1
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Tian S, Ma R, Liu Y, Chen F, Huang X, Yang Q, Nian W, Fan Z. Clinicopathological significance of cancer stem cell marker CD44/SOX2 in esophageal squamous cell carcinoma (ESCC) patients and construction of a nomogram to predict overall survival. Transl Cancer Res 2024; 13:2971-2984. [PMID: 38988936 PMCID: PMC11231779 DOI: 10.21037/tcr-23-2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
Background Esophageal squamous cell carcinoma (ESCC), a prevalent malignancy within the upper gastrointestinal system, is characterized by its unfavorable prognosis and the absence of specific indicators for outcome prediction and high-risk case identification. In our research, we examined the expression levels of cancer stem cells (CSCs), markers CD44/SOX2 in ESCC, scrutinized their association with clinicopathological parameters, and developed a predictive nomogram model. This model, which incorporates CD44/SOX2, aims to forecast the overall survival (OS) of patients afflicted with ESCC. Methods Immunohistochemistry was utilized to detect the expression levels of CD44 and SOX2 in both cancerous and paracancerous tissues of 68 patients with ESCC. The correlation between CD44/SOX2 expression and clinicopathological parameters was subsequently analyzed. Factors impacting the prognosis of ESCC patients were assessed through univariate and multivariate Cox regression analyses. Leveraging the results of these multivariate regression analyses, a nomogram prognostic model was established to provide individualized predictions of ESCC patient survival outcomes. The predictive accuracy of the nomogram prognostic model was evaluated using the consistency index (C-index) and calibration curves. Results The expression levels of CD44 were markedly elevated in the tumor tissues of ESCC patients. Similarly, SOX2 was significantly overexpressed in the tumor tissues of ESCC patients. The positive expression of SOX2 in ESCC demonstrated a strong correlation with both the pathological T-stage and the presence of carcinoembryonic antigen. CD44 and SOX2 co-positive expression was significantly associated with the pathological T-stage and tumor node metastasis (TNM) stage. Furthermore, ESCC patients exhibiting CD44-positive expression in their tumor tissue generally had a more adverse prognosis. The co-expression of CD44 and SOX2 resulted in a grimmer prognosis compared to patients with other combinations. Multivariate Cox regression analysis identified the co-expression of CD44 and SOX2, the pathological T-stage, and lymph node metastasis as independent prognostic indicators for ESCC patients. The three identified variables were subsequently incorporated into a nomogram for predicting OS. The C-index of the measurement model and the area under the curve of the subjects' work characteristics showed good individual prediction. This prognostic model stratified patients into low- and high-risk categories. Analysis revealed that the 5-year OS rate was significantly higher in the low-risk group compared to the high-risk group. Conclusions Elevated CD44 levels, indicative of CSC presence, are intimately linked with the oncogenesis of ESCC and are strongly predictive of unfavorable patient outcomes. Concurrently, the SOX2 gene exhibits a heightened expression in ESCC, markedly accelerating tumor progression and fostering more extensive disease infiltration. The co-expression of CD44 and SOX2 correlates significantly with ESCC patient prognosis, serving as a reliable, independent prognostic marker. Our constructed nomogram, incorporating CD44/SOX2 expression, enhances the prediction of OS and facilitates risk stratification in ESCC patients.
Collapse
Affiliation(s)
- Siyue Tian
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Ruibin Ma
- Department of Characteristic Specialty One Group, Xinjiang Municipal Corps Hospital of the Chinese People’s Armed Police Force, Urumqi, China
| | - Yingmin Liu
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Fei Chen
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Xiaotong Huang
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Qianqian Yang
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Wei Nian
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Zhiqin Fan
- Department of Daily Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
4
|
Hei WH, Du MY, He H. Effects of RNA m6A writer METTL3 and hDPSCs on the peripheral nerve regeneration: In vitro and in vivo study. Neurosci Lett 2023; 812:137384. [PMID: 37429495 DOI: 10.1016/j.neulet.2023.137384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE This study aimed to investigate whether RNA m6A participated in the differentiation and proliferation of dental pulp stem cells and improved peripheral nerve regeneration using a rat model of crushed mental nerve injury. MATERIALS AND METHODS The components of RNA m6A were analyzed through qRT-PCR, while cell proliferation of different groups, including over-expression METTL3 (OE-METTL3) hDPSCs group, knock-down METTL3 (KD-METTL3) hDPSCs group and hDPSCs group in vitro, was clarified by MTT assay. Five groups were designed, namely, Control group, Sham group, hDPSCs group, OE-METTL3 group and KD-METTL3 group. After crushed right mental nerve injury, cells of different groups were transplanted into the lesion area (6 ul in volume). At one, two and three weeks later, histomorphometric analysis and sensory test were conducted in vivo. RESULTS qRT-PCR results showed that "METTL3" was participated in the differentiation of dental pulp stem cells. There were differences (P < 0.05) between OE-METTL3 group and control group in MTT results in the third, fourth and sixth days. Moreover, the sensory test revealed significant differences (P < 0.05) in difference score and gap score between OE-METTL3 group and KD-METTL3 group in the first and third weeks. The axon counts and retrograde labeled neurons significantly increased in OE-METTL3 group compared with KD-METTL3 group. CONCLUSIONS These results demonstrated that RNA m6A participated in the differentiation and proliferation of dental pulp stem cells, and that OE-METTL3 group exhibited the greater ability to improve peripheral nerve regeneration than KD-METTL3 group and hDPSCs group.
