1
|
Cortesi M, Warton K, Ford CE. Beyond 2D cell cultures: how 3D models are changing the in vitro study of ovarian cancer and how to make the most of them. PeerJ 2024; 12:e17603. [PMID: 39221267 PMCID: PMC11366228 DOI: 10.7717/peerj.17603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
3D cell cultures are a fundamental tool in ovarian cancer research that can enable more effective study of the main features of this lethal disease, including the high rates of recurrence and chemoresistance. A clearer, more comprehensive understanding of the biological underpinnings of these phenomena could aid the development of more effective treatments thus improving patient outcomes. Selecting the most appropriate model to investigate the different aspects of cell biology that are relevant to cancer is challenging, especially since the assays available for the study of 3D cultures are not fully established yet. To maximise the usefulness of 3D cell cultures of ovarian cancer, we undertook an in-depth review of the currently available models, taking into consideration the strengths and limitations of each approach and of the assay techniques used to evaluate the results. This integrated analysis provides insight into which model-assay pair is best suited to study different parameters of ovarian cancer biology such as cell proliferation, gene expression or treatment response. We also describe how the combined use of multiple models is likely to be the most effective strategy for the in vitro characterisation of complex behaviours.
Collapse
Affiliation(s)
- Marilisa Cortesi
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Electrical Electronic and Information Engineering “G. Marconi”, University of Bologna, Cesena, Italy
| | - Kristina Warton
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Houvast RD, Badr N, March T, de Muynck LDAN, Sier VQ, Schomann T, Bhairosingh S, Baart VM, Peeters JAHM, van Westen GJP, Plückthun A, Burggraaf J, Kuppen PJK, Vahrmeijer AL, Sier CFM. Preclinical evaluation of EpCAM-binding designed ankyrin repeat proteins (DARPins) as targeting moieties for bimodal near-infrared fluorescence and photoacoustic imaging of cancer. Eur J Nucl Med Mol Imaging 2024; 51:2179-2192. [PMID: 37642704 PMCID: PMC11178671 DOI: 10.1007/s00259-023-06407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer. METHODS EpCAM-binding DARPins Ac2, Ec4.1, and non-binding control DARPin Off7 were conjugated to IRDye 800CW and their binding efficacy was evaluated on EpCAM-positive HT-29 and EpCAM-negative COLO-320 human colon cancer cell lines. Thereafter, NIRF and PA imaging of all three conjugates were performed in HT-29_luc2 tumor-bearing mice. At 24 h post-injection, tumors and organs were resected and tracer biodistributions were analyzed. RESULTS Ac2-800CW and Ec4.1-800CW specifically bound to HT-29 cells, but not to COLO-320 cells. Next, 6 nmol and 24 h were established as the optimal in vivo dose and imaging time point for both DARPin tracers. At 24 h post-injection, mean tumor-to-background ratios of 2.60 ± 0.3 and 3.1 ± 0.3 were observed for Ac2-800CW and Ec4.1-800CW, respectively, allowing clear tumor delineation using the clinical Artemis NIRF imager. Biodistribution analyses in non-neoplastic tissue solely showed high fluorescence signal in the liver and kidney, which reflects the clearance of the DARPin tracers. CONCLUSION Our encouraging results show that EpCAM-binding DARPins are a promising class of targeting moieties for pan-carcinoma targeting, providing clear tumor delineation at 24 h post-injection. The work described provides the preclinical foundation for DARPin-based bimodal NIRF/PA imaging of cancer.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | - Nada Badr
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Taryn March
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vincent Q Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo Schomann
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadhvi Bhairosingh
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zurich, Switzerland
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Centre for Human Drug Research, Leiden, the Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Egberink RO, van Asbeck AH, Boswinkel M, Muradjan G, Dieker J, Brock R. Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery. Bioconjug Chem 2023; 34:1822-1834. [PMID: 37733627 PMCID: PMC10587869 DOI: 10.1021/acs.bioconjchem.