1
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Papadimitrakis D, Perdikakis M, Gargalionis AN, Papavassiliou AG. Biomarkers in Cerebrospinal Fluid for the Diagnosis and Monitoring of Gliomas. Biomolecules 2024; 14:801. [PMID: 39062515 PMCID: PMC11274947 DOI: 10.3390/biom14070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumor and are characterized by a plethora of heterogeneous molecular alterations. Current treatments require the emergence of reliable biomarkers that will aid personalized treatment decisions and increase life expectancy. Glioma tissues are not as easily accessible as other solid tumors; therefore, detecting prominent biomarkers in biological fluids is necessary. Cerebrospinal fluid (CSF) circulates adjacent to the cerebral parenchyma and holds promise for discovering useful prognostic, diagnostic, and predictive biomarkers. In this review, we summarize extensive research regarding the role of circulating DNA, tumor cells, proteins, microRNAs, metabolites, and extracellular vesicles as potential CSF biomarkers for glioma diagnosis, prognosis, and monitoring. Future studies should address discrepancies and issues of specificity regarding CSF biomarkers, as well as the validation of candidate biomarkers.
Collapse
Affiliation(s)
- Dimosthenis Papadimitrakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| | - Miltiadis Perdikakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| | - Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, ‘Attikon’ University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| |
Collapse
|
3
|
Wang X, Ge Y, Hou Y, Wang X, Yan Z, Li Y, Dong L, She L, Tang C, Wei M, Zhang H. Single-cell atlas reveals the immunosuppressive microenvironment and Treg cells landscapes in recurrent Glioblastoma. Cancer Gene Ther 2024; 31:790-801. [PMID: 38429367 DOI: 10.1038/s41417-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Patients diagnosed with glioblastoma (GBM) have the most aggressive tumor progression and lethal recurrence. Research on the immune microenvironment landscape of tumor and cerebrospinal fluid (CSF) is limited. At the single-cell level, we aim to reveal the recurrent immune microenvironment of GBM and the potential CSF biomarkers and compare tumor locations. We collected four clinical samples from two patients: malignant samples from one recurrent GBM patient and non-malignant samples from a patient with brain tumor. We performed single-cell RNA sequencing (scRNA-seq) to reveal the immune landscape of recurrent GBM and CSF. T cells were enriched in the malignant tumors, while Treg cells were predominately found in malignant CSF, which indicated an inhibitory microenvironment in recurrent GBM. Moreover, macrophages and neutrophils were significantly enriched in malignant CSF. This indicates that they an important role in GBM progression. S100A9, extensively expressed in malignant CSF, is a promising biomarker for GBM diagnosis and recurrence. Our study reveals GBM's recurrent immune microenvironment after chemoradiotherapy and compares malignant and non-malignant CSF samples. We provide novel targets and confirm the promise of liquid CSF biopsy for patients with GBM.
Collapse
Affiliation(s)
- Xingdong Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yizhi Ge
- Department of Radiation Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Yuting Hou
- College of Medicine, Institute of Translational Medicine Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaodong Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Zhengcun Yan
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yuping Li
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Lun Dong
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Lei She
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Can Tang
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Min Wei
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China.
| | - Hengzhu Zhang
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical medical college, Yangzhou University, Yangzhou, Jiangsu, 225000, China.
| |
Collapse
|
4
|
Crucitta S, Pasqualetti F, Gonnelli A, Ruglioni M, Luculli GI, Cantarella M, Ortenzi V, Scatena C, Paiar F, Naccarato AG, Danesi R, Del Re M. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer 2024; 24:31. [PMID: 38172718 PMCID: PMC10763009 DOI: 10.1186/s12885-023-11726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients. METHODS Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software. RESULTS A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10). CONCLUSIONS The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Valerio Ortenzi
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, Milano, 20122, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Betancur MI, Case A, Ilich E, Mehta N, Meehan S, Pogrebivsky S, Keir ST, Stevenson K, Brahma B, Gregory S, Chen W, Ashley DM, Bellamkonda R, Mokarram N. A neural tract-inspired conduit for facile, on-demand biopsy of glioblastoma. Neurooncol Adv 2024; 6:vdae064. [PMID: 38813113 PMCID: PMC11135361 DOI: 10.1093/noajnl/vdae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background A major hurdle to effectively treating glioblastoma (GBM) patients is the lack of longitudinal information about tumor progression, evolution, and treatment response. Methods In this study, we report the use of a neural tract-inspired conduit containing aligned polymeric nanofibers (i.e., an aligned nanofiber device) to enable on-demand access to GBM tumors in 2 rodent models. Depending on the experiment, a humanized U87MG xenograft and/or F98-GFP+ syngeneic rat tumor model was chosen to test the safety and functionality of the device in providing continuous sampling access to the tumor and its microenvironment. Results The aligned nanofiber device was safe and provided a high quantity of quality genomic materials suitable for omics analyses and yielded a sufficient number of live cells for in vitro expansion and screening. Transcriptomic and genomic analyses demonstrated continuity between material extracted from the device and that of the primary, intracortical tumor (in the in vivo model). Conclusions The results establish the potential of this neural tract-inspired, aligned nanofiber device as an on-demand, safe, and minimally invasive access point, thus enabling rapid, high-throughput, longitudinal assessment of tumor and its microenvironment, ultimately leading to more informed clinical treatment strategies.
