1
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Ren X, Sun P, Wang Y. PARP inhibitor-related acute renal failure: a real-world study based on the FDA adverse event reporting system database. Expert Opin Drug Saf 2024; 23:1463-1471. [PMID: 38967020 DOI: 10.1080/14740338.2024.2376690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Current clinical trial data on PARP inhibitors (PARPis)-related acute renal failure (ARF) are not entirely representative of real-world situations. Therefore, in this study, the US Food and Drug Administration Adverse Event Reporting System (FAERS) was used to evaluate PARPis-related ARF. RESEARCH DESIGN AND METHODS Data were obtained from 1 January 2015, to 30 September 2023. ARF event reports were analyzed based on four algorithms. The time-to-onset (TTO) and clinical outcomes of PARPis-associated ARF were assessed. RESULTS The total included cases were 2726. Significant signals were observed for olaparib, niraparib, and rucaparib (reporting odds ratio (ROR): 1.62, 95% confidence interval (CI): 1.49-1.78, 1.25, 95% CI: 1.19-1.32 and 1.59, 95% CI: 1.47-1.72 respectively). The median TTO of ARF onset was 57, 36, and 85 days for olaparib, niraparib, and rucaparib, respectively. The proportion of deaths with olaparib (9.88%) was significantly higher than for niraparib (2.52%) and rucaparib (2.94%) (p < 0.005). The proportion of life-threatening adverse events associated with niraparib (4.89%) was significantly higher than for rucaparib (0.98%) (p < 0.005). CONCLUSIONS ARF and PARPi were related, with the exception of talazoparib. More emphasis should be given to PARPis-related ARF due to the high proportion of serious AEs and delayed adverse reactions.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sun
- Department of Cancer Prevention, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Muvvala SB, Prajapati J, Rawal RM, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure significantly impacts placental protein kinase C (PKC) and drug transporters, leading to drug resistance and neonatal opioid withdrawal syndrome. Front Neurosci 2024; 18:1442915. [PMID: 39238930 PMCID: PMC11376091 DOI: 10.3389/fnins.2024.1442915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Background Neonatal Opioid Withdrawal Syndrome (NOWS) is a consequence of in-utero exposure to prenatal maternal opioids, resulting in the manifestation of symptoms like irritability, feeding problems, tremors, and withdrawal signs. Opioid use disorder (OUD) during pregnancy can profoundly impact both mother and fetus, disrupting fetal brain neurotransmission and potentially leading to long-term neurological, behavioral, and vision issues, and increased infant mortality. Drug resistance complicates OUD and NOWS treatment, with protein kinase regulation of drug transporters not fully understood. Methods DNA methylation levels of ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, along with protein kinase C (PKC) genes, were assessed in 96 placental samples using the Illumina Infinium MethylationEPIC array (850K). Samples were collected from three distinct groups: 32 mothers with infants prenatally exposed to opioids who needed pharmacological intervention for NOWS, 32 mothers with prenatally opioid-exposed infants who did not necessitate NOWS treatment, and 32 mothers who were not exposed to opioids during pregnancy. Results We identified 69 significantly differentially methylated SLCs, with 24 hypermethylated and 34 hypomethylated, and 11 exhibiting both types of methylation changes including SLC13A3, SLC15A2, SLC16A11, SLC16A3, SLC19A2, and SLC26A1. We identified methylation changes in 11 ABC drug transporters (ABCA1, ABCA12, ABCA2, ABCB10, ABCB5, ABCC12, ABCC2, ABCC9, ABCE1, ABCC7, ABCB3): 3 showed hypermethylation, 3 hypomethylation, and 5 exhibited both. Additionally, 7 PKC family genes (PRKCQ, PRKAA1, PRKCA, PRKCB, PRKCH, PRKCI, and PRKCZ) showed methylation changes. These genes are associated with 13 pathways involved in NOWS, including ABC transporters, bile secretion, pancreatic secretion, insulin resistance, glutamatergic synapse, and gastric acid secretion. Conclusion We report epigenetic changes in PKC-related regulation of drug transporters, which could improve our understanding of clinical outcomes like drug resistance, pharmacokinetics, drug-drug interactions, and drug toxicity, leading to maternal relapse and severe NOWS. Novel drugs targeting PKC pathways and transporters may improve treatment outcomes for OUD in pregnancy and NOWS.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, United States