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The formation of noncovalent complexes by mixing of positively charged polymers with negatively charged oligonucleotides (ONs) is a widely explored concept in nanomedicine to achieve cellular delivery of ONs. Uptake of ON complexes occurs through endocytosis, which then requires release of ON from endosomes. As one type of polymer, cell-penetrating peptides (CPPs) are being used which are peptides of about 8-30 amino acids in length. However, only a few CPPs yield effective cytosolic ON delivery and activity. Several strategies have been devised to increase cellular uptake and enhance endosomal release, among which an increase of osmotic pressure through the so-called proton sponge effect, disruption of membrane integrity through membrane activity, and disulfide-mediated polymerization. Here, we address the relevance of these concepts for mRNA delivery by incorporating structural features into the human lactoferrin-derived CPP, which shows uptake but not delivery. The incorporation of histidines was explored to address osmotic pressure and structural motifs of the delivery-active CPP PepFect14 (PF14) to address membrane disturbance, and finally, the impact of polymerization was explored. Whereas oligomerization increased the stability of polyplexes against heparin-induced decomplexation, neither this approach nor the incorporation of histidine residues to promote a proton-sponge effect yielded activity. Also, the replacement of arginine residues with lysine or ornithine residues, as in PF14, was without effect, even though all polyplexes showed cellular uptake. Ultimately, sufficient activity could only be achieved by transferring amphipathic sequence motifs from PF14 into the hLF context with some benefit of oligomerization demonstrating overarching principles of delivery for CPPs, lipid nanoparticles, and other types of delivery polymers.
Collapse
Affiliation(s)
- Rik Oude Egberink
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alexander H. van Asbeck
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Grigor Muradjan
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jürgen Dieker
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Roland Brock
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department
of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| |
Collapse
|
5
|
Palacio-Castañeda V, van de Crommert B, Verploegen E, Overeem M, van Oostrum J, Verdurmen WP. Potent and selective eradication of tumor cells by an EpCAM-targeted Ras-degrading enzyme. Mol Ther Oncolytics 2023; 30:16-26. [PMID: 37485031 PMCID: PMC10362089 DOI: 10.1016/j.omto.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Despite decades of efforts, an urgent need remains to develop tumor cell-selective rat sarcoma (Ras)-targeting therapies that can treat patients with Ras-driven tumors. Here we report modular engineered proteins that degrade Ras selectively in tumor cells that overexpress the tumor cell marker epithelial cell adhesion molecule (EpCAM) by fusing the Ras degrader Ras-Rap1-specific endopeptidase with the translocation domain of the Pseudomonas aeruginosa exotoxin A (ETA) or diphtheria toxin (DT). Redirection to EpCAM is achieved by a designed ankyrin repeat protein. In two-dimensional tumor cell cultures, complete degradation of Ras proteins after 24 h was observed with EpCAM-targeted Ras degraders fused to ETA or DT in EpCAM-overexpressing MCF7 and HCT116 cells, with median inhibition concentration values at sub-nanomolar levels. The viability of EpCAM-low non-cancerous fibroblasts remained unaffected. In a three-dimensional (3D) tumor-on-a-chip system that mimics the natural tumor microenvironment, effective Ras degradation and selective toxicity toward tumor cells, particularly with the ETA-fused constructs, was determined on-chip. To conclude, we demonstrate the potential of modular engineered proteins to kill tumor cells highly selectively by simultaneously exploiting EpCAM as a tumor-specific cell surface molecule as well as Ras as an intracellular oncotarget in a 3D system mimicking the natural tumor microenvironment.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Bas van de Crommert
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Elke Verploegen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Mike Overeem
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Jenny van Oostrum
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Wouter P.R. Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
6
|