Collapse
Affiliation(s)
| | - Ayden Case
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nalini Mehta
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sean Meehan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sabrina Pogrebivsky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Stephen T Keir
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Kevin Stevenson
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Barun Brahma
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Simon Gregory
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wei Chen
- Center for Genomic and Computational Biology, Duke University, Durham, Georgia, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Botezatu IV, Kondratova VN, Stroganova AM, Dranko SL, Lichtenstein AV. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clin Chim Acta 2023; 551:117591. [PMID: 37832390 DOI: 10.1016/j.cca.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The generally accepted method of quantifying hypermethylated DNA by qPCR using methylation-specific primers has the risk of underestimating DNA methylation and requires data normalization. This makes the analysis complicated and less reliable. METHODS The end-point PCR method, called qDMA-HP (for quantitative DNA Melting Analysis with hybridization probes), which excludes the normalization procedure, is multiplexed and quantitative, has been proposed. qDMA-HP is characterized by the following features: (i) asymmetric PCR with methylation-independent primers; (ii) fluorescent dual-labeled, self-quenched probes (commonly known as TaqMan probes) covering several interrogated CpGs; (iii) post-PCR melting analysis of amplicon/probe hybrids; (iv) quantitation of unmethylated and methylated DNA alleles by measuring the areas under the corresponding melt peaks. RESULTS qDMA-HP was tested in liquid biopsy of colorectal cancer by evaluating SEPT9 and HIST1H4F methylations simultaneously in the single-tube reaction. Differences in the methylation levels in healthy donors versus cancer patients were statistically significant (p < 0.0001), AUCROC values were 0.795-0.921 for various marker combinations. CONCLUSIONS This proof-of-concept study shows that qDMA-HP is a simple, normalization-independent, quantitative, multiplex and "closed tube" method easily adapted to clinical settings. It is demonstrated, for the first time, that HIST1H4F is a perspective marker for liquid biopsy of colorectal cancer.
Collapse
Affiliation(s)
- Irina V Botezatu
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Valentina N Kondratova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anna M Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Svetlana L Dranko
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anatoly V Lichtenstein
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia.
| |
Collapse
|
7
|
Grebstad Tune B, Sareen H, Powter B, Kahana-Edwin S, Cooper A, Koh ES, Lee CS, Po JW, McCowage G, Dexter M, Cain L, O'Neill G, Prior V, Karpelowsky J, Tsoli M, Baumbusch LO, Ziegler D, Roberts TL, DeSouza P, Becker TM, Ma Y. From Pediatric to Adult Brain Cancer: Exploring Histone H3 Mutations in Australian Brain Cancer Patients. Biomedicines 2023; 11:2907. [PMID: 38001908 PMCID: PMC10669073 DOI: 10.3390/biomedicines11112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Genetic histone variants have been implicated in cancer development and progression. Mutations affecting the histone 3 (H3) family, H3.1 (encoded by HIST1H3B and HIST1H3C) and H3.3 (encoded by H3F3A), are mainly associated with pediatric brain cancers. While considered poor prognostic brain cancer biomarkers in children, more recent studies have reported H3 alterations in adult brain cancer as well. Here, we established reliable droplet digital PCR based assays to detect three histone mutations (H3.3-K27M, H3.3-G34R, and H3.1-K27M) primarily linked to childhood brain cancer. We demonstrate the utility of our assays for sensitively detecting these mutations in cell-free DNA released from cultured diffuse intrinsic pontine glioma (DIPG) cells and in the cerebral spinal fluid of a pediatric patient with DIPG. We further screened tumor tissue DNA from 89 adult patients with glioma and 1 with diffuse hemispheric glioma from Southwestern Sydney, Australia, an ethnically diverse region, for these three mutations. No histone mutations were detected in adult glioma tissue, while H3.3-G34R presence was confirmed in the diffuse hemispheric glioma patient.