| | - Srinivas B Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Peng J, Yi J, Yang G, Huang Z, Cao D. ISTransbase: an online database for inhibitor and substrate of drug transporters. Database (Oxford) 2024; 2024:baae053. [PMID: 38943608 PMCID: PMC11214160 DOI: 10.1093/database/baae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Drug transporters, integral membrane proteins found throughout the human body, play critical roles in physiological and biochemical processes through interactions with ligands, such as substrates and inhibitors. The extensive and disparate data on drug transporters complicate understanding their complex relationships with ligands. To address this challenge, it is essential to gather and summarize information on drug transporters, inhibitors and substrates, and simultaneously develop a comprehensive and user-friendly database. Current online resources often provide fragmented information and have limited coverage of drug transporter substrates and inhibitors, highlighting the need for a specialized, comprehensive and openly accessible database. ISTransbase addresses this gap by amassing a substantial amount of data from literature, government documents and open databases. It includes 16 528 inhibitors and 4465 substrates of 163 drug transporters from 18 different species, resulting in a total of 93 841 inhibitor records and 51 053 substrate records. ISTransbase provides detailed insights into drug transporters and their inhibitors/substrates, encompassing transporter and molecule structure, transporter function and distribution, as well as experimental methods and results from transport or inhibition experiments. Furthermore, ISTransbase offers three search strategies that allow users to retrieve drugs and transporters based on multiple selectable constraints, as well as perform checks for drug-drug interactions. Users can also browse and download data. In summary, ISTransbase (https://istransbase.scbdd.com/) serves as a valuable resource for accurately and efficiently accessing information on drug transporter inhibitors and substrates, aiding researchers in exploring drug transporter mechanisms and assisting clinicians in mitigating adverse drug reactions Database URL: https://istransbase.scbdd.com/.
Collapse
Affiliation(s)
- Jinfu Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
| | - Jiacai Yi
- School of Computer Science, National University of Defense Technology, No.869 Furong Middle Road, Changsha, Hunan 410073, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
- XiangYa School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
| |
Collapse
|
5
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Belhadj Z, Offei S, Jacobson BA, Cambron D, Kratzke RA, Wang Z, Xie J. Cancer sensitizing effect of deazaflavin analogs is associated with increased intracellular drug accumulation. Eur J Pharm Sci 2024; 193:106686. [PMID: 38159687 DOI: 10.1016/j.ejps.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
As part of our efforts geared towards developing mechanism-based cancer sensitizing agents, we have previously synthesized and characterized novel deazaflavin analogs as potent tyrosyl DNA phosphodiesterase 2 (TDP2) inhibitors for combination treatments with topoisomerase II (TOP2) poisons. Interestingly, the sensitizing effect of a few analogs toward TOP2 poison etoposide (ETP) was associated with a significant increase in intracellular drug accumulation, which could be an alternative mechanism to boost the clinical efficacy of ETP in cancer chemotherapies. Hence, we evaluated more deazaflavin TDP2 inhibitors for their impact on drug retention in cancer cells. We found that all but one tested TDP2 inhibitors substantially increased the ETP retention in DT40 cells. Particularly, we identified an exceptionally potent analog, ZW-1226, which at 3 nM increased the intracellular ETP by 13-fold. Significantly, ZW-1226 also stimulated cellular accumulation of two other anticancer drugs, TOP2 poison teniposide and antifolate pemetrexed, and produced an effect more pronounced than those of ABC transporter inhibitors verapamil and elacridar in human leukemic CCRF-CEM cells toward ETP. Lastly, ZW-1226 potentiated the action of ETP in the sensitive human CCRF-CEM cells and a few resistant non-small-cell lung cancer (NSCLC) cells, including H460 and H838 cells. Collectively, the results of this study strongly suggest that deazaflavin analog ZW-1226 could be an effective cancer sensitizing agent which warrants further investigation.
