1
|
Huang S, Huang X, Liu Z, Yao C, Liu J, He M, Xu X, Zhang T, Wang J, Jiang L, Chen HJ, Xie X. Advances in Multifunctional Electronic Catheters for Precise and Intelligent Diagnosis and Therapy in Minimally Invasive Surgery. ACS NANO 2024; 18:18129-18150. [PMID: 38954632 DOI: 10.1021/acsnano.4c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Szlasa W, Sauer N, Baczyńska D, Ziętek M, Haczkiewicz-Leśniak K, Karpiński P, Fleszar M, Fortuna P, Kulus MJ, Piotrowska A, Kmiecik A, Barańska A, Michel O, Novickij V, Tarek M, Kasperkiewicz P, Dzięgiel P, Podhorska-Okołów M, Saczko J, Kulbacka J. Pulsed electric field induces exocytosis and overexpression of MAGE antigens in melanoma. Sci Rep 2024; 14:12546. [PMID: 38822068 PMCID: PMC11143327 DOI: 10.1038/s41598-024-63181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Medical University Hospital, Borowska 213, 50-556, Wrocław, Poland.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Surgical Oncology, Wroclaw Comprehensive Cancer Center, Wroclaw, Poland
| | | | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Michał J Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Agnieszka Barańska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, 54000, Nancy, France
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| |
Collapse
|
3
|
Banerjee A, Lee D, Jiang C, Wang R, Kutulakos ZB, Lee S, Gao J, Joshi N. Progress and challenges in intravesical drug delivery. Expert Opin Drug Deliv 2024; 21:111-129. [PMID: 38235592 DOI: 10.1080/17425247.2024.2307481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Intravesical drug delivery (IDD) has gained recognition as a viable approach for treating bladder-related diseases over the years. However, it comes with its set of challenges, including voiding difficulties and limitations in mucosal and epithelial penetration. These challenges lead to drug dilution and clearance, resulting in poor efficacy. Various strategies for drug delivery have been devised to overcome these issues, all aimed at optimizing drug delivery. Nevertheless, there has been minimal translation to clinical settings. AREAS COVERED This review provides a detailed description of IDD, including its history, advantages, and challenges. It also explores the physical barriers encountered in IDD, such as voiding, mucosal penetration, and epithelial penetration, and discusses current strategies for overcoming these challenges. Additionally, it offers a comprehensive roadmap for advancing IDD into clinical trials. EXPERT OPINION Physical bladder barriers and limitations of conventional treatments result in unsatisfactory efficacy against bladder diseases. Nevertheless, substantial recent efforts in this field have led to significant progress in overcoming these challenges and have raised important attributes for an optimal IDD system. However, there is still a lack of well-defined steps in the workflow to optimize the IDD system for clinical settings, and further research is required to establish more comprehensive in vitro and in vivo models to expedite clinical translation.
Collapse
Affiliation(s)
- Arpita Banerjee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Dongtak Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Jiang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rong Wang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zoe Bogusia Kutulakos
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sohyung Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingjing Gao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Center for Bioactive Delivery, Institute for Applied Life Sciences, Material Science Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nitin Joshi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Ayerra Perez H, Barba Abad JF, Extramiana Cameno J. An Update on Focal Therapy for Prostate Cancer. Clin Genitourin Cancer 2023; 21:712.e1-712.e8. [PMID: 37258359 DOI: 10.1016/j.clgc.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 06/02/2023]
Abstract
Radical treatments and active surveillance are valid therapeutic approaches for low-risk prostate cancer. The oncologic effectiveness and morbidity of Radical Prostatectomy (RP) and radiotherapy have been broadly validated. Focal therapies pursue to reduce the morbidity observed after radical treatments, while preserving the oncologic effectiveness. This study aims to review the state-of-the-art about principles, oncologic effectiveness, morbidity, and side-effects associated with leading focal therapies. We review and summarize articles related with Cryotherapy, High-Intensity Focal Ultrasound (HIFU), Photodynamic Therapy (PDT), and Irreversible Electroporating (IRE) published in MEDLINE from 2000 to 2022. There is a wide heterogeneity in terms of the measurement of effectiveness and morbidity. Hence, comparing different energies, strategies and protocols seem to be unprecise and controversial. Cryosurgery and HIFU have reported more clinical experience than PDT and IRE. Biochemical recurrence rate after the first session varied from 4.5% to 23%, and up to 20% of patients underwent a salvage radical treatment. The reported incidence of erectile disfunction and urinary incontinence ranges from 3% to 50% and 0% to 34%, respectively. None randomized clinical trial comparing any focal therapy to any radical treatment has been published. We conclude that the expansion of focal therapies requires the consolidation of MRI-guided fusion biopsies in everyday clinical practice. Short-term oncologic effectiveness has been proved and supports their usefulness in low-risk patients unfit for surgical treatment. However, long-term effects and the clinical experience in intermediate and high-risk patients remains limited. Currently none of the focal therapies can be considered the Gold Standard for low-risk patients.