Collapse
Affiliation(s)
- Benedicte Grebstad Tune
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
| | - Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Smadar Kahana-Edwin
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Adam Cooper
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Cheok S Lee
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Joseph W Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Geoff McCowage
- Cancer Centre for Children, The Children Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Mark Dexter
- Neurosurgery, The Children Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Lucy Cain
- Cancer Centre for Children, The Children Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Geraldine O'Neill
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- The University of Sydney Children's Hospital Westmead Clinical School, Faculty of Medicine & Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Victoria Prior
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- The University of Sydney Children's Hospital Westmead Clinical School, Faculty of Medicine & Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jonathan Karpelowsky
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- Paediatric Oncology and Thoracic Surgery, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
- Division of Child and Adolescent Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Randwick, NSW 2031, Australia
| | - Lars O Baumbusch
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
- Faculty of Health, Welfare and Organization, Østfold University College, 1757 Halden, Norway
| | - David Ziegler
- Children's Cancer Institute, Randwick, NSW 2031, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2052, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Tara L Roberts
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Paul DeSouza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Goulburn St, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
8
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Molecular and clonal evolution in vivo reveal a common pathway of distant relapse gliomas. iScience 2023; 26:107528. [PMID: 37649695 PMCID: PMC10462858 DOI: 10.1016/j.isci.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
The evolutionary trajectories of genomic alterations underlying distant recurrence in glioma remain largely unknown. To elucidate glioma evolution, we analyzed the evolutionary trajectories of matched pairs of primary tumors and relapse tumors or tumor in situ fluid (TISF) based on deep whole-genome sequencing data (ctDNA). We found that MMR gene mutations occurred in the late stage in IDH-mutant glioma during gene evolution, which activates multiple signaling pathways and significantly increases distant recurrence potential. The proneural subtype characterized by PDGFRA amplification was likely prone to hypermutation and distant recurrence following treatment. The classical and mesenchymal subtypes tended to progress locally through subclonal reconstruction, trunk genes transformation, and convergence evolution. EGFR and NOTCH signaling pathways and CDNK2A mutation play an important role in promoting tumor local progression. Glioma subtypes displayed distinct preferred evolutionary patterns. ClinicalTrials.gov, NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chaojie Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Guangzhong Guo
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyue Zhang
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Shuang Wu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Sensen Xu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yage Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yushuai Gao
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Clinical Research Center, Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Tianxiao Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ming Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
9
|
Mut M, Adiguzel Z, Cakir-Aktas C, Hanalioğlu Ş, Gungor-Topcu G, Kiyga E, Isikay I, Sarac A, Soylemezoglu F, Strobel T, Ampudia-Mesias E, Cameron C, Aslan T, Tekirdas E, Hayran M, Oguz KK, Henzler C, Saydam N, Saydam O. Extracellular-Vesicle-Based Cancer Panels Diagnose Glioblastomas with High Sensitivity and Specificity. Cancers (Basel) 2023; 15:3782. [PMID: 37568598 PMCID: PMC10417317 DOI: 10.3390/cancers15153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma is one of the most devastating neoplasms of the central nervous system. This study focused on the development of serum extracellular vesicle (EV)-based glioblastoma tumor marker panels that can be used in a clinic to diagnose glioblastomas and to monitor tumor burden, progression, and regression in response to treatment. RNA sequencing studies were performed using RNA isolated from serum EVs from both patients (n = 85) and control donors (n = 31). RNA sequencing results for preoperative glioblastoma EVs compared to control EVs revealed 569 differentially expressed genes (DEGs, 2XFC, FDR < 0.05). By using these DEGs, we developed serum-EV-based biomarker panels for the following glioblastomas: wild-type IDH1 (96% sensitivity/80% specificity), MGMT promoter methylation (91% sensitivity/73% specificity), p53 gene mutation (100% sensitivity/89% specificity), and TERT promoter mutation (89% sensitivity/100% specificity). This is the first study showing that serum-EV-based biomarker panels can be used to diagnose glioblastomas with a high sensitivity and specificity.
Collapse
Affiliation(s)
- Melike Mut
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06230, Turkey;
| | - Zelal Adiguzel
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
- Faculty of Medicine KUTTAM, Koç University, Davutpaşa Street No. 4 Topkapi, Istanbul 34010, Turkey
| | - Canan Cakir-Aktas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06230, Turkey;
| | - Şahin Hanalioğlu
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Gamze Gungor-Topcu
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
| | - Ezgi Kiyga
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
| | - Ilkay Isikay
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Aydan Sarac
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
| | - Figen Soylemezoglu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
| | - Thomas Strobel
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (E.A.-M.); (C.C.)
| | - Charles Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (E.A.-M.); (C.C.)
| | - Tulay Aslan
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Eray Tekirdas
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Mutlu Hayran
- Department of Preventive Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey;
| | - Kader Karli Oguz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
| | - Christine Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (E.A.-M.); (C.C.)
| |
Collapse
|
10
|
Malhotra S, Miras MCM, Pappolla A, Montalban X, Comabella M. Liquid Biopsy in Neurological Diseases. Cells 2023; 12:1911. [PMID: 37508574 PMCID: PMC10378132 DOI: 10.3390/cells12141911] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The most recent and non-invasive approach for studying early-stage biomarkers is liquid biopsy. This implies the extraction and analysis of non-solid biological tissues (serum, plasma, saliva, urine, and cerebrospinal fluid) without undergoing invasive procedures to determine disease prognosis. Liquid biopsy can be used for the screening of several components, such as extracellular vesicles, microRNAs, cell-free DNA, cell-free mitochondrial and nuclear DNA, circulating tumour cells, circulating tumour DNA, transfer RNA, and circular DNA or RNA derived from body fluids. Its application includes early disease diagnosis, the surveillance of disease activity, and treatment response monitoring, with growing evidence for validating this methodology in cancer, liver disease, and central nervous system (CNS) disorders. This review will provide an overview of mentioned liquid biopsy components, which could serve as valuable biomarkers for the evaluation of complex neurological conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, stroke, traumatic brain injury, CNS tumours, and neuroinfectious diseases. Furthermore, this review highlights the future directions and potential limitations associated with liquid biopsy.