Collapse
Affiliation(s)
- Wei-Hong Hei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ming-Yuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
5
|
Yu W, He X, Zhang C, Huang F. Circular RNA circSLC7A11 contributes to progression and stemness of laryngeal squamous cell carcinoma via sponging miR-877-5p from LASP1. Heliyon 2023; 9:e18290. [PMID: 37539185 PMCID: PMC10393633 DOI: 10.1016/j.heliyon.2023.e18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) belongs to tumors of head and neck. Circular RNA circSLC7A11 functions as oncogenes in various tumors. However, the role of circSLC7A11 in LSCC remains largely unknown. Here, we aimed to clarify the circSLC7A11 function in LSCC. Methods Relevance between circSLC7A11 expressions and LSCC clinicopathological was checked using chi-square. Relevance between circSLC7A11 expressions and LSCC patients' survival time was validated using Kaplan-Meier analysis. CircSLC7A11 expressions in LSCC tissues and cells were determined using quantitative real-time PCR. CircSLC7A11 functions in LSCC were examined by Cell Counting Kit-8, EdU analysis, Western blot, flow cytometry, sphere formation assay, and Transwell analysis. Meanwhile, circSLC7A11 mechanism in LSCC was determined using dual-luciferase reporter analysis, RNA pull-down, RNA Immunoprecipitation. Results CircSLC7A11 was highly expressed in LSCC, and high circSLC7A11 expressions were interrelated to the TNM stage. Also, LSCC patients with high circSLC7A11 owned shorter overall survival. Functional studies revealed that circSLC7A11 knockdown reduced LSCC cell proliferation, migration, invasion, stemness characteristics, and enhanced cell apoptosis. Mechanistic study data corroborated that circSLC7A11 targeted miR-877-5p, miR-877-5p targeted LASP1. LASP1 was negatively interrelated to miR-877-5p and was positively interrelated to circSLC7A11 in LSCC tissues. Also, circSLC7A11 knockdown reduced the LASP1 levels, and miR-877-5p inhibitor co-transfection reversed this reduction. Rescue assays further demonstrated that circSLC7A11 accelerated LSCC through miR-877-5p/LASP1. Conclusion CircSLC7A11 exerted oncogenic functions in LSCC by miR-877-5p/LASP1, hinting that circSLC7A11 was a novel biomarker for LSCC.
Collapse
Affiliation(s)
| | | | | | - Fuhui Huang
- Corresponding author. No. 85, Jiefang South Road, Yingze District, Taiyuan City 030001, Shanxi Province, China.
| |
Collapse
|
6
|
Kompuinen J, Keskin M, Yilmaz D, Gürsoy M, Gürsoy UK. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells 2023; 12:cells12060830. [PMID: 36980171 PMCID: PMC10047923 DOI: 10.3390/cells12060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers are malignant growths with high death rates, which makes the early diagnosis of the affected patients of utmost importance. Over 90% of oral cavity cancers come from squamous cells, and the tongue, oral cavity, and salivary glands are the most common locations for oral squamous cell carcinoma lesions. Human β-defensins (hBDs), which are mainly produced by epithelial cells, are cationic peptides with a wide antimicrobial spectrum. In addition to their role in antimicrobial defense, these peptides also take part in the regulation of the immune response. Recent studies produced evidence that these small antimicrobial peptides are related to the gene and protein expression profiles of tumors. While the suppression of hBDs is a common finding in head and neck cancer studies, opposite findings were also presented. In the present narrative review, the aim will be to discuss the changes in the hBD expression profile during the onset and progression of head and neck cancers. The final aim will be to discuss the use of hBDs as diagnostic markers of head and neck cancers.