Collapse
Affiliation(s)
- Zakia Belhadj
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Blake A Jacobson
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel Cambron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Robert A Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Li Y, Drabison T, Nepal M, Ho RH, Leblanc AF, Gibson AA, Jin Y, Yang W, Huang KM, Uddin ME, Chen M, DiGiacomo DF, Chen X, Razzaq S, Tonniges JR, McTigue DM, Mims AS, Lustberg MB, Wang Y, Hummon AB, Evans WE, Baker SD, Cavaletti G, Sparreboom A, Hu S. Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy. JCI Insight 2023; 8:e164646. [PMID: 37347545 PMCID: PMC10443802 DOI: 10.1172/jci.insight.164646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN - including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology - without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Richard H. Ho
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alix F. Leblanc
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Xihui Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Sobia Razzaq
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | | | - Dana M. McTigue
- The Belford Center for Spinal Cord Injury & Department of Neuroscience, College of Medicine, and
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, New Haven, Connecticut, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Lavoro A, Falzone L, Tomasello B, Conti GN, Libra M, Candido S. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity. Front Pharmacol 2023; 14:1191262. [PMID: 37397501 PMCID: PMC10308049 DOI: 10.3389/fphar.2023.1191262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The oncogenic transformation is driven by genetic and epigenetic alterations influencing cancer cell fate. These alterations also result in metabolic reprogramming by modulating the expression of membrane Solute Carrier (SLC) transporters involved in biomolecules trafficking. SLCs act as tumor suppressors or promoters influencing cancer methylome, tumor growth, immune-escape, and chemoresistance. Methods: This in silico study aimed to identify the deregulated SLCs in various tumor types compared to normal tissues by analyzing the TCGA Target GTEx dataset. Furthermore, the relationship between SLCs expression and the most relevant tumor features was tackled along with their genetic regulation mediated by DNA methylation. Results: We identified 62 differentially expressed SLCs, including the downregulated SLC25A27 and SLC17A7, as well as the upregulated SLC27A2 and SLC12A8. Notably, SLC4A4 and SLC7A11 expression was associated with favorable and unfavorable outcome, respectively. Moreover, SLC6A14, SLC34A2, and SLC1A2 were linked to tumor immune responsiveness. Interestingly, SLC24A5 and SLC45A2 positively correlated with anti-MEK and anti-RAF sensitivity. The expression of relevant SLCs was correlated with hypo- and hyper-methylation of promoter and body region, showing an established DNA methylation pattern. Noteworthy, the positive association of cg06690548 (SLC7A11) methylation with cancer outcome suggests the independent predictive role of DNA methylation at a single nucleotide resolution. Discussion: Although our in silico overview revealed a wide heterogeneity depending on different SLCs functions and tumor types, we identified key SLCs and pointed out the role of DNA methylation as regulatory mechanism of their expression. Overall, these findings deserve further studies to identify novel cancer biomarkers and promising therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giuseppe Nicolò Conti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Zhao D, Long X, Wang J. Transporter‑mediated drug‑drug interactions involving poly (ADP‑ribose) polymerase inhibitors (Review). Oncol Lett 2023; 25:161. [PMID: 36936025 PMCID: PMC10017913 DOI: 10.3892/ol.2023.13747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Poly (ADP ribose) polymerase (PARP) inhibitors are novel targeted anticancer agents that have been widely used in patients with cancer, particularly in patients with breast-related cancer antigen 1/2 mutations. PARP inhibitors are administered orally and have been associated with improved efficacy and toxicity profiles when compared to conventional chemotherapy agents; this improvement is convenient and results in good compliance among patients with cancer. However, as PARP inhibitors are administered long-term and frequently concomitantly with other therapeutic agents, the risk of drug-drug interactions (DDIs) is increasing. Transporters are widely expressed in numerous types of tissue, where they have crucial roles in the membrane transport of several drugs. An alteration in the activity and expression of transporters may change the drug pharmacokinetics (PKs) and cause DDIs. As the five PARP inhibitors (olaparib, niraparib, rucaparib, talazoparib and veliparib) are transporter substrates, inhibitors or inducers, the potential transporter-mediated DDIs with the use of PARP inhibitors should be taken into consideration when co-administered with other agents. The present review focused on recent findings on transporter-mediated DDIs with PARP inhibitors to provide specific recommendations for reducing the occurrence of undesired DDIs.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
- Correspondence to: Professor Dehua Zhao, Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 190 Jiannan Dong Street, Mianyang, Sichuan 621000, P.R. China,
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
10
|
Woerdenbag HJ, Olinga P, Kok EA, Brugman DAP, van Ark UF, Ramcharan AS, Lebbink PW, Hoogwater FJH, Knapen DG, de Groot DJA, Nijkamp MW. Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15072119. [PMID: 37046779 PMCID: PMC10093248 DOI: 10.3390/cancers15072119] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The application of cannabis products in oncology receives interest, especially from patients. Despite the plethora of research data available, the added value in curative or palliative cancer care and the possible risks involved are insufficiently proven and therefore a matter of debate. We aim to give a recommendation on the position of cannabis products in clinical oncology by assessing recent literature. Various types of cannabis products, characteristics, quality and pharmacology are discussed. Standardisation is essential for reliable and reproducible quality. The oromucosal/sublingual route of administration is preferred over inhalation and drinking tea. Cannabinoids may inhibit efflux transporters and drug-metabolising enzymes, possibly inducing pharmacokinetic interactions with anticancer drugs being substrates for these proteins. This may enhance the cytostatic effect and/or drug-related adverse effects. Reversely, it may enable dose reduction. Similar interactions are likely with drugs used for symptom management treating pain, nausea, vomiting and anorexia. Cannabis products are usually well tolerated and may improve the quality of life of patients with cancer (although not unambiguously proven). The combination with immunotherapy seems undesirable because of the immunosuppressive action of cannabinoids. Further clinical research is warranted to scientifically support (refraining from) using cannabis products in patients with cancer.