Collapse
Affiliation(s)
- Sunny Malhotra
- Multiple Sclerosis Center of Catalonia, Department of Neurology-Neuroimmunology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Mari Carmen Martín Miras
- Multiple Sclerosis Center of Catalonia, Department of Neurology-Neuroimmunology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Agustín Pappolla
- Multiple Sclerosis Center of Catalonia, Department of Neurology-Neuroimmunology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Xavier Montalban
- Multiple Sclerosis Center of Catalonia, Department of Neurology-Neuroimmunology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Manuel Comabella
- Multiple Sclerosis Center of Catalonia, Department of Neurology-Neuroimmunology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
11
|
Hu P, Xu L, Qi Y, Yan T, Ye L, Wen S, Yuan D, Zhu X, Deng S, Liu X, Xu P, You R, Wang D, Liang S, Wu Y, Xu Y, Sun Q, Du S, Yuan Y, Deng G, Cheng J, Zhang D, Chen Q, Zhu X. Combination of multi-modal MRI radiomics and liquid biopsy technique for preoperatively non-invasive diagnosis of glioma based on deep learning: protocol for a double-center, ambispective, diagnostical observational study. Front Mol Neurosci 2023; 16:1183032. [PMID: 37201155 PMCID: PMC10185782 DOI: 10.3389/fnmol.2023.1183032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Background 2021 World Health Organization (WHO) Central Nervous System (CNS) tumor classification increasingly emphasizes the important role of molecular markers in glioma diagnoses. Preoperatively non-invasive "integrated diagnosis" will bring great benefits to the treatment and prognosis of these patients with special tumor locations that cannot receive craniotomy or needle biopsy. Magnetic resonance imaging (MRI) radiomics and liquid biopsy (LB) have great potential for non-invasive diagnosis of molecular markers and grading since they are both easy to perform. This study aims to build a novel multi-task deep learning (DL) radiomic model to achieve preoperative non-invasive "integrated diagnosis" of glioma based on the 2021 WHO-CNS classification and explore whether the DL model with LB parameters can improve the performance of glioma diagnosis. Methods This is a double-center, ambispective, diagnostical observational study. One public database named the 2019 Brain Tumor Segmentation challenge dataset (BraTS) and two original datasets, including the Second Affiliated Hospital of Nanchang University, and Renmin Hospital of Wuhan University, will be used to develop the multi-task DL radiomic model. As one of the LB techniques, circulating tumor cell (CTC) parameters will be additionally applied in the DL radiomic model for assisting the "integrated diagnosis" of glioma. The segmentation model will be evaluated with the Dice index, and the performance of the DL model for WHO grading and all molecular subtype will be evaluated with the indicators of accuracy, precision, and recall. Discussion Simply relying on radiomics features to find the correlation with the molecular subtypes of gliomas can no longer meet the need for "precisely integrated prediction." CTC features are a promising biomarker that may provide new directions in the exploration of "precision integrated prediction" based on the radiomics, and this is the first original study that combination of radiomics and LB technology for glioma diagnosis. We firmly believe that this innovative work will surely lay a good foundation for the "precisely integrated prediction" of glioma and point out further directions for future research. Clinical trail registration This study was registered on ClinicalTrails.gov on 09/10/2022 with Identifier NCT05536024.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Wen
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Dalong Yuan
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuhang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xun Liu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Panpan Xu
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Ran You
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Dongfang Wang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Shanwen Liang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Senlin Du
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Zhang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Pingle SC, Lin F, Anekoji MS, Patro CK, Datta S, Jones LD, Kesari S, Ashili S. Exploring the role of cerebrospinal fluid as analyte in neurologic disorders. Future Sci OA 2023; 9:FSO851. [PMID: 37090492 PMCID: PMC10116372 DOI: 10.2144/fsoa-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
The cerebrospinal fluid (CSF) is a clear ultrafiltrate of blood that envelopes and protects the central nervous system while regulating neuronal function through the maintenance of interstitial fluid homeostasis in the brain. Due to its anatomic location and physiological functions, the CSF can provide a reliable source of biomarkers for the diagnosis and treatment monitoring of different neurological diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and primary and secondary brain malignancies. The incorporation of CSF biomarkers into the drug discovery and development can improve the efficiency of drug development and increase the chances of success. This review aims to consolidate the current use of CSF biomarkers in clinical practice and explore future perspectives for the field.