Dorst D, Smeets EMM, Klein C, Frielink C, Geijs D, Trajkovic-Arsic M, Cheung PFY, Stommel MWJ, Gotthardt M, Siveke JT, Aarntzen EHJG, van Lith SAM. Fibroblast Activation Protein-Targeted Photodynamic Therapy of Cancer-Associated Fibroblasts in Murine Models for Pancreatic Ductal Adenocarcinoma. Mol Pharm 2023; 20:4319-4330. [PMID: 37485886 PMCID: PMC10410663 DOI: 10.1021/acs.molpharmaceut.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5 year survival of 9%. One important limiting factor for treatment efficacy is the dense tumor-supporting stroma. The cancer-associated fibroblasts in this stroma deposit excessive amounts of extracellular matrix components and anti-inflammatory mediators, which hampers the efficacy of chemo- and immunotherapies. Systemic depletion of all activated fibroblasts is, however, not feasible nor desirable and therefore a local approach should be pursued. Here, we provide a proof-of-principle of using fibroblast activation protein (FAP)-targeted photodynamic therapy (tPDT) to treat PDAC. FAP-targeting antibody 28H1 and irrelevant control antibody DP47GS were conjugated to the photosensitizer IRDye700DX (700DX) and the chelator diethylenetriaminepentaacetic acid. In vitro binding and cytotoxicity were evaluated using the fibroblast cell-line NIH-3T3 stably transfected with FAP. Biodistribution of 111In-labeled antibody-700DX constructs was determined in mice carrying syngeneic tumors of the murine PDAC cell line PDAC299, and in a genetically engineered PDAC mouse model (CKP). Then, tPDT was performed by exposing the subcutaneous or the spontaneous PDAC tumors to 690 nm light. Induction of apoptosis after treatment was assessed using automated analyses of immunohistochemistry for cleaved caspase-3. 28H1-700DX effectively bound to 3T3-FAP cells and induced cytotoxicity upon exposure to 690 nm light, whereas no binding or cytotoxic effects were observed for DP47GS-700DX. Although both 28H1-700DX and DP47GS-700DX accumulated in subcutaneous PDAC299 tumors, autoradiography demonstrated that only 28H1-700DX reached the tumor core. On the contrary, control antibody DP47GS-700DX was only present at the tumor rim. In CKP mice, both antibodies accumulated in the tumor, but tumor-to-blood ratios of 28H1-700DX were higher than that of the control. Notably, in vivo FAP-tPDT caused upregulation of cleaved caspase-3 staining in both subcutaneous and in spontaneous tumors. In conclusion, we have shown that tPDT is a feasible approach for local depletion of FAP-expressing stromal cells in murine models for PDAC.
Collapse
Affiliation(s)
- Daphne
N. Dorst
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Esther M. M. Smeets
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Christian Klein
- Roche
Pharma Research and Early Development, Innovation
Center Zurich, 8952 Schlieren, Switzerland
| | - Cathelijne Frielink
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Daan Geijs
- Department
of Pathology, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Marija Trajkovic-Arsic
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Phyllis F. Y. Cheung
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Martijn W. J. Stommel
- Department
of Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Jens T. Siveke
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Erik H. J. G. Aarntzen
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Sanne A. M. van Lith
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Li YN, Li YY, Wang SX, Ma XY. Efficacy of Bispecific Antibody Targeting EpCAM and CD3 for Immunotherapy in Ovarian Cancer Ascites: An Experimental Study. Curr Med Sci 2023:10.1007/s11596-023-2753-2. [PMID: 37119369 DOI: 10.1007/s11596-023-2753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE This study aimed to explore the value of M701, targeting epithelial cell adhesion molecule (EpCAM) and CD3, in the immunotherapy of ovarian cancer ascites by the in vitro assay. METHODS The expression of EpCAM in ovarian cancer tissues was analyzed by databases. The EpCAM expression and immune cell infiltration in different foci of ovarian cancer were detected by 8-channel flow cytometry. The toxic effect of M701 on OVCAR3 was tested using the in vitro cytotoxicity assay. The 3D cell culture and drug intervention experiments were performed to evaluate the therapeutic effect of M701 in ovarian cancer specimens. Flow cytometry was used to examine the effect of M701 on the binding of immune cells to tumor cells and the activation capacity of T cells. RESULTS The results of the bioinformatic analysis showed that the expression of EpCAM in ovarian cancer tissue was significantly higher than that in normal ovarian tissue. The 8-channel flow cytometry of clinical samples showed that the EpCAM expression and lymphocyte infiltration were significantly heterogeneous among ovarian cancer patients and lesions at different sites. The in vitro experiment results showed that M701 had a significant killing effect on OVCAR3 cells. M701 also obviously killed primary tumor cells derived from some patients with ovarian cancer ascites. M701 could mediate the binding of CD3+ T cells to EpCAM+ tumor cells and induce T cell activation in a dose-dependent manner. CONCLUSION M701 showed significant inhibitory activity on tumor cells derived from ovarian cancer ascites, which had a promising application in immunotherapy for patients with ovarian cancer ascites.