Collapse
Affiliation(s)
- Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ellen A. Kok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Donald A. P. Brugman
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ulrike F. van Ark
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Paul W. Lebbink
- Transvaal Apotheek, Kempstraat 113, 2572 GC Den Haag, The Netherlands
| | - Frederik J. H. Hoogwater
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan G. Knapen
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Derk Jan A. de Groot
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Maarten W. Nijkamp
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
11
|
Xu M, Zhu S, Wang Q, Chen L, Li Y, Xu S, Gu Z, Shi G, Ding Z. Pivotal biological processes and proteins for selenite reduction and methylation in Ganoderma lucidum. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130409. [PMID: 36435045 DOI: 10.1016/j.jhazmat.2022.130409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microbial transformations, especially the reduction and methylation of Se oxyanion, have gained significance in recent years as effective detoxification methods. Ganoderma lucidum is a typical Se enrichment resource that can reduce selenite to elemental Se and volatile Se metabolites under high selenite conditions. However, the detailed biological processes and reduction mechanisms are unclear. In this study, G. lucidum reduced selenite to elemental Se and further aggregated it into Se nanoparticles with a diameter of < 200 nm, simultaneously accompanied by the production of pungent, odorous, and volatile methyl-selenium metabolites. Tandem mass tag-based quantitative proteomic analysis revealed thioredoxin 1, thioredoxin reductase (NADPH), glutathione reductase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and cystathionine gamma-lyase as proteins involved in selenite reduction and methylation. Furthermore, the high expression of proteins associated with cell structures that prompted cell lysis may have facilitated Se release. The upregulation of proteins involved in the defense reactions was also detected, reflecting their roles in the self-defense mechanism. This study provides novel insights into the vital role of G. lucidum in mediating Se transformation in the biogeochemical Se cycle and contributes to the application of fungi in Se bioremediation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Elsby R, Atkinson H, Butler P, Riley RJ. Studying the right transporter at the right time: an in vitro strategy for assessing drug-drug interaction risk during drug discovery and development. Expert Opin Drug Metab Toxicol 2022; 18:619-655. [PMID: 36205497 DOI: 10.1080/17425255.2022.2132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transporters are significant in dictating drug pharmacokinetics, thus inhibition of transporter function can alter drug concentrations resulting in drug-drug interactions (DDIs). Because they can impact drug toxicity, transporter DDIs are a regulatory concern for which prediction of clinical effect from in vitro data is critical to understanding risk. AREA COVERED The authors propose in vitro strategies to assist mitigating/removing transporter DDI risk during development by frontloading specific studies, or managing patient risk in the clinic. An overview of clinically relevant drug transporters and observed DDIs are provided, alongside presentation of key considerations/recommendations for in vitro study design evaluating drugs as inhibitors or substrates. Guidance on identifying critical co-medications, clinically relevant disposition pathways and using mechanistic static equations for quantitative prediction of DDI is compiled. EXPERT OPINION The strategies provided will facilitate project teams to study the right transporter at the right time to minimise development risks associated with DDIs. To truly alleviate or manage clinical risk, the industry will benefit from moving away from current qualitative basic static equation approaches to transporter DDI hazard assessment towards adopting the use of mechanistic models to enable quantitative DDI prediction, thereby contextualising risk to ascertain whether a transporter DDI is simply pharmacokinetic or clinically significant requiring intervention.