Collapse
Affiliation(s)
- Hector Ayerra Perez
- Department of Urology, Araba University Hospital. OSI Araba, Osakidetza, Vitoria-Gasteiz, Spain.
| | | | | |
Collapse
|
5
|
Campana LG, Daud A, Lancellotti F, Arroyo JP, Davalos RV, Di Prata C, Gehl J. Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation. Cancers (Basel) 2023; 15:3340. [PMID: 37444450 PMCID: PMC10340685 DOI: 10.3390/cancers15133340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Adil Daud
- Department of Medicine, University of California, 550 16 Street, San Francisco, CA 94158, USA;
| | - Francesco Lancellotti
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claudia Di Prata
- Department of Surgery, San Martino Hospital, 32100 Belluno, Italy;
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
6
|
Kiełbik A, Sowa PW, Pakhomov AG, Gudvangen E, Mangalanathan U, Kulbacka J, Pakhomova ON. Urine protects urothelial cells against killing with nanosecond pulsed electric fields. Bioelectrochemistry 2023; 149:108289. [DOI: 10.1016/j.bioelechem.2022.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
7
|
Drug Resistance and Novel Therapies in Cancers in 2020. Cancers (Basel) 2023; 15:cancers15030717. [PMID: 36765674 PMCID: PMC9913530 DOI: 10.3390/cancers15030717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
After a very successful year in 2019 with 34 publications, our Topic collection "Drug Resistance and Novel Therapies in Cancers" guaranteed another productive year with the publication of 17 research articles and 4 review articles in 2020 [...].
Collapse
|
8
|
Jeon SM, Davaa E, Jiang Y, Jenjob R, Truong NT, Shin KJ, Jeong S, Yang SG. Assessment of Hepatic Lesions After non-Thermal Tumor Ablation by Irreversible Electroporation in a Pig Model. Technol Cancer Res Treat 2023; 22:15330338221147122. [PMID: 37861099 PMCID: PMC10590046 DOI: 10.1177/15330338221147122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 10/21/2023] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal and minimal invasive modality to ablate pathologic lesions such as hepatic tumors. Histological analysis of the initial lesions after IRE can help predict ablation efficacy. We aimed to investigate the histological characteristics of early hepatic lesions after IRE application using animal models. IRE (1500 V/cm, a pulse length of 100 μs, 60 or 90 pulses) was applied to the liver of miniature pigs. H&E and TUNEL staining were performed and analyzed. Ablated zones of pig liver were discolored and separated from the normal zone after IRE. Histologic characteristics of ablation zones included preserved hepatic lobular architecture with a unique hexagonal-like structure. Apoptotic cells were detected, and sinusoidal dilatation and blood congestion were observed, but hepatic arteries and bile ducts were intact around the ablation zones. The early lesions obtained by delivering monophasic square wave pulses through needle electrodes reflected typical histological changes induced by IRE. Therefore, it was found that the histological assessment of the early hepatic lesion after IRE can be utilized to predict the IRE ablation effect.