Collapse
Affiliation(s)
- Yi-Nuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Xuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiang-Yi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Yi M, Xiong B, Li Y, Guo W, Huang Y, Lu B. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur J Med Chem 2023; 247:115084. [PMID: 36599230 DOI: 10.1016/j.ejmech.2022.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Due to its low adverse effects, minimal invasiveness, and outstanding patient compliance, photodynamic therapy (PDT) has drawn a great deal of interest, which is achieved through incomplete reduction of O2 by a photosensitizer under light illumination that produces amounts of reactive oxygen species (ROS). However, tumor hypoxia significantly hinders the therapeutic effect of PDT so that tumor cells cannot be eliminated, which results in tumor cells proliferating, invading, and metastasizing. Additionally, O2 consumption during PDT exacerbates hypoxia in tumors, leading to several adverse events after PDT treatment. In recent years, various investigations have focused on conquering or using tumor hypoxia by nanomaterials to amplify PDT efficacy, which is summarized in this review. This comprehensive review's objective is to present novel viewpoints on the advancement of oxygenation nanomaterials in this promising field, which is motivated by hypoxia-associated anti-tumor therapy.
Collapse
Affiliation(s)
- Mengqi Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuyang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
9
|
Zhang Y, Wang Y, Uslu S, Venkatachalapathy S, Rashidian M, Schaefer JV, Plückthun A, Distefano MD. Enzymatic Construction of DARPin-Based Targeted Delivery Systems Using Protein Farnesyltransferase and a Capture and Release Strategy. Int J Mol Sci 2022; 23:11537. [PMID: 36232839 PMCID: PMC9569580 DOI: 10.3390/ijms231911537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein-based conjugates have been extensively utilized in various biotechnological and therapeutic applications. In order to prepare homogeneous conjugates, site-specific modification methods and efficient purification strategies are both critical factors to be considered. The development of general and facile conjugation and purification strategies is therefore highly desirable. Here, we apply a capture and release strategy to create protein conjugates based on Designed Ankyrin Repeat Proteins (DARPins), which are engineered antigen-binding proteins with prominent affinity and selectivity. In this case, DARPins that target the epithelial cell adhesion molecule (EpCAM), a diagnostic cell surface marker for many types of cancer, were employed. The DARPins were first genetically modified with a C-terminal CVIA sequence to install an enzyme recognition site and then labeled with an aldehyde functional group employing protein farnesyltransferase. Using a capture and release strategy, conjugation of the labeled DARPins to a TAMRA fluorophore was achieved with either purified proteins or directly from crude E. coli lysate and used in subsequent flow cytometry and confocal imaging analysis. DARPin-MMAE conjugates were also prepared yielding a construct manifesting an IC50 of 1.3 nM for cell killing of EpCAM positive MCF-7 cells. The method described here is broadly applicable to enable the streamlined one-step preparation of protein-based conjugates.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonas V. Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Development of a Novel Anti-EpCAM Monoclonal Antibody for Various Applications. Antibodies (Basel) 2022; 11:antib11020041. [PMID: 35735360 PMCID: PMC9220218 DOI: 10.3390/antib11020041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a cell surface glycoprotein, which is widely expressed on normal and cancer cells. EpCAM is involved in cell adhesion, proliferation, survival, stemness, and tumorigenesis. Therefore, EpCAM is thought to be a promising target for cancer diagnosis and therapy. In this study, we established anti-EpCAM monoclonal antibodies (mAbs) using the Cell-Based