Collapse
Affiliation(s)
- Jenna Kompuinen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altınbaş University, İstanbul 34147, Turkey
| | - Dogukan Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya 54050, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
7
|
The Impact of YRNAs on HNSCC and HPV Infection. Biomedicines 2023; 11:biomedicines11030681. [PMID: 36979661 PMCID: PMC10045647 DOI: 10.3390/biomedicines11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
HPV infection is one of the most important risk factors for head and neck squamous cell carcinoma among younger patients. YRNAs are short non-coding RNAs involved in DNA replication. YRNAs have been found to be dysregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the role of YRNAs in HPV-positive HNSCC using publicly available gene expression datasets from HNSCC tissue, where expression patterns of YRNAs in HPV(+) and HPV(−) HNSCC samples significantly differed. Additionally, HNSCC cell lines were treated with YRNA1-overexpressing plasmid and RNA derived from these cell lines was used to perform a NGS analysis. Additionally, a deconvolution analysis was performed to determine YRNA1’s impact on immune cells. YRNA expression levels varied according to cancer pathological and clinical stages, and correlated with more aggressive subtypes. YRNAs were mostly associated with more advanced cancer stages in the HPV(+) group, and YRNA3 and YRNA1 expression levels were found to be correlated with more advanced clinical stages despite HPV infection status, showing that they may function as potential biomarkers of more advanced stages of the disease. YRNA5 was associated with less-advanced cancer stages in the HPV(−) group. Overall survival and progression-free survival analyses showed opposite results between the HPV groups. The expression of YRNAs, especially YRNA1, correlated with a vast number of proteins and cellular processes associated with viral infections and immunologic responses to viruses. HNSCC-derived cell lines overexpressing YRNA1 were then used to determine the correlation of YRNA1 and the expression of genes associated with HPV infections. Taken together, our results highlight the potential of YRNAs as possible HNSCC biomarkers and new molecular targets.
Collapse
|
8
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
9
|
Saito M. Novel Roles of Nanog in Cancer Cells and Their Extracellular Vesicles. Cells 2022; 11:cells11233881. [PMID: 36497144 PMCID: PMC9736053 DOI: 10.3390/cells11233881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The use of extracellular vesicle (EV)-based vaccines is a strategically promising way to prevent cancer metastasis. The effective roles of immune cell-derived EVs have been well understood in the literature. In the present paper, we focus on cancer cell-derived EVs to enforce, more thoroughly, the use of EV-based vaccines against unexpected malignant cells that might appear in poor prognostic patients. As a model of such a cancer cell with high malignancy, Nanog-overexpressing melanoma cell lines were developed. As expected, Nanog overexpression enhanced the metastatic potential of melanomas. Against our expectations, a fantastic finding was obtained that determined that EVs derived from Nanog-overexpressing melanomas exhibited a metastasis-suppressive effect. This is considered to be a novel role for Nanog in regulating the property of cancer cell-derived EVs. Stimulated by this result, the review of Nanog's roles in various cancer cells and their EVs has been updated once again. Although there was no other case presenting a similar contribution by Nanog, only one case suggested that NANOG and SOX might be better prognosis markers in head and neck squamous cell carcinomas. This review clarifies the varieties of Nanog-dependent phenomena and the relevant signaling factors. The information summarized in this study is, thus, suggestive enough to generate novel ideas for the construction of an EV-based versatile vaccine platform against cancer metastasis.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
10
|
Xiao M, Zhang X, Zhang D, Deng S, Zheng A, Du F, Shen J, Yue L, Yi T, Xiao Z, Zhao Y. Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing. Front Immunol 2022; 13:1050951. [PMID: 36451812 PMCID: PMC9701714 DOI: 10.3389/fimmu.2022.1050951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been characterized to be responsible for multidrug resistance, metastasis, recurrence, and immunosuppressive in head and neck squamous cell carcinoma (HNSCC). However, the diversity of CSCs remains to be investigated. In this study, we aimed to determine the heterogeneity of CSCs and its effect on the formation of tumor microenvironment (TME). METHODS We depicted the landscape of HNSCC transcriptome profile by single-cell RNA-sequencing analysis of 20 HNSCC tissues from public databases, to reveal the Cell components, trajectory changes, signaling network, malignancy status and functional enrichment of CSCs within tumors. RESULTS Immune checkpoint molecules CD276, LILRB2, CD47 were significantly upregulated in CSCs, enabling host antitumor response to be weakened or damaged. Notably, naive CSCs were divided to 2 different types of cells with different functions, exhibiting functional diversity. In addition, CSCs underwent self-renewal and tumor metastasis activity through WNT and ncWNT signaling. Among them, Regulon regulators (IRF1_394g, IRF7_160g, NFKB1_12g, NFKB2_33g and STAT1_356g) were activated in subgroups 2 and 3, suggesting their pivotal roles in the inflammatory response process in tumors. Among all CSCs, naive CSCs appear to be the most malignant resulting in a worse prognosis. CONCLUSIONS Our study reveals the major signal transduction and biological function of CSCs during HNSCC progression, highlighting the heterogeneity of CSCs and their underlying mechanisms in the formation of an immunosuppressive TME. Therefore, our study about heterogeneity of CSCs in HNSCC can bring new insights for the treatment of HNSCC.
