1
|
Stable Long-Term Culture of Human Distal Airway Stem Cells for Transplantation. Stem Cells Int 2021; 2021:9974635. [PMID: 34567131 PMCID: PMC8463241 DOI: 10.1155/2021/9974635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
There is a population of p63+/Krt5+ distal airway stem cells (DASCs) quiescently located in the airway basal epithelium of mammals, responding to injury and airway epithelial regeneration. They hold the ability to differentiate into multiple pulmonary cell types and can repopulate the epithelium after damage. The current study aims at gaining further insights into the behavior and characteristics of the DASCs isolated from the patient lung and exploring their clinical translational potential. Human DASCs were brushed off through the bronchoscopic procedure and expanded under the pharmaceutical-grade condition. Their phenotype stability in long-term cell culture was analyzed, followed by safety evaluation and tumorigenic analysis using multiple animal models including rodents and nonhuman primate. The chimerism of the human-mouse lung model indicated that DASC pedigrees could give rise to multiple epithelial types, including type I alveolar cells as well as bronchiolar secretory cells, to regenerate the distal lung. Taken together, the results suggested that DASC transplantation could be a promising therapeutic approach for unmet needs in respiratory medicine including the COVID-19-related diseases.
Collapse
|
2
|
Ravichandran A, Meinert C, Bas O, Hutmacher DW, Bock N. Engineering a 3D bone marrow adipose composite tissue loading model suitable for studying mechanobiological questions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112313. [PMID: 34474864 DOI: 10.1016/j.msec.2021.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Tissue engineering strategies are widely used to model and study the bone marrow microenvironment in healthy and pathological conditions. Yet, while bone function highly depends on mechanical stimulation, the effects of biomechanical stimuli on the bone marrow niche, specifically on bone marrow adipose tissue (BMAT) is poorly understood due to a lack of representative in vitro loading models. Here, we engineered a BMAT analog made of a GelMA (gelatin methacryloyl) hydrogel/medical-grade polycaprolactone (mPCL) scaffold composite to structurally and biologically mimic key aspects of the bone marrow microenvironment, and exploited an innovative bioreactor to study the effects of mechanical loading. Highly reproducible BMAT analogs facilitated the successful adipogenesis of human mesenchymal bone marrow stem cells. Upon long-term intermittent stimulation (1 Hz, 2 h/day, 3 days/week, 3 weeks) in the novel bioreactor, cellular proliferation and lipid accumulation were similar to unloaded controls, yet there was a significant reduction in the secretion of adipokines including leptin and adiponectin, in line with clinical evidence of reduced adipokine expression following exercise/activity. Ultimately, this innovative loading platform combined with reproducibly engineered BMAT analogs provide opportunities to study marrow physiology in greater complexity as it accounts for the dynamic mechanical microenvironment context.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove 4059, QLD, Australia; Translational Research Institute (TRI), QUT, Woolloongabba 4102, QLD, Australia
| | - Christoph Meinert
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove 4059, QLD, Australia; Metro North Hospital and Health Service, Herston 4029, QLD, Australia
| | - Onur Bas
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove 4059, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove 4059, QLD, Australia
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove 4059, QLD, Australia; Translational Research Institute (TRI), QUT, Woolloongabba 4102, QLD, Australia; Bone and Joint Disorders Program, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane 4000, QLD, Australia; School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
| | - Nathalie Bock
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove 4059, QLD, Australia; Translational Research Institute (TRI), QUT, Woolloongabba 4102, QLD, Australia; School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia; ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, QUT, Kelvin Grove 4059, QLD, Australia.
| |
Collapse
|
3
|
Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020; 12:pharmaceutics12121188. [PMID: 33297493 PMCID: PMC7762425 DOI: 10.3390/pharmaceutics12121188] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Owing to their tunable properties, controllable degradation, and ability to protect labile drugs, hydrogels are increasingly investigated as local drug delivery systems. However, a lack of standardized methodologies used to characterize and evaluate drug release poses significant difficulties when comparing findings from different investigations, preventing an accurate assessment of systems. Here, we review the commonly used analytical techniques for drug detection and quantification from hydrogel delivery systems. The experimental conditions of drug release in saline solutions and their impact are discussed, along with the main mathematical and statistical approaches to characterize drug release profiles. We also review methods to determine drug diffusion coefficients and in vitro and in vivo models used to assess drug release and efficacy with the goal to provide guidelines and harmonized practices when investigating novel hydrogel drug delivery systems.
Collapse
|