Collapse
Affiliation(s)
- Robert Elsby
- Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Hayley Atkinson
- Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Philip Butler
- ADME Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Robert J Riley
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Bolger GT, Pucaj K, Minta YO, Sordillo P. Relationship Between the In Vitro Efficacy, Pharmacokinetics and In Vivo Efficacy of Curcumin. Biochem Pharmacol 2022; 205:115251. [PMID: 36130650 DOI: 10.1016/j.bcp.2022.115251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Considerable interest continues to be focused on the development of curcumin either as an effective stand-alone therapeutic or as an adjunct therapy to established therapies. Curcumin (1, 7-bis (4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5- dione; also called diferuloylmethane) is a polyphenolic phytochemical extracted from the root of curcuma longa, commonly called turmeric. Despite evidence from in vitro (cell culture) and preclinical studies in animals, clinical studies have not provided strong evidence for a therapeutic effect of curcumin. The relevance of curcumin as a drug has been questioned based on its classification as a compound with pan assay interference and invalid metabolic panaceas properties bringing into question the relevance of the therapeutic targets identified for curcumin. To some extent this is due to the lack of a complete understanding of the link between the in vitro (cell culture activity), pharmacokinetics and in vivo activity of curcumin. In this review and using NF-κB as a cellular target for curcumin, we have investigated the relationship between the potency of curcumin as an inhibitor of NF-κB in cell culture, the pharmacokinetics of curcumin and curcumin's anticancer and anti-inflammatory effects in preclinical models of cancer and inflammation. Plausible explanations and rationale are provided to link these activities together and suggest that both curcumin and its more soluble Phase II metabolite curcumin glucuronide may play a key role in the treatment effects of curcumin in vivo mediated at NF-κB.
Collapse
Affiliation(s)
| | | | - Yvonne O Minta
- Nucro-Technics, Department of Toxicology, Toronto, ON, Canada
| | | |
Collapse
|
14
|
Anabtawi N, Drabison T, Hu S, Sparreboom A, Talebi Z. The role of OATP1B1 and OATP1B3 transporter polymorphisms in drug disposition and response to anticancer drugs: a review of the recent literature. Expert Opin Drug Metab Toxicol 2022; 18:459-468. [PMID: 35983889 DOI: 10.1080/17425255.2022.2113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Members of the solute carrier family of organic anion transporting polypeptides are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. In particular, the polymorphic transporters OATP1B1 and OATP1B3 are highly expressed in the liver and have been identified as critical regulators of hepatic eliminaton. As these transporters are also expressed in cancer cells, the function alteration of these proteins have important consequences for an individual's susceptibility to certain drug-induced side effects, drug-drug interactions, and treatment efficacy. AREAS COVERED In this mini-review, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of genetic variants in OATP1B1 and OATP1B3 to the transport of anticancer drugs, the role of these carriers in regulation of their disposition and toxicity profiles, and recent advances in attempts to integrate information on transport function in patients to derive individualized treatment strategies. EXPERT OPINION Based on currently available data, it appears imperative that different aspects of disease, physiology, and drugs of relevance should be evaluated along with an individual's genetic signature, and that tools such as biomarker levels can be implemented to achieve the most reliable prediction of clinically relevant pharmacodynamic endpoints.
Collapse
Affiliation(s)
- Nadeen Anabtawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Yi C, Yu AM. MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Front Mol Biosci 2022; 9:893846. [PMID: 35755805 PMCID: PMC9220936 DOI: 10.3389/fmolb.2022.893846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Altered metabolism, such as aerobic glycolysis or the Warburg effect, has been recognized as characteristics of tumor cells for almost a century. Since then, there is accumulating evidence to demonstrate the metabolic reprogramming of tumor cells, addiction to excessive uptake and metabolism of key nutrients, to support rapid proliferation and invasion under tumor microenvironment. The solute carrier (SLC) superfamily transporters are responsible for influx or efflux of a wide variety of xenobiotic and metabolites that are needed for the cells to function, as well as some medications. To meet the increased demand for nutrients and energy, SLC transporters are frequently dysregulated in cancer cells. The SLCs responsible for the transport of key nutrients for cancer metabolism and energetics, such as glucose and amino acids, are of particular interest for their roles in tumor progression and metastasis. Meanwhile, rewired metabolism is accompanied by the dysregulation of microRNAs (miRNAs or miRs) that are small, noncoding RNAs governing posttranscriptional gene regulation. Studies have shown that many miRNAs directly regulate the expression of specific SLC transporters in normal or diseased cells. Changes of SLC transporter expression and function can subsequently alter the uptake of nutrients or therapeutics. Given the important role for miRNAs in regulating disease progression, there is growing interest in developing miRNA-based therapies, beyond serving as potential diagnostic or prognostic biomarkers. In this article, we discuss how miRNAs regulate the expression of SLC transporters and highlight potential influence on the supply of essential nutrients for cell metabolism and drug exposure toward desired efficacy.