Collapse
Affiliation(s)
- Sung-Min Jeon
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, Korea
| | - Enkhzaya Davaa
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
| | - Yixin Jiang
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, Korea
| | - Ratchapol Jenjob
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
| | - Ngoc-Thuan Truong
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
| | - Kyung-Ju Shin
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
| | - Seok Jeong
- Division of Gastroenterology, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Su-Geun Yang
- Department of Biomedical Science, Translational Research center, Inha University Hospital, Incheon, Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, Korea
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
9
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
10
|
Szlasa W, Kiełbik A, Szewczyk A, Novickij V, Tarek M, Łapińska Z, Saczko J, Kulbacka J, Rembiałkowska N. Atorvastatin Modulates the Efficacy of Electroporation and Calcium Electrochemotherapy. Int J Mol Sci 2021; 22:ijms222011245. [PMID: 34681903 PMCID: PMC8539882 DOI: 10.3390/ijms222011245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Electroporation is influenced by the features of the targeted cell membranes, e.g., the cholesterol content and the surface tension of the membrane. The latter is eventually affected by the organization of actin fibers. Atorvastatin is a statin known to influence both the cholesterol content and the organization of actin. This work analyzes the effects of the latter on the efficacy of electroporation of cancer cells. In addition, herein, electroporation was combined with calcium chloride (CaEP) to assess as well the effects of the statin on the efficacy of electrochemotherapy. Cholesterol-rich cell lines MDA-MB231, DU 145, and A375 underwent (1) 48 h preincubation or (2) direct treatment with 50 nM atorvastatin. We studied the impact of the statin on cholesterol and actin fiber organization and analyzed the cells’ membrane permeability. The viability of cells subjected to PEF (pulsed electric field) treatments and CaEP with 5 mM CaCl2 was examined. Finally, to assess the safety of the therapy, we analyzed the N-and E-cadherin localization using confocal laser microscopy. The results of our investigation revealed that depending on the cell line, atorvastatin preincubation decreases the total cholesterol in the steroidogenic cells and induces reorganization of actin nearby the cell membrane. Under low voltage PEFs, actin reorganization is responsible for the increase in the electroporation threshold. However, when subject to high voltage PEF, the lipid composition of the cell membrane becomes the regulatory factor. Namely, preincubation with atorvastatin reduces the cytotoxic effect of low voltage pulses and enhances the cytotoxicity and cellular changes induced by high voltage pulses. The study confirms that the surface tension regulates of membrane permeability under low voltage PEF treatment. Accordingly, to reduce the unfavorable effects of preincubation with atorvastatin, electroporation of steroidogenic cells should be performed at high voltage and combined with a calcium supply.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Aleksander Kiełbik
- Medical University Hospital, 50-556 Wroclaw, Poland;
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (Z.Ł.); (J.S.); (J.K.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (Z.Ł.); (J.S.); (J.K.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (Z.Ł.); (J.S.); (J.K.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (Z.Ł.); (J.S.); (J.K.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (Z.Ł.); (J.S.); (J.K.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (Z.Ł.); (J.S.); (J.K.)
- Correspondence: ; Tel.: +48-717840692
| |
Collapse
|
11
|
Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible "EPR Effect Enhancer" to Improve Cancer Nanomedicine Efficacy. Cancers (Basel) 2021; 13:cancers13174437. [PMID: 34503247 PMCID: PMC8431574 DOI: 10.3390/cancers13174437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Electroporation-based therapies (reversible electroporation, irreversible electroporation, electrochemotherapy) are used for the selective treatment of deep-seated tumors. The combination of the structural modifications of the lipid bilayer of cell membranes, due to the application of electrical pulses in the targeted tissue, with the concomitant systemic (intravenous) administration of drugs can be considered as a sort of bridge between local-regional and systemic treatments. A possible further application of these techniques can be envisaged in their use as enhancers of the so-called “enhanced permeability and retention” effect. The intratumoral uptake of drug-loaded nanocarriers concomitant with the application of electric pulses in the target tumor is a new scenario worthy of attention and can represent a potential new frontier for drug delivery in oncology. Abstract Surgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment. The “enhanced permeability and retention” (EPR) effect is believed to play a fundamental role in the passive uptake of drug-loaded nanocarriers, for example polymeric nanoparticles, in deep-seated tumors. However, criticisms of the EPR effect were recently raised, particularly in advanced human cancers: obstructed blood vessels and suppressed blood flow determine a heterogeneity of the EPR effect, with negative consequences on nanocarrier accumulation, retention, and intratumoral distribution. Therefore, to improve the nanomedicine uptake, there is a strong need for “EPR enhancers”. Electrochemotherapy represents an important tool for the treatment of deep-seated tumors, usually combined with the systemic (intravenous) administration of anticancer drugs, such as bleomycin or cisplatin. A possible new strategy, worthy of investigation, could be the use of this technique as an “EPR enhancer” of a target tumor, combined with the intratumoral administration of drug-loaded nanoparticles. This is a general overview of the rational basis for which EP could be envisaged as an “EPR enhancer” in nanomedicine.