Collapse
Affiliation(s)
- Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyi Zhang
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Patel U, Kannan S, Rane SU, Mittal N, Gera P, Patil A, Manna S, Shejwal V, Noronha V, Joshi A, Patil VM, Prabhash K, Mahimkar MB. Prognostic and predictive roles of cancer stem cell markers in head and neck squamous cell carcinoma patients receiving chemoradiotherapy with or without nimotuzumab. Br J Cancer 2022; 126:1439-1449. [PMID: 35140342 PMCID: PMC9091234 DOI: 10.1038/s41416-022-01730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anti-EGFR-based therapies have limited success in HNSCC patients. Predictive biomarkers are needed to identify the patients most likely to benefit from these therapies. Here, we present predictive and prognostic associations of different cancer stem cell markers in HPV-negative locally advanced (LA) HNSCC patients. METHODS Pretreatment tumour tissues of 404 HPV-negative LA-HNSCCs patients, a subset of-phase 3-randomised study comparing cisplatin-radiation(CRT) and nimotuzumab plus cisplatin-radiation(NCRT) were examined. The expression levels of CD44, CD44v6, CD98hc, ALDH1A1, SOX2 and OCT4A were evaluated using immunohistochemistry. Progression-free survival(PFS), loco-regional control(LRC),- and overall survival(OS) were estimated by Kaplan-Meier method. Hazard ratios were estimated by Cox proportional hazard models. RESULTS NCRT showed significantly improved OS with low membrane expression of CD44 compared to CRT [HR (95% CI) = 0.63 (0.46-0.88)]. Patients with low CD44v6 also showed better outcomes with NCRT [LRC: HR (95% CI) = 0.25 (0.10-0.62); OS: HR (95% CI) = 0.38 (0.19-0.74)]. No similar benefit with NCRT observed in patients with high CD44 or CD44v6 expression. Bootstrap resampling confirmed the predictive effect of CD44 (Interaction P = 0.015) and CD44v6 (Interaction P = 0.041) for OS. Multivariable Cox analysis revealed an independent negative prognostic role of CD98hc membrane expression for LRC [HR (95% CI) = 0.63(0.39-1.0)] and OS[HR (95% CI) = 0.62 (0.40-0.95)]. CONCLUSIONS CD44 and CD44v6 are potential predictive biomarkers for NCRT response. CD98hc emerged as an independent negative prognostic biomarker. CLINICAL TRIAL REGISTRATION Registered with the Clinical Trial Registry of India (Trial registration identifier-CTRI/2014/09/004980).