Collapse
Affiliation(s)
- Colleen Yi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
16
|
Izutsu M, Domoto T, Kamoshida S, Ohsaki H, Matsuoka H, Umeki Y, Shiogama K, Hirayama M, Suda K, Uyama I. Expression status of p53 and organic cation transporter 1 is correlated with poor response to preoperative chemotherapy in esophageal squamous cell carcinoma. World J Surg Oncol 2022; 20:105. [PMID: 35365176 PMCID: PMC8976339 DOI: 10.1186/s12957-022-02571-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly malignant neoplasm. DNA-damaging drugs, such as cisplatin (CDDP) and 5-fluorouracil (5-FU), are most frequently used in preoperative chemotherapy for ESCC. However, the response to preoperative chemotherapy varies among patients. p53, encoded by TP53, participates in apoptotic pathways following chemotherapy with DNA-damaging drugs, and mutation of TP53 contributes to chemoresistance. Organic cation transporter 1 (OCT1) participates in the uptake of CDDP, and its reduced expression is associated with CDDP resistance. The aim of this study was to evaluate the predictive impact of the expression status of p53 and OCT1 in response to preoperative chemotherapy in ESCC. Methods We retrospectively assessed 66 ESCC patients who received preoperative chemotherapy with CDDP/5-FU (CF) or docetaxel/CDDP/5-FU (DCF). p53 and OCT1 expression in pretreatment biopsy specimens was immunohistochemically determined and correlated with histological response to preoperative chemotherapy. Results p53 with wild-type (p53WT-ex) and mutant-type (p53MT-ex) expression patterns was identified in 40.9% and 59.1% of patients, respectively. High expression of OCT1 (OCT1High) was detected in 45.5%, and the remaining 54.5% showed low expression (OCT1Low). In a univariate analysis of the entire cohort, p53MT-ex was significantly correlated with poor response (P = 0.026), whereas OCT1Low showed marginal significance (P = 0.091). In a combined analysis, tumors with either p53MT-ex or OCT1Low showed a significant correlation with poor response compared with tumors with both p53WT-ex and OCT1High (P < 0.001). The sensitivity, specificity, and accuracy of combined p53/OCT1 were 93.9%, 47.1%, and 81.8%, respectively. Multivariate analysis identified p53 (P = 0.017), OCT1 (P = 0.032), and combined p53/OCT1 (P < 0.001) as independent predictors of histological response. When samples were stratified according to chemotherapy regimen in the univariate analysis, combined p53/OCT1 was the only significant factor for poor response in the CF (P = 0.011) and DCF (P = 0.021) groups, whereas p53 showed no statistical significance. Conclusions Our results suggest that either p53MT-ex or OCT1Low expression in pretreatment biopsy specimens may be a potential predictor of poor response to preoperative chemotherapy with the CF-based regimens in ESCC, although the specificity needs to be improved.