Collapse
|
12
|
Electroporation of suspension cell lines - A proposed assay set for optimizations. Bioelectrochemistry 2021; 142:107891. [PMID: 34425391 DOI: 10.1016/j.bioelechem.2021.107891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
To make in vitro single cell electroporation protocols more comparable between various cancer types and groups, we propose a set of assays to test a range of electric field strengths at the start of any new project to determine the optimal electric field strength for a given cell line. While testing a range of electric field strengths, we kept the other ESOPE parameters constant (8 pulses, 100 µs pulse duration, 1 Hz pulse frequency). Basic assays were employed to measure short-term viability, effectiveness of treatment, metabolic activity, and recovery potential post-treatment to determine the optimal field strength for a particular cell line. Six cancer cell lines were tested, three of human (A549, A375 and Pan02) and three murine (LLC, B16F10 and MIA-PACA2). Our findings demonstrate that the optimal electroporation setting while keeping with all other ESOPE parameters are 800 V/cm for A549 and Pan02, 700 V/cm for A375, Mia-PACA2, and B16F10, and 1300 V/cm for LLC. Having an agreed upon set of assays to determine each cell lines optimal electric field strength should allow an improve translation of findings between cell lines for in vitro work from various groups and potentially improve translation into the clinic.
Collapse
|
13
|
Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep 2021; 11:15835. [PMID: 34349171 PMCID: PMC8339066 DOI: 10.1038/s41598-021-95180-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Electroporation with pulsed electric fields show a potential to be applied as an experimental focal therapy of tumors. Sub-microsecond regime of electric pulses displays unique electrophysical features operative in cells and membranes. Recently, MHz compression of nanosecond pulses electric fields (nsPEFs) bursts proved to enhance the effectiveness of the therapy. High morbidity of prostate cancer (PCa) and risk of overtreatment associated with this malignancy call for new minimal-invasive treatment alternative. Herein we present the in vitro study for developing applications based on this new technology. In this study, we used flow cytometric analysis, cell viability assay, caspase activity analysis, wound healing assay, confocal microscopy study, and immunofluorescence to investigate the biological effect of high-frequency nsPEFs on PCa cells. Our results show that high-frequency nsPEFs induces the permeabilization and cell death of PCa cells. The cytotoxicity is significantly enhanced in MHz compression of pulses and with the presence of extracellular Ca2+. High-frequency nsPEFs trigger changes in PCa cells' cytoskeleton and their mobility. The presented data show a therapeutic potential of high-frequency nsPEFs in a PCa setting. The sub-microsecond regime of pulses can potentially be applied in nanosecond electroporation protocols for PCa treatment.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- grid.4495.c0000 0001 1090 049XMedical University Hospital, Borowska 213, 50-556 Wrocław, Poland ,grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Wojciech Szlasa
- grid.4495.c0000 0001 1090 049XFaculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Vitalij Novickij
- grid.9424.b0000 0004 1937 1776Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland ,grid.8505.80000 0001 1010 5103Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wrocław, Poland
| | - Magdalena Maciejewska
- grid.413454.30000 0001 1958 0162Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jolanta Saczko
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Julita Kulbacka
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
14
|
Szlasa W, Szewczyk A, Drąg-Zalesińska M, Czapor-Irzabek H, Michel O, Kiełbik A, Cierluk K, Zalesińska A, Novickij V, Tarek M, Saczko J, Kulbacka J. Mechanisms of curcumin-based photodynamic therapy and its effects in combination with electroporation: An in vitro and molecular dynamics study. Bioelectrochemistry 2021; 140:107806. [PMID: 33819839 DOI: 10.1016/j.bioelechem.2021.107806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) and electrochemotherapy (ECT) are two methods designed to enhance the anticancer potential of various drugs. Various clinical trials proved the efficacy of both ECT and PDT in melanoma treatment. Curcumin is a natural polyphenolic compound with high anticancer potential against melanoma due to its light absorption properties and toxicity towards cancer cells; however, high reactivity and amphipathic structure of curcumin are limiting its utility. This study aimed to propose the most effective protocol for antimelanoma combination of both therapies (PDT and ECT) in the context of curcumin. The in vitro studies were carried on melanotic melanoma (A375), amelanotic melanoma (C32) and fibroblast (HGF) cell lines. In molecular dynamics studies curcumin presented the single-layer localization in the water-membrane interphase. Further, the mass spectrometry studies exposed that during the PDT treatment curcumin is degraded to vanillin, feruloylmethane, and ferulic acid. Instant ECT with curcumin followed by PDT is the most efficient approach due to its selective genotoxicity towards malignant cells. The metabolic activity of fibroblasts decreased, however, at the same time the fragmentation of DNA did not occur. Additionally, instant PDT with curcumin followed by ECT after 3 h of incubation was a therapy selective towards melanotic melanoma.