biomedicines 2022; 10:biomedicines10051135. [PMID: 35625872 PMCID: PMC9138864 DOI: 10.3390/biomedicines10051135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Advanced gastrointestinal stromal tumors (GIST) are typically treated with tyrosine kinase inhibitors, and imatinib is the most commonly used standard of care in first line treatments. The use of this and other tyrosine kinase inhibitors is associated with objective tumor responses and prolongation of progression-free and overall survival, but the treatment of metastatic disease is non-curative due to the selection or acquisition of secondary mutations and the activation of alternative kinase signaling pathways, leading to resistance and disease progression after an initial response. The present preclinical study evaluated the potential use of the fibroblast growth factor receptor inhibitors infigratinib and dovitinib alone or in combination with the mitogen-activated protein kinase inhibitor binimetinib in mouse models of GIST with different sensitivity or resistance to imatinib. Patient- and cell-line-derived GIST xenografts were established by bilateral, subcutaneous transplantation of human GIST tissue in female adult nu/nu NMRI mice. The mice were treated with dovitinib, infigratinib, or binimetinib, either alone or in combination with imatinib. The safety of treated animals was assessed by well-being inspection and body weight measurement. Antitumor effects were assessed by caliper-based tumor measurement. H&E staining and immunohistochemistry were used for assessing anti-mitotic and pro-apoptotic activity of the experimental treatments. Western blotting was used for assessing effects of the agents on kinase signaling pathways. Anti-angiogenic activity was assessed by measuring tumor vessel density. Dovitinib was found to have antitumor efficacy in GIST xenografts characterized by different imatinib resistance patterns. Dovitinib had better efficacy than imatinib (both at standard and increased dose) and was found to be well tolerated. Dovitinib had better efficacy in a KIT exon 9 mutant model, highlighting a role of patient selection in clinical GIST trials with the agent. In a model with KIT exon 11 and 17 mutations, dovitinib induced tumor necrosis, most likely due to anti-angiogenic effects. Additive effects combining dovitinib with binimetinib were limited.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
- Correspondence: ; Tel.: +32-1634-6900
| | - Yemarshet Gebreyohannes
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
| | - Thomas Van Looy
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
| | - Paul Manley
- Novartis Pharma AG, St. Johann Campus, 4002 Basel, Switzerland; (P.M.); (J.D.G.)
| | - Joseph D. Growney
- Novartis Pharma AG, St. Johann Campus, 4002 Basel, Switzerland; (P.M.); (J.D.G.)
| | - Matthew Squires
- Novartis Pharmaceuticals Corporation, Cambridge, MA 02139, USA;
| | - Agnieszka Wozniak
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
| |
Collapse
|
9
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
10
|
Fudalej MM, Badowska-Kozakiewicz AM. Improved understanding of gastrointestinal stromal tumors biology as a step for developing new diagnostic and therapeutic schemes. Oncol Lett 2021; 21:417. [PMID: 33841578 DOI: 10.3892/ol.2021.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
A gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract, with an estimated incidence of 10-15 per 1 million per year. While preparing holistic care for patients with GIST diagnosis, scientists might face several difficulties - insufficient risk stratification, acquired or secondary resistance to imatinib, or the need for an exceptional therapy method associated with wild-type tumors. This review summarizes recent advances associated with GIST biology that might enhance diagnostic and therapeutic strategies. New molecules might be incorporated into risk stratification schemes due to their proven association with outcomes; however, further research is required. Therapies based on the significant role of angiogenesis, immunology, and neural origin in the GIST biology could become a valuable enhancement of currently implemented treatment schemes. Generating miRNA networks that would predict miRNA regulatory functions is a promising approach that might help in better selection of potential biomarkers and therapeutical targets in cancer, including GISTs.
Collapse
Affiliation(s)
- Marta Magdalena Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|