Collapse
Affiliation(s)
- Sandeep C Pingle
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Feng Lin
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
- Author for correspondence:
| | - Misa S Anekoji
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - C Pawan K Patro
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Souvik Datta
- Rhenix Lifesciences, 237 Vengal Rao Nagar, Hyderabad, TG, 500038, India
| | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | - Santosh Kesari
- Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center & Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
14
|
Noushmehr H, Herrgott G, Morosini NS, Castro AV. Noninvasive approaches to detect methylation-based markers to monitor gliomas. Neurooncol Adv 2022; 4:ii22-ii32. [PMID: 36380867 PMCID: PMC9650474 DOI: 10.1093/noajnl/vdac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
In this review, we summarize the current approaches used to detect glioma tissue-derived DNA methylation markers in liquid biopsy specimens with the aim to diagnose, prognosticate and potentially track treatment response and evolution of patients with gliomas.
Collapse
Affiliation(s)
- Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Grayson Herrgott
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Natalia S Morosini
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
15
|
Dhinakaran AK, Ganesh S, Haldavnekar R, Tan B, Das S, Venkatakrishnan K. Holistic Analysis of Glioblastoma Stem Cell DNA Using Nanoengineered Plasmonic Metasensor for Glioblastoma Diagnosis. SMALL METHODS 2022; 6:e2200547. [PMID: 35908161 DOI: 10.1002/smtd.202200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The clinical relevance of liquid biopsy for glioblastoma (GBM) remains undetermined due to practical and biological limitations such as absence of a reliable GBM-specific biomarker, trace levels in circulation due to the blood-brain-barrier, and lack of a sensitive method to detect the trace levels of biomarkers. It is hypothesized that GBM stem cell (GSC)-associated cell free DNA can function as reliable biomarker for GBM because it accounts for tumor heterogeneity and provide accurate molecular information about the cancer. An integrative methodology is used for GBM diagnosis by utilizing the sub-single molecular sensitivity of nanoengineered plasmonic metasensors for real-time genomic profiling of GSC DNA. The nanoengineered metasensors can detect the rare circulating GSC-DNA accurately from just 5 µL of blood and the test can be performed in under 10 min. Analysis of clinical serum samples from GBM patients and healthy volunteers demonstrates that the technology yielded an accurate classification of GBM in an independent validation cohort (accuracy 98.3%, specificity 100%). The methodology detects GBM-signatures from the patient blood rapidly within the half-life period of cfDNA in circulation, non-invasively and amplification-free with a high diagnostic accuracy. With clinical validation, this methodology can evolve as a clinically viable diagnostic tool for fatal and hard-to-detect cancer like GBM.
Collapse
Affiliation(s)
- Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Bo Tan
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, M5B1W8, Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
16
|
MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. Int J Mol Sci 2022; 23:ijms23137148. [PMID: 35806153 PMCID: PMC9266959 DOI: 10.3390/ijms23137148] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes in DNA methylation contribute to the development of many diseases, including cancer. In glioblastoma multiforme, the most prevalent primary brain cancer and an incurable tumor with a median survival time of 15 months, a single epigenetic modification, the methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene, is a valid biomarker for predicting response to therapy with alkylating agents and also, independently, prognosis. More recently, the progress from single gene to whole-genome analysis of DNA methylation has allowed a better subclassification of glioblastomas. Here, we review the clinically relevant information that can be obtained by studying MGMT gene and whole-genome DNA methylation changes in glioblastomas, also highlighting benefits, including those of liquid biopsy, and pitfalls of the different detection methods. Finally, we discuss how changes in DNA methylation, especially in glioblastomas bearing mutations in the Isocitrate Dehydrogenase (IDH) 1 and 2 genes, can be exploited as targets for tailoring therapy.
Collapse
|
17
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
18
|
Li P, Xu Z, Liu T, Liu Q, Zhou H, Meng S, Feng Z, Tang Y, Liu C, Feng J, Fu H, Liu Q, Wu M. Circular RNA Sequencing Reveals Serum Exosome Circular RNA Panel for High-Grade Astrocytoma Diagnosis. Clin Chem 2021; 68:332-343. [PMID: 34942001 DOI: 10.1093/clinchem/hvab254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although major advances have been made in the histopathological diagnosis of high-grade astrocytoma (HGA), methods for effective and noninvasive diagnosis remain largely unknown. Exosomes can cross the blood-brain barrier and are readily accessible in human biofluids, making them promising biomarkers for HGA. Circular RNAs (circRNAs) have potential as tumor biomarkers owing to their stability, conservation, and tissue specificity. However, the landscape and characteristics of exosome circRNAs in HGA remain to be studied. METHODS CircRNA deep sequencing and bioinformatics approaches were used to generate a circRNA profiling database and analyze the features of HGA cell circRNAs and HGA cell-derived exosome circRNAs. Exosome circRNA expression in the serum and tissues of healthy individuals and patients with HGA was detected using reverse transcription-quantitative PCR. Additionally, the receiver operating characteristic curve and overall survival curves were analyzed. RESULTS By investigating the characteristics of HGA cell-derived exosome circRNAs and HGA cell circRNAs, we observed that exosomes were more likely to enrich short-exon and suppressor circRNAs than HGA cells. Moreover, a serum exosome circRNA panel including hsa_circ_0075828, hsa_circ_0003828, and hsa_circ_0002976 could be used to screen for HGA, whereas a good prognosis panel comprised high concentrations of hsa_circ_0005019, hsa_circ_0000880, hsa_circ_0051680, and hsa_circ_0006365. CONCLUSIONS This study revealed a comprehensive circRNA landscape in HGA exosomes and cells. The serum exosome circexosome circRNA panel and tissue circRNAs are potentially useful for HGA liquid biopsy and prognosis monitoring. Exosome circRNAs as novel targets should facilitate further biomarker discovery and aid in HGA diagnosis and therapy monitoring.