Immunization and Screening (CBIS) method. We characterized them using flow cytometry, Western blotting, and immunohistochemistry. One of the established recombinant anti-EpCAM mAbs, recEpMab-37 (mouse IgG1, kappa), reacted with EpCAM-overexpressed Chinese hamster ovary-K1 cells (CHO/EpCAM) or a colorectal carcinoma cell line (Caco-2). In contrast, recEpMab-37 did not react with EpCAM-knocked out Caco-2 cells. The KD of recEpMab-37 for CHO/EpCAM and Caco-2 was 2.0 × 10−8 M and 3.2 × 10−8 M, respectively. We observed that EpCAM amino acids between 144 to 164 are involved in recEpMab-37 binding. In Western blot analysis, recEpMab-37 detected the EpCAM of CHO/EpCAM and Caco-2 cells. Furthermore, recEpMab-37 could stain formalin-fixed paraffin-embedded colorectal carcinoma tissues by immunohistochemistry. Taken together, recEpMab-37, established by the CBIS method, is useful for detecting EpCAM in various applications.
Collapse
|
11
|
Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci 2022; 23:ijms23052468. [PMID: 35269611 PMCID: PMC8909960 DOI: 10.3390/ijms23052468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
Collapse
|
12
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
13
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Palacio-Castañeda V, Dumas S, Albrecht P, Wijgers TJ, Descroix S, Verdurmen WPR. A Hybrid In Silico and Tumor-on-a-Chip Approach to Model Targeted Protein Behavior in 3D Microenvironments. Cancers (Basel) 2021; 13:cancers13102461. [PMID: 34070171 PMCID: PMC8158470 DOI: 10.3390/cancers13102461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Engineered proteins possess a great therapeutic potential, but the development of such therapies is impeded during preclinical studies by the lack of in vitro models that accurately simulate the human physiology. Animal models, on the other hand, also have difficulties predicting human responses, and are ethically concerning. In this study, we employed a hybrid approach where we combined mathematical modeling with 3D in vitro models that mimic aspects of the tumor microenvironment, in order to simulate the delivery of therapeutic proteins targeting cancer cells and to predict the biological activity. By cross-comparing simulated and experimental data from 3D models, we were able to correctly predict the best dose needed to deliver toxic proteins specifically to tumor cells, while leaving the surrounding non-tumor cells untouched. This study shows the potential of combining computational approaches with novel in vitro models to advance the development of protein therapeutics. Abstract To rationally improve targeted drug delivery to tumor cells, new methods combining in silico and physiologically relevant in vitro models are needed. This study combines mathematical modeling with 3D in vitro co-culture models to study the delivery of engineered proteins, called designed ankyrin repeat proteins (DARPins), in biomimetic tumor microenvironments containing fibroblasts and tumor cells overexpressing epithelial cell adhesion molecule (EpCAM) or human epithelial growth factor receptor (HER2). In multicellular tumor spheroids, we observed strong binding-site barriers in combination with low apparent diffusion coefficients of 1 µm2·s−1 and 2 µm2 ·s−1 for EpCAM- and HER2-binding DARPin, respectively. Contrasting this, in a tumor-on-a-chip model for investigating delivery in real-time, transport was characterized by hindered diffusion as a consequence of the lower local tumor cell density. Finally, simulations of the diffusion of an EpCAM-targeting DARPin fused to a fragment of Pseudomonas aeruginosa exotoxin A, which specifically kills tumor cells while leaving fibroblasts untouched, correctly predicted the need for concentrations of 10 nM or higher for extensive tumor cell killing on-chip, whereas in 2D models picomolar concentrations were sufficient. These results illustrate the power of combining in vitro models with mathematical modeling to study and predict the protein activity in complex 3D models.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Simon Dumas