Collapse
Affiliation(s)
- Masahiro Izutsu
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Takanori Domoto
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Hiroyuki Ohsaki
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Hiroshi Matsuoka
- Department of Surgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Umeki
- Department of Surgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuya Shiogama
- Department of Morphology and Cell Function, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masaya Hirayama
- Department of Morphology and Cell Function, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Koichi Suda
- Department of Surgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ichiro Uyama
- Department of Surgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
17
|
Substrate-Dependent Trans-Stimulation of Organic Cation Transporter 2 Activity. Int J Mol Sci 2021; 22:ijms222312926. [PMID: 34884730 PMCID: PMC8657912 DOI: 10.3390/ijms222312926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
The search of substrates for solute carriers (SLCs) constitutes a major issue, owing notably to the role played by some SLCs, such as the renal electrogenic organic cation transporter (OCT) 2 (SLC22A2), in pharmacokinetics, drug-drug interactions and drug toxicity. For this purpose, substrates have been proposed to be identified by their cis-inhibition and trans-stimulation properties towards transporter activity. To get insights on the sensitivity of this approach for identifying SLC substrates, 15 various exogenous and endogenous OCT2 substrates were analysed in the present study, using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DiASP) as a fluorescent OCT2 tracer substrate. All OCT2 substrates cis-inhibited DiASP uptake in OCT2-overexpressing HEK293 cells, with IC50 values ranging from 0.24 µM (for ipratropium) to 2.39 mM (for dopamine). By contrast, only 4/15 substrates, i.e., acetylcholine, agmatine, choline and metformin, trans-stimulated DiASP uptake, with a full suppression of the trans-stimulating effect of metformin by the reference OCT2 inhibitor amitriptyline. An analysis of molecular descriptors next indicated that trans-stimulating OCT2 substrates exhibit lower molecular weight, volume, polarizability and lipophilicity than non-trans-stimulating counterparts. Overall, these data indicated a rather low sensitivity (26.7%) of the trans-stimulation assay for identifying OCT2 substrates, and caution with respect to the use of such assay may therefore be considered.
Collapse
|
18
|
Atwa SM, Odenthal M, El Tayebi HM. Genetic Heterogeneity, Therapeutic Hurdle Confronting Sorafenib and Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:4343. [PMID: 34503153 PMCID: PMC8430643 DOI: 10.3390/cancers13174343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the latest advances in hepatocellular carcinoma (HCC) screening and treatment modalities, HCC is still representing a global burden. Most HCC patients present at later stages to an extent that conventional curative options are ineffective. Hence, systemic therapy represented by the tyrosine kinase inhibitor, sorafenib, in the first-line setting is the main treatment modality for advanced-stage HCC. However, in the two groundbreaking phase III clinical trials, the SHARP and Asia-Pacific trials, sorafenib has demonstrated a modest prolongation of overall survival in almost 30% of HCC patients. As HCC develops in an immune-rich milieu, particular attention has been placed on immune checkpoint inhibitors (ICIs) as a novel therapeutic modality for HCC. Yet, HCC therapy is hampered by the resistance to chemotherapeutic drugs and the subsequent tumor recurrence. HCC is characterized by substantial genomic heterogeneity that has an impact on cellular response to the applied therapy. And hence, this review aims at giving an insight into the therapeutic impact and the different mechanisms of resistance to sorafenib and ICIs as well as, discussing the genomic heterogeneity associated with such mechanisms.
Collapse
Affiliation(s)
- Sara M. Atwa
- Pharmaceutical Biology Department, German University in Cairo, Cairo 11865, Egypt;
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Margarete Odenthal
- Institute for Pathology, University Hospital Cologne, 50924 Cologne, Germany;
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
19
|
Huang F, Wang H, Xiao J, Shao C, Zhou Y, Cong W, Gong M, Sun J, Shan L, Hao Z, Wang L, Ding S, Yu Z, Liu J, Jia H. SLC34A2 Up-regulation And SLC4A4 Down-regulation Correlates With Invasion, Metastasis, And The MAPK Signaling Pathway In Papillary Thyroid Carcinomas. J Cancer 2021; 12:5439-5453. [PMID: 34405007 PMCID: PMC8364650 DOI: 10.7150/jca.56730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the fastest growing endocrine system malignant carcinomas detected over the past decade. Unfortunately, more than 25% of PTC patients are characterized by their aggressiveness and subsequent metastasis; these characteristics usually indicate poor prognosis. Recently, increasing evidence has suggested that solute carrier (SLC) transporters may play a pivotal role in the initiation, invasion and metastasis of human carcinoma. However, the expression and clinicopathological significance of SLC transporters in patients with PTC remains undetermined. In this study, we aimed to elucidate how the differential expression of SLC transporters affects clinicopathological features, as well as determine the possible regulatory signaling pathways involved. Three differentially expressed SLC transporters were screened