Collapse
Affiliation(s)
- Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zihao Xu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Tao Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hecheng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Shujuan Meng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ziyang Feng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ying Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Changhong Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.,Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandon 250033, China
| | - Jianbo Feng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Haijuan Fu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Minghua Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Zhang W, Qin T, Yang Z, Yin L, Zhao C, Feng L, Lin S, Liu B, Cheng S, Zhang K. Telomerase-positive circulating tumor cells are associated with poor prognosis via a neutrophil-mediated inflammatory immune environment in glioma. BMC Med 2021; 19:277. [PMID: 34763698 PMCID: PMC8588721 DOI: 10.1186/s12916-021-02138-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gliomas are the most common aggressive cancer in the central nervous system. Considering the difficulty in monitoring glioma response and progression, an approach is needed to evaluate the progression or survival of patients with glioma. We propose an application to facilitate clinical detection and treatment monitoring in glioma patients by using telomerase-positive circulating tumor cells (CTCs) and to further evaluate the relationship between the immune microenvironment and CTCs in glioma patients. METHODS From October 2014 to June 2017, 106 patients newly diagnosed with glioma were enrolled. We used the telomerase reverse transcriptase CTC detection method to detect and analyze the CTC statuses of glioma patients before and after surgery. FlowSight and FISH confirmed the CTCs detected by the telomerase-based method. To verify the correlation between CTCs and the immune response, peripheral white blood cell RNA sequencing was performed. RESULTS CTCs were common in the peripheral blood of glioma patients and were not correlated with the pathological classification or grade of patients. The results showed that the presence of postoperative CTCs but not preoperative CTCs in glioma patients was a poor prognostic factor. The level of postoperative CTCs, which predicts a poor prognosis after surgery, may be associated with neutrophils. RNA sequencing suggested that postoperative CTCs were positively correlated with innate immune responses, especially the activation of neutrophils and the generation of neutrophil extracellular traps, but negatively correlated with the cytotoxic response. CONCLUSIONS Our results showed that telomerase-positive CTCs can predict a poor prognosis of patients with glioma. Our results also showed a correlation between CTCs and the immune macroenvironment, which provides a new perspective for the treatment of glioma.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiancheng Qin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyun Zhao
- Chongqing Diatech Biotechnological Limited Company, Chongqing, 400020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China.
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Eibl RH, Schneemann M. Liquid Biopsy and Primary Brain Tumors. Cancers (Basel) 2021; 13:5429. [PMID: 34771592 PMCID: PMC8582521 DOI: 10.3390/cancers13215429] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Two decades of "promising results" in liquid biopsy have led to both continuing disappointment and hope that the new era of minimally invasive, personalized analysis can be applied for better diagnosis, prognosis, monitoring, and therapy of cancer. Here, we briefly highlight the promises, developments, and challenges related to liquid biopsy of brain tumors, including circulating tumor cells, cell-free nucleic acids, extracellular vesicles, and miRNA; we further discuss the urgent need to establish suitable biomarkers and the right standards to improve modern clinical management of brain tumor patients with the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
21
|
Gatto L, Franceschi E, Di Nunno V, Tosoni A, Lodi R, Brandes AA. Liquid Biopsy in Glioblastoma Management: From Current Research to Future Perspectives. Oncologist 2021; 26:865-878. [PMID: 34105205 PMCID: PMC8488799 DOI: 10.1002/onco.13858] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Arising from neuroepithelial glial cells, GBM is characterized by invasive behavior, extensive angiogenesis, and genetic heterogeneity that contributes to poor prognosis and treatment failure. Currently, there are several molecular biomarkers available to aid in diagnosis, prognosis, and predicting treatment outcomes; however, all require the biopsy of tumor tissue. Nevertheless, a tissue sample from a single location has its own limitations, including the risk related to the procedure and the difficulty of obtaining longitudinal samples to monitor treatment response and