Collapse
Affiliation(s)
- Usha Patel
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sadhana Kannan
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Biostatistician, Clinical Research Secretariat, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Swapnil U. Rane
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Neha Mittal
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Poonam Gera
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Asawari Patil
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Subhakankha Manna
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishwayani Shejwal
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vanita Noronha
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Amit Joshi
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vijay M. Patil
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Kumar Prabhash
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Manoj B. Mahimkar
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
13
|
Pustovalova M, Blokhina T, Alhaddad L, Chigasova A, Chuprov-Netochin R, Veviorskiy A, Filkov G, Osipov AN, Leonov S. CD44+ and CD133+ Non-Small Cell Lung Cancer Cells Exhibit DNA Damage Response Pathways and Dormant Polyploid Giant Cancer Cell Enrichment Relating to Their p53 Status. Int J Mol Sci 2022; 23:ijms23094922. [PMID: 35563313 PMCID: PMC9101266 DOI: 10.3390/ijms23094922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer stem cells (CSCs) play a critical role in the initiation, progression and therapy relapse of many cancers including non-small cell lung cancer (NSCLC). Here, we aimed to address the question of whether the FACS-sorted CSC-like (CD44 + &CD133 +) vs. non-CSC (CD44-/CD133- isogenic subpopulations of p53wt A549 and p53null H1299 cells differ in terms of DNA-damage signaling and the appearance of "dormant" features, including polyploidy, which are early markers (predictors) of their sensitivity to genotoxic stress. X-ray irradiation (IR) at 5 Gy provoked significantly higher levels of the ATR-Chk1/Chk2-pathway activity in CD44-/CD133- and CD133+ subpopulations of H1299 cells compared to the respective subpopulations of A549 cells, which only excited ATR-Chk2 activation as demonstrated by the Multiplex DNA-Damage/Genotoxicity profiling. The CD44+ subpopulations did not demonstrate IR-induced activation of ATR, while significantly augmenting only Chk2 and Chk1/2 in the A549- and H1299-derived cells, respectively. Compared to the A549 cells, all the subpopulations of H1299 cells established an increased IR-induced expression of the γH2AX DNA-repair protein. The CD44-/CD133- and CD133+ subpopulations of the A549 cells revealed IR-induced activation of ATR-p53-p21 cell dormancy signaling-mediated pathway, while none of the CD44+ subpopulations of either cell line possessed any signs of such activity. Our data indicated, for the first time, the transcription factor MITF-FAM3C axis operative in p53-deficient H1299 cells, specifically their CD44+ and CD133+ populations, in response to IR, which warrants further investigation. The p21-mediated quiescence is likely the predominant surviving pathway in CD44-/CD133- and CD133+ populations of A549 cells as indicated by single-cell high-content imaging and analysis of Ki67- and EdU-coupled fluorescence after IR stress. SA-beta-galhistology revealed that cellular-stress-induced premature senescence (SIPS) likely has a significant influence on the temporary dormant state of H1299 cells. For the first time, we demonstrated polyploid giant and/or multinucleated cancer-cell (PGCC/MGCC) fractions mainly featuring the progressively augmenting Ki67low phenotype in CD44+ and CD133+ A549 cells at 24-48 h after IR. In contrast, the Ki67high phenotype enrichment in the same fractions of all the sorted H1299 cells suggested an increase in their cycling/heterochromatin reorganization activity after IR stress. Our results proposed that entering the "quiescence" state rather than p21-mediated SIPS may play a significant role in the survival of p53wt CSC-like NSCLC cells after IR. The results obtained are important for the selection of therapeutic schemes for the treatment of patients with NSCLC, depending on the functioning of the p53 system in tumor cells.
Collapse
Affiliation(s)
- Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- Correspondence: (M.P.); (S.L.)
| | - Taisia Blokhina
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Lina Alhaddad
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
| | - Anna Chigasova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Roman Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
| | - Alexander Veviorskiy
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Gleb Filkov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
- Laboratory of Medical Informatics, Novgorod Technical School, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Andreyan N. Osipov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (T.B.); (L.A.); (A.C.); (R.C.-N.); (G.F.); (A.N.O.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (M.P.); (S.L.)
| |
Collapse
|
14
|
Wu L, Xu S, Cheng X, Zhang L, Wang Y, Wu J, Bao J, Yu H, Lu R. Capsaicin inhibits the stemness of anaplastic thyroid carcinoma cells by triggering autophagy-lysosome mediated OCT4A degradation. Phytother Res 2022; 36:938-950. [PMID: 35076979 DOI: 10.1002/ptr.7361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
Capsaicin (CAP) is a well-known anti-cancer agent. Recently, we reported capsaicin-induced apoptosis in anaplastic thyroid cancer (ATC) cells. It is well accepted that the generation of cancer stem cells (CSCs) is responsible for the dedifferentiation of ATC, the most lethal subtype of thyroid cancer with highly dedifferentiation status. Whether CAP inhibited the ATC growth through targeting CSCs needed further investigation. In the present study, CAP was found to induce autophagy in ATC cells through TRPV1 activation and subsequent calcium influx. Meanwhile, CAP dose-dependently decreased the sphere formation capacity of ATC cells. The stemness-inhibitory effect of CAP was further by extreme limiting dilution analysis (ELDA). CAP significantly decreased the protein level of OCT4A in both 8505C and FRO cells. Furthermore, CAP-induced OCT4A degradation was reversed by autophagy inhibitors 3-MA and chloroquine, BAPTA-AM and capsazepine, but not proteasome inhibitor MG132. Collectively, our study firstly showed CAP suppressed the stemness of ATC cells partially via calcium-dependent autophagic degradation of OCT4A. Our study lent credence to the feasible application of capsaicin in limiting ATC stemness.