from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database using a bioinformatics approach. The results indicated that high SLC34A2 and low SLC4A4 protein expression exhibited a higher percentage of capsular invasion and extra-thyroid metastasis in patients. Logistic regression analysis showed that high SLC34A2 expression in tumors was identified as an independent risk factor for capsular invasion [odds ratio (OR)=11.400, 95% confidence interval (CI)=1.733-74.995, P=0.011] and extra-thyroid metastasis (OR=4.920, 95%CI=1.234-19.623, P=0.024), while low SLC4A4 expression in tumors was only identified as independent risk factors for extra-thyroid metastasis (OR=8.568, 95%CI =1.186-61.906, P=0.033). Specifically, for tumors with capsular invasion and extra-thyroid metastasis, the protein expression staining of SLC34A2 was markedly enhanced in the cytoplasm of follicular epithelial cells, contrastingly, SLC4A4 expression was notably weakened in the cytomembrane and nucleus. Intriguingly, both high SLC34A2 and low SLC4A4 protein expression were significantly linked to a high urinary iodine concentration in patients with PTC. Mechanistically, compared with adjacent normal thyroids, p-ERK was significantly up-regulated by 17.8% in the invading tumor; p-ERK, p-JNK, and p-P38 were markedly up-regulated by 29.2%, 67.1%, and 38.9% for metastatic tumors, respectively. Importantly, SLC4A4 negatively correlated with p-JNK (r=-0.696, P= 0.004) and p-P38 (r=-0.534, P=0.049). In conclusion, we suggest that up-regulated SLC34A2 (mainly in the cytoplasm) and down-regulated SLC4A4 (mainly in the cytomembrane and nucleus), which might be attributed to excess iodine intake, were closely linked to extra-thyroid metastasis in PTCs. Furthermore, this effect of SLC4A4 may be through the activation of JNK/P38 MAPK signaling pathway. Future in vivo and in vitro gain- or loss-of-function experiments are needed to verify these findings and further elucidate the deeper molecular mechanisms.
Collapse
Affiliation(s)
- Fengyan Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haitao Wang
- Department of pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Xiao
- Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunchun Shao
- Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yong Zhou
- Medical laboratory center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Cong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Maosong Gong
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jingfu Sun
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqun Shan
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhanyu Hao
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lihua Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shouluan Ding
- Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianing Liu
- Department of Thyroid Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongying Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Evidence based medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
20
|
Schäfer AM, Meyer zu Schwabedissen HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics 2021; 13:pharmaceutics13060834. [PMID: 34199715 PMCID: PMC8226904 DOI: 10.3390/pharmaceutics13060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is an important pharmacological target, but it is very effectively protected by the blood–brain barrier (BBB), thereby impairing the efficacy of many potential active compounds as they are unable to cross this barrier. Among others, membranous efflux transporters like P-Glycoprotein are involved in the integrity of this barrier. In addition to these, however, uptake transporters have also been found to selectively uptake certain compounds into the CNS. These transporters are localized in the BBB as well as in neurons or in the choroid plexus. Among them, from a pharmacological point of view, representatives of the organic anion transporting polypeptides (OATPs) are of particular interest, as they mediate the cellular entry of a variety of different pharmaceutical compounds. Thus, OATPs in the BBB potentially offer the possibility of CNS targeting approaches. For these purposes, a profound understanding of the expression and localization of these transporters is crucial. This review therefore summarizes the current state of knowledge of the expression and localization of OATPs in the CNS, gives an overview of their possible physiological role, and outlines their possible pharmacological relevance using selected examples.
Collapse
Affiliation(s)
- Anima M. Schäfer
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Henriette E. Meyer zu Schwabedissen
- Biopharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (A.M.S.); (H.E.M.z.S.)
| | - Markus Grube
- Center of Drug Absorption and Transport (C_DAT), Department of Pharmacology, University Medicine of Greifswald, 17489 Greifswald, Germany
- Correspondence: ; Tel./Fax: +49-3834-865636
| |
Collapse
|
21
|
Zhang Y, Zhang R, Liang F, Zhang L, Liang X. Identification of Metabolism-Associated Prostate Cancer Subtypes and Construction of a Prognostic Risk Model. Front Oncol 2020; 10:598801. [PMID: 33324566 PMCID: PMC7726320 DOI: 10.3389/fonc.2020.598801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Despite being the second most common tumor in men worldwide, the tumor metabolism-associated mechanisms of prostate cancer (PCa) remain unclear. Herein, this study aimed to investigate the metabolism-associated characteristics of PCa and to develop a metabolism-associated prognostic risk model for patients with PCa. Methods The activity