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department Human Morphology and Embryology, Division Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Hanna Czapor-Irzabek
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Karolina Cierluk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
15
|
Oxidative Effects during Irreversible Electroporation of Melanoma Cells-In Vitro Study. Molecules 2020; 26:molecules26010154. [PMID: 33396317 PMCID: PMC7796376 DOI: 10.3390/molecules26010154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation (IRE) is today used as an alternative to surgery for the excision of cancer lesions. This study aimed to investigate the oxidative and cytotoxic effects the cells undergo during irreversible electroporation using IRE protocols. To do so, we used IRE-inducing pulsed electric fields (PEFs) (eight pulses of 0.1 ms duration and 2-4 kV/cm intensity) and compared their effects to those of PEFs of intensities below the electroporation threshold (eight pulses, 0.1 ms, 0.2-0.4 kV/cm) and the PEFs involving elongated pulses (eight pulses, 10 ms, 0.2-0.4 kV/cm). Next, to follow the morphology of the melanoma cell membranes after treatment with the PEFs, we analyzed the permeability and integrity of their membranes and analyzed the radical oxygen species (ROS) bursts and the membrane lipids' oxidation. Our data showed that IRE-induced high cytotoxic effect is associated both with irreversible cell membrane disruption and ROS-associated oxidation, which is occurrent also in the low electric field range. It was shown that the viability of melanoma cells characterized by similar ROS content and lipid membrane oxidation after PEF treatment depends on the integrity of the membrane system. Namely, when the effects of the PEF on the membrane are reversible, aside from the high level of ROS and membrane oxidation, the cell does not undergo cell death.
Collapse
|
16
|
Łapińska Z, Dębiński M, Szewczyk A, Choromańska A, Kulbacka J, Saczko J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics 2020; 13:E19. [PMID: 33374223 PMCID: PMC7823502 DOI: 10.3390/pharmaceutics13010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Estrogens (Es) play a significant role in the carcinogenesis and progression of ovarian malignancies. Depending on the concentration, Es may have a protective or toxic effect on cells. Moreover, they can directly or indirectly affect the activity of membrane ion channels. In the presented study, we investigated in vitro the effectiveness of the ovarian cancer cells (MDAH-2774) pre-incubation with 17β-estradiol (E2; 10 µM) in the conventional chemotherapy (CT) and electrochemotherapy (ECT) with cisplatin or calcium chloride. We used three different protocols of electroporation including microseconds (µsEP) and nanoseconds (nsEP) range. The cytotoxic effect of the applied treatment was examined by the MTT assay. We used fluorescent staining and holotomographic imaging to observe morphological changes. The immunocytochemical staining evaluated the expression of the caspase-12. The electroporation process's effectiveness was analyzed by a flow cytometer using the Yo-Pro™-1 dye absorption assay. We found that pre-incubation of ovarian cancer cells with 17β-estradiol may effectively enhance the chemo- and electrochemotherapy with cisplatin and calcium chloride. At the same time, estradiol reduced the effectiveness of electroporation, which may indicate that the mechanism of increasing the effectiveness of ECT by E2 is not related to the change of cell membrane permeability.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Michał Dębiński
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| |
Collapse
|
17
|
Kiełbik A, Szlasa W, Michel O, Szewczyk A, Tarek M, Saczko J, Kulbacka J. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Molecules 2020; 25:E5406. [PMID: 33227916 PMCID: PMC7699241 DOI: 10.3390/molecules25225406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells' viability with and without calcium administration. For high-voltage pulses, the cell death's mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells' mobility.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| |
Collapse
|