Collapse
Affiliation(s)
- Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Gao K, Zhu Y, Wang H, Gong X, Yue Z, Lv A, Zhou X. Network pharmacology reveals the potential mechanism of Baiying Qinghou decoction in treating laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:26003-26021. [PMID: 34986125 PMCID: PMC8751612 DOI: 10.18632/aging.203786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
Abstract
Context: Baiying Qinghou as a traditional Chinese medicine decoction shows anticancer property on laryngeal squamous cell carcinoma. However, little is known about the precise mechanism of Baiying Qinghou detection against laryngeal squamous cell carcinoma. Objective: This study was aimed to explore potential mechanism of therapeutic actions of Baiying Qinghou decoction on laryngeal squamous cell carcinoma. Materials and Methods: The active chemical components of Baiying Qinghou decoction were predicted, followed by integrated analysis of network pharmacology and molecular docking approach. The network pharmacology approach included target protein prediction, protein-protein interaction network construction and functional enrichment analysis. Results: Sitosterol and quercetin were predicted to be the overlapped active ingredients among three Chinese herbs of Baiying Qinghou decoction. The target proteins were closely associated with response to chemical, response to drug related biological process and cancer related pathways such as PI3K-Akt signaling, HIF-1 signaling and Estrogen signaling pathway. The target proteins of TP53, EGFR, PTGS2, NOS3 and IL1B as the key nodes in PPI network were cross-validated, among which EGFR, IL1B, NOS3 and TP53 were significantly correlated with the prognosis of patients with laryngeal squamous cell carcinoma. Finally, the binding modes of EGFR, IL1B, NOS3 and TP53 with quercetin were visualized. Discussion and Conclusion: Quercetin of Baiying Qinghou decoction showed therapeutic effect against laryngeal squamous cell carcinoma by regulating TP53, EGFR, NOS3 and IL1B involved with drug resistance and PI3K-AKT signaling pathway. TP53, EGFR, NOS3 and IL1B may be the candidate targets for the treatment of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Kun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Yanan Zhu
- Department of Internal Medicine, Shandong Provincial Chest Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Hui Wang
- Department of Ultrasound, The Fifth People's Hospital of Jinan, Jinan 250022, Shandong, China
| | - Xianwei Gong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhiyong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Aiai Lv
- Department of Internal Medicine, Shandong Provincial Chest Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| |
Collapse
|
16
|
Identification of a Prognosis-Related Risk Signature for Bladder Cancer to Predict Survival and Immune Landscapes. J Immunol Res 2021; 2021:3236384. [PMID: 34708131 PMCID: PMC8545590 DOI: 10.1155/2021/3236384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Bladder cancer is the tenth most common cancer worldwide. Valuable biomarkers in the field of diagnostic bladder cancer are urgently required. Method Here, the gene expression matrix and clinical data were obtained from The Cancer Genome Atlas (TCGA), GSE13507, GSE32894, and Mariathasan et al. Five prognostic genes were identified by the univariate, robust, and multivariate Cox's regression and were used to develop a prognosis-related model. The Kaplan-Meier survival curves and receiver operating characteristics were used to evaluate the model's effectiveness. The potential biological functions of the selected genes were analyzed using CIBERSORT and ESTIMATE algorithms. Cancer Therapeutics Response Portal (CTRP) and PRISM datasets were used to identify drugs with high sensitivity. Subsequently, using the bladder cancer (BLCA) cell lines, the role of TNFRSF14 was determined by Western blotting, cell proliferation assay, and 5-ethynyl-20-deoxyuridine assay. Results GSDMB, CLEC2D, APOL2, TNFRSF14, and GBP2 were selected as prognostic genes in bladder cancer patients. The model's irreplaceable reliability was validated by the training and validation cohorts. CD8+ T cells were highly infiltrated in the high-TNFRSF14-expression group, and M2 macrophages were the opposite. Higher expression of TNFRSF14 was associated with higher expression levels of LCK, interferon, MHC-I, and MHC-II, while risk score was the opposite. Many compounds with higher sensitivity for treating bladder cancer patients in the low-TNFRSF14-expression group were identified, with obatoclax being a potential drug most likely to treat patients in the low-TNFRSF14-expression group. Finally, the proliferation of BLCA cell lines was increased in the TNFRSF14-reduced group, and the differential expression was identified. TNFRSF14 plays a role in bladder cancer progression through the Wnt/β-catenin-dependent pathway. TNFRSF14 is a potential protective biomarker involved in cell proliferation in BLCA. Conclusion We conducted a study to establish a 5-gene score model, providing reliable prediction for the outcome of bladder cancer patients and therapeutic drugs to individualize therapy. Our findings provide a signature that might help determine the optimal treatment for individual patients with bladder cancer.