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Philipp Albrecht
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Thijmen J. Wijgers
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Stéphanie Descroix
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
- Correspondence: ; Tel.: +31-24-3614263
| |
Collapse
|
15
|
Molecular Biology of Ovarian Cancer: From Mechanisms of Intraperitoneal Metastasis to Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13071661. [PMID: 33916182 PMCID: PMC8037638 DOI: 10.3390/cancers13071661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
|
16
|
Yan S, Tang D, Hong Z, Wang J, Yao H, Lu L, Yi H, Fu S, Zheng C, He G, Zou H, Hou X, He Q, Xiong L, Li Q, Deng X. CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomater Sci 2021; 9:2020-2031. [PMID: 33439161 DOI: 10.1039/d0bm01874k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer around the world. Recent findings suggest that cancer stem cells (CSCs) play a pivotal role in the resistance to current therapeutic modalities, including surgery and chemotherapy. Photodynamic therapy (PDT) is a promising non-invasive therapeutic strategy for advanced metastatic CRC. Traditional photosensitizers such as pyropheophorbide-a (Pyro) lack tumor selectivity, causing unwanted treatment-related toxicity to the surrounding normal tissue. In order to enhance the targeting properties of Pyro, we synthesize a novel photosensitizer, CD133-Pyro, via the conjugation of Pyro to a peptide domain targeting CD133, which is highly expressed on CRC CSCs and correlated with poor prognosis of CRC patients. We demonstrate that CD133-Pyro possesses the targeted delivery capacity both in CRC CSCs derived from HT29 and SW620 cell lines and in a xenograft mouse model of tumor growth. CD133-Pyro PDT can promote the production of reactive oxygen species (ROS), suppress the stemness properties, and induce autophagic cell death in CRC CSCs. Furthermore, CD133-Pyro PDT has a potent inhibitory effect on CRC CSC-derived xenograft tumors in nude mice. These findings may offer a useful and important strategy for the treatment of CRC through targeting CSCs.
Collapse
Affiliation(s)
- Shichao Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kaneko MK, Ohishi T, Takei J, Sano M, Nakamura T, Hosono H, Yanaka M, Asano T, Sayama Y, Harada H, Kawada M, Kato Y. Anti‑EpCAM monoclonal antibody exerts antitumor activity against oral squamous cell carcinomas. Oncol Rep 2020; 44:2517-2526. [PMID: 33125138 PMCID: PMC7640354 DOI: 10.3892/or.2020.7808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a calcium-independent, homophilic, intercellular adhesion factor classified as a transmembrane glycoprotein. In addition to cell adhesion, EpCAM also contributes to cell signaling, differentiation, proliferation, and migration. EpCAM is an essential factor in the carcinogenesis of numerous human cancers. In the present study, we developed and validated an anti-EpCAM monoclonal antibody (mAb), EpMab-16 (IgG2a, kappa), by immunizing mice with EpCAM-overexpressing CHO-K1 cells. EpMab-16 specifically reacted with endogenous EpCAM in oral squamous cell carcinoma (OSCC) cell lines in flow cytometry and Western blot analyses. It exhibited a plasma membrane-like stain pattern in OSCC tissues upon immunohistochemical analysis. The KD for EpMab-16 in SAS and HSC-2 OSCC cells were assessed via flow cytometry at 1.1×10−8 and 1.9×10−8 M, respectively, suggesting moderate binding affinity of EpMab-16 for EpCAM. We then assessed whether the EpMab-16 induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against OSCC cell lines, and antitumor capacity in a murine xenograft model. In vitro experiments revealed strong ADCC and CDC inducement against OSCC cells treated with EpMab-16. In vivo experiments on OSCC xenografts revealed that EpMab-16 treatment significantly reduced tumor growth compared with the control mouse IgG. These data indicated that EpMab-16 could be a promising treatment option for EpCAM-expressing OSCCs.
Collapse
Affiliation(s)
- Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|