to fully capture the intratumoral heterogeneity of GBM. To date, there are no biomarkers in blood or cerebrospinal fluid for detection, follow-up, or prognostication of GBM. Liquid biopsy offers an attractive and minimally invasive solution to support different stages of GBM management, assess the molecular biology of the tumor, identify early recurrence and longitudinal genomic evolution, predict both prognosis and potential resistance to chemotherapy or radiotherapy, and allow patient selection for targeted therapies. The aim of this review is to describe the current knowledge regarding the application of liquid biopsy in glioblastoma, highlighting both benefits and obstacles to translation into clinical care. IMPLICATIONS FOR PRACTICE: To translate liquid biopsy into clinical practice, further prospective studies are required with larger cohorts to increase specificity and sensitivity. With the ever-growing interest in RNA nanotechnology, microRNAs may have a therapeutic role in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Enrico Franceschi
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Vincenzo Di Nunno
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Alicia Tosoni
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)BolognaItaly
| | - Alba Ariela Brandes
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| |
Collapse
|
22
|
Leão Barros MB, Pinheiro DDR, Borges BDN. Mitochondrial DNA Alterations in Glioblastoma (GBM). Int J Mol Sci 2021; 22:ijms22115855. [PMID: 34072607 PMCID: PMC8199454 DOI: 10.3390/ijms22115855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive tumor originating from neural stem cells of the central nervous system, which has high histopathological and genomic diversity. Mitochondria are cellular organelles associated with the regulation of cellular metabolism, redox signaling, energy generation, regulation of cell proliferation, and apoptosis. Accumulation of mutations in mitochondrial DNA (mtDNA) leads to mitochondrial dysfunction that plays an important role in GBM pathogenesis, favoring abnormal energy and reactive oxygen species production and resistance to apoptosis and to chemotherapeutic agents. The present review summarizes the known mitochondrial DNA alterations related to GBM, their cellular and metabolic consequences, and their association with diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mariceli Baia Leão Barros
- Molecular Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belém, PA 66075, Brazil;
| | | | - Bárbara do Nascimento Borges
- Molecular Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belém, PA 66075, Brazil;
- Correspondence:
| |
Collapse
|
23
|
Sheng Z, Yu J, Deng K, Andrade-Barazarte H, Zemmar A, Li S, Li N, Yan Z, Chen Z, Sun Y, Hernesniemi J, Bu X. Characterizing the Genomic Landscape of Brain Glioma With Circulating Tumor DNA From Tumor In Situ Fluid. Front Oncol 2021; 11:584988. [PMID: 33868989 PMCID: PMC8045748 DOI: 10.3389/fonc.2021.584988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor in situ fluid (TISF) refers to the fluid at the local surgical cavity. We evaluated the feasibility of TISF-derived circulating tumor DNA (ctDNA) characterizing the genomic landscape for glioma. This retrospective study included TISF and tumor samples from 10 patients with glioma, we extracted cell-free DNA (cfDNA) from the TISF and then performed deep sequencing on that. And we compared genomic alterations between TISF and tumor tissue. Results showed that the concentration of cfDNA fragments from the patients for TISF ranged from 7.2 to 1,397 ng/ml. At least one tumor-specific mutation was identified in all 10 patients (100%). Further analysis of TISF ctDNA revealed a broad spectrum of genetic mutations, which have been reported to have clinical relevance. The analysis of concordance between TISF and tumor tissue reflected the spatiotemporal heterogeneity of glioma. Collectively, TISF ctDNA was a powerfully potential source for characterizing the genomic landscape of glioma, which provided new possibilities for precision medicine in patients with glioma.
Collapse
Affiliation(s)
- Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jinliang Yu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hugo Andrade-Barazarte
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sijia Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nianxuan Li
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong Sun
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Juha Hernesniemi
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, Roberts T, Koh ES, Scott KF, Sajinovic M, Vessey JY, de Souza P, Becker TM. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol 2021; 147:1007-1017. [PMID: 33547950 PMCID: PMC7954705 DOI: 10.1007/s00432-021-03536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022]
Abstract
The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management. In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.
Collapse
Affiliation(s)
- Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.