Collapse
|
17
|
López F, Mäkitie A, de Bree R, Franchi A, de Graaf P, Hernández-Prera JC, Strojan P, Zidar N, Strojan Fležar M, Rodrigo JP, Rinaldo A, Centeno BA, Ferlito A. Qualitative and Quantitative Diagnosis in Head and Neck Cancer. Diagnostics (Basel) 2021; 11:diagnostics11091526. [PMID: 34573868 PMCID: PMC8466857 DOI: 10.3390/diagnostics11091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The diagnosis is the art of determining the nature of a disease, and an accurate diagnosis is the true cornerstone on which rational treatment should be built. Within the workflow in the management of head and neck tumours, there are different types of diagnosis. The purpose of this work is to point out the differences and the aims of the different types of diagnoses and to highlight their importance in the management of patients with head and neck tumours. Qualitative diagnosis is performed by a pathologist and is essential in determining the management and can provide guidance on prognosis. The evolution of immunohistochemistry and molecular biology techniques has made it possible to obtain more precise diagnoses and to identify prognostic markers and precision factors. Quantitative diagnosis is made by the radiologist and consists of identifying a mass lesion and the estimation of the tumour volume and extent using imaging techniques, such as CT, MRI, and PET. The distinction between the two types of diagnosis is clear, as the methodology is different. The accurate establishment of both diagnoses plays an essential role in treatment planning. Getting the right diagnosis is a key aspect of health care, and it provides an explanation of a patient’s health problem and informs subsequent decision. Deep learning and radiomics approaches hold promise for improving diagnosis.
Collapse
Affiliation(s)
- Fernando López
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo CIBERONC-ISCIII, 33011 Oviedo, Spain
- Correspondence:
| | - Antti Mäkitie
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands;
| | - Alessandro Franchi
- Department of Translational Research, School of Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Pim de Graaf
- Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
| | | | - Primoz Strojan
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia;
| | - Nina Zidar
- Department of Head and Neck Pathology, Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Margareta Strojan Fležar
- Department of Cytopathology, Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Juan P. Rodrigo
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo CIBERONC-ISCIII, 33011 Oviedo, Spain
| | | | - Barbara A. Centeno
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (J.C.H.-P.); (B.A.C.)
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
18
|
Salinas-Jazmín N, Rosas-Cruz A, Velasco-Velázquez M. Reporter gene systems for the identification and characterization of cancer stem cells. World J Stem Cells 2021; 13:861-876. [PMID: 34367481 PMCID: PMC8316869 DOI: 10.4252/wjsc.v13.i7.861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are tumor cells that share functional characteristics with normal and embryonic stem cells. CSCs have increased tumor-initiating capacity and metastatic potential and lower sensitivity to chemo- and radiotherapy, with important roles in tumor progression and the response to therapy. Thus, a current goal of cancer research is to eliminate CSCs, necessitating an adequate phenotypic and functional characterization of CSCs. Strategies have been developed to identify, enrich, and track CSCs, many of which distinguish CSCs by evaluating the expression of surface markers, the initiation of specific signaling pathways, and the activation of master transcription factors that control stemness in normal cells. We review and discuss the use of reporter gene systems for identifying CSCs. Reporters that are under the control of aldehyde dehydrogenase 1A1, CD133, Notch, Nanog homeobox, Sex-determining region Y-box 2, and POU class 5 homeobox can be used to identify CSCs in many tumor types, track cells in real time, and screen for drugs. Thus, reporter gene systems, in combination with in vitro and in vivo functional assays, can assess changes in the CSCs pool. We present relevant examples of these systems in the evaluation of experimental CSCs-targeting therapeutics, demonstrating their value in CSCs research.