| | - Sarah A Jeffreys
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Adam Cooper
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Daniel Brungs
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joseph Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Tara Roberts
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Eng-Siew Koh
- Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Kieran F Scott
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Mila Sajinovic
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Joey Y Vessey
- Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Paul de Souza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| |
Collapse
|
25
|
Tan JY, Wijesinghe IVS, Alfarizal Kamarudin MN, Parhar I. Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. Cancers (Basel) 2021; 13:cancers13040607. [PMID: 33557011 PMCID: PMC7913734 DOI: 10.3390/cancers13040607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Gliomas are major causes of worldwide cancer-associated deaths in children. Generally, paediatric gliomas can be classified into low-grade and high-grade gliomas. They differ significantly from adult gliomas in terms of prevalence, molecular alterations, molecular mechanisms and predominant histological types. The aims of this review article are: (i) to discuss the current updates of biomarkers in paediatric low-grade and high-grade gliomas including their diagnostic and prognostic values, and (ii) to discuss potential targeted therapies in treating paediatric low-grade and high-grade gliomas. Our findings revealed that liquid biopsy is less invasive than tissue biopsy in obtaining the samples for biomarker detections in children. In addition, future clinical trials should consider blood-brain barrier (BBB) penetration of therapeutic drugs in paediatric population. Abstract Paediatric gliomas categorised as low- or high-grade vary markedly from their adult counterparts, and denoted as the second most prevalent childhood cancers after leukaemia. As compared to adult gliomas, the studies of diagnostic and prognostic biomarkers, as well as the development of therapy in paediatric gliomas, are still in their infancy. A body of evidence demonstrates that B-Raf Proto-Oncogene or V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) and histone H3 mutations are valuable biomarkers for paediatric low-grade gliomas (pLGGs) and high-grade gliomas (pHGGs). Various diagnostic methods involving fluorescence in situ hybridisation, whole-genomic sequencing, PCR, next-generation sequencing and NanoString are currently used for detecting BRAF and histone H3 mutations. Additionally, liquid biopsies are gaining popularity as an alternative to tumour materials in detecting these biomarkers, but still, they cannot fully replace solid biopsies due to several limitations. Although histone H3 mutations are reliable prognosis biomarkers in pHGGs, children with these mutations have a dismal prognosis. Conversely, the role of BRAF alterations as prognostic biomarkers in pLGGs is still in doubt due to contradictory findings. The BRAF V600E mutation is seen in the majority of pLGGs (as seen in pleomorphic xanthoastrocytoma and gangliomas). By contrast, the H3K27M mutation is found in the majority of paediatric diffuse intrinsic pontine glioma and other midline gliomas in pHGGs. pLGG patients with a BRAF V600E mutation often have a lower progression-free survival rate in comparison to wild-type pLGGs when treated with conventional therapies. BRAF inhibitors (Dabrafenib and Vemurafenib), however, show higher overall survival and tumour response in BRAF V600E mutated pLGGs than conventional therapies in some studies. To date, targeted therapy and precision medicine are promising avenues for paediatric gliomas with BRAF V600E and diffuse intrinsic pontine glioma with the H3K27M mutations. Given these shortcomings in the current treatments of paediatric gliomas, there is a dire need for novel therapies that yield a better therapeutic response. The present review discusses the diagnostic tools and the perspective of liquid biopsies in the detection of BRAF V600E and H3K27M mutations. An in-depth understanding of these biomarkers and the therapeutics associated with the respective challenges will bridge the gap between paediatric glioma patients and the development of effective therapies.
Collapse
Affiliation(s)
| | | | | | - Ishwar Parhar
- Correspondence: ; Tel.: +603-5514-6304; Fax: +603-5515-6341
| |
Collapse
|
26
|
MRI-based diagnosis and treatment of pediatric brain tumors: is tissue sample always needed? Childs Nerv Syst 2021; 37:1449-1459. [PMID: 33821340 PMCID: PMC8084800 DOI: 10.1007/s00381-021-05148-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022]
Abstract
Traditional management of newly diagnosed pediatric brain tumors (PBTs) consists of cranial imaging, typically magnetic resonance imaging (MRI), and is frequently followed by tissue diagnosis, through either surgical biopsy or tumor resection. Therapy regimes are typically dependent on histological diagnosis. To date, many treatment regimens are based on molecular biology. The scope of this article is to discuss the role of diagnosis and further treatment of PBTs based solely on MRI features, in light of the latest treatment protocols. Typical MRI findings and indications for surgical biopsy of these lesions are described.
Collapse
|
27
|
Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The Involvement of Exosomes in Glioblastoma Development, Diagnosis, Prognosis, and Treatment. Brain Sci 2020; 10:brainsci10080553. [PMID: 32823792 PMCID: PMC7463943 DOI: 10.3390/brainsci10080553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Brain tumours are a serious concern among both physicians and patients. The most feared brain tumour is glioblastoma (GBM) due to its heterogeneous histology, substantial invasive capacity, and rapid postsurgical recurrence. Even in cases of early management consisting of surgery, chemo-, and radiotherapy, the prognosis is still poor, with an extremely short survival period. Consequently, researchers are trying to better understand the underlying pathways involved in GBM development in order to establish a more personalised approach. The latest focus is on molecular characterisation of the tumour, including analysis of extracellular vesicles (EVs), nanostructures derived from both normal and pathological cells that have an important role in intercellular communication due to the various molecules they carry. There are two types of EV based on their biogenesis, but exosomes are of particular interest in GBM. Recent studies have demonstrated that GBM cells release numerous exosomes whose cargo provides them the capacity to facilitate tumour cell invasion and migration, to stimulate malignant transformation of previously normal cells, to increase immune tolerance towards the tumour, to induce resistance to chemotherapy, and to enhance the GBM vascular supply. As exosomes are specific to their parental cells, their isolation would allow a deeper perspective on GBM pathogenesis. A new era of molecular manipulation has emerged, and exosomes are rapidly proving their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting GBM cells. Nonetheless, further research will be required before exosomes could be used in clinical practice. This review aims to describe the structural and functional characteristics of exosomes and their involvement in GBM development, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Adrian Bălașa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
- ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureș, Romania
| | - Georgiana Șerban
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-724-051-516
| | - Rareş Chinezu
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
- ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureș, Romania
| | - Corina Hurghiș
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
| | - Flaviu Tămaș
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mureș, Romania;
| |
Collapse
|