Collapse
Affiliation(s)
- Nohemí Salinas-Jazmín
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Arely Rosas-Cruz
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco Velasco-Velázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
19
|
Lequerica-Fernández P, Suárez-Canto J, Rodriguez-Santamarta T, Rodrigo JP, Suárez-Sánchez FJ, Blanco-Lorenzo V, Domínguez-Iglesias F, García-Pedrero JM, de Vicente JC. Prognostic Relevance of CD4 +, CD8 + and FOXP3 + TILs in Oral Squamous Cell Carcinoma and Correlations with PD-L1 and Cancer Stem Cell Markers. Biomedicines 2021; 9:biomedicines9060653. [PMID: 34201050 PMCID: PMC8227658 DOI: 10.3390/biomedicines9060653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
This study investigates the relevance of tumor-infiltrating lymphocytes (TILs) in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis of stromal/tumoral CD4+, CD8+ and FOXP3+ TILs is performed in 125 OSCC patients. Potential relationships with the expression of tumoral PD-L1 and cancer stem cell (CSC) markers (NANOG, SOX2, OCT4, Nestin and Podoplanin (PDPN)) are assessed. CD4+ and CD8+ TILs are significantly associated with smoking and alcohol habits. CD4+ and CD8+ TILs show an inverse relationship with NANOG and SOX2 expression, and FOXP3+ TILs is significantly correlated with Nestin and PDPN expression. High infiltration of CD4+ and CD8+ TILs and a high tumoral CD8+/FOXP3+ ratio are significantly associated with tumors harboring positive PD-L1 expression. Infiltration of stromal/tumoral FOXP3+ TILs and a low stromal CD8+/FOXP3+ ratio are significantly associated with better disease-specific survival. Multivariate analysis reveals that the stromal CD8+/FOXP3+ TILs ratio is a significant independent prognostic factor. Regarding OSCC patient survival, the CD8+/FOXP3+ TILs ratio is an independent prognostic factor. TILs may act as biomarkers and potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Paloma Lequerica-Fernández
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
| | - Julián Suárez-Canto
- Department of Pathology, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Tania Rodriguez-Santamarta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
| | - Juan Pablo Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
- Ciber de Cancer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Faustino Julián Suárez-Sánchez
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain;
| | - Francisco Domínguez-Iglesias
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
| | - Juana María García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Ciber de Cancer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Correspondence: (J.M.G.-P.); (J.C.d.V.); Tel.: +34-985-107937 (J.M.G.-P.); +34-85-103638 (J.C.d.V.)
| | - Juan Carlos de Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (J.M.G.-P.); (J.C.d.V.); Tel.: +34-985-107937 (J.M.G.-P.); +34-85-103638 (J.C.d.V.)
| |
Collapse
|
20
|
Fan GT, Ling ZH, He ZW, Wu SJ, Zhou GX. Suppressing CHD1L reduces the proliferation and chemoresistance in osteosarcoma. Biochem Biophys Res Commun 2021; 554:214-221. [PMID: 33813077 DOI: 10.1016/j.bbrc.2020.12.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
Osteosarcoma (OS) is the most common bone malignant tumor. However, the genetic basis of OS pathogenesis is still not understood, and occurrence of chemo-resistance is a major reason for the high morbidity of OS patients. Recently, chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) has been identified as a gene related to malignant tumor progression. Unfortunately, its effects on OS development and drug resistance are still not understood. In the study, we attempted to investigate the effects of CHD1L on tumorigenesis and chemoresistance in OS. We found that CHD1L expression was markedly up-regulated in OS samples, especially in cisplatin (cDDP)-resistant patients. We also showed that OS cells with CHD1L knockdown were more sensitive to cDDP treatment with lower IC50 values. In addition, we found that CHD1L deletion markedly reduced cell proliferation and induced apoptosis in OS cells with cDDP resistance. Moreover, the properties of cancer stem cells were highly suppressed in cDDP-resistant OS cells following CHD1L knockdown. Furthermore, multidrug resistance protein 1 (MDR-1) expression levels were dramatically decreased in OS cells with cDDP resistance when CHD1L was suppressed. Functional analysis indicated that CHD1L knockdown clearly restrained the activation of ERK1/2, protein kinase B (AKT) and NF-κB signaling pathways in cDDP-resistant OS cells. Consistently, animal experiments suggested that CHD1L suppression mitigated cDDP resistance in the generated in vivo xenografts. Collectively, CHD1L could modulate chemoresistance of OS cells to cDDP, and thus may be inspiring findings for overcoming drug resistance in OS.
Collapse
Affiliation(s)
- Gen-Tao Fan
- Department of Orthopedics, The Jinling Hospital of Nanjing, Nanjing, 210002, China
| | - Zhong-Hua Ling
- Department of Orthopedics, The Jinling Hospital of Nanjing, Nanjing, 210002, China
| | - Zhi-Wei He
- Department of Orthopedics, The Jinling Hospital of Nanjing, Nanjing, 210002, China
| | - Su-Jia Wu
- Department of Orthopedics, The Jinling Hospital of Nanjing, Nanjing, 210002, China
| | - Guang-Xin Zhou
- Department of Orthopedics, The Jinling Hospital of Nanjing, Nanjing, 210002, China.
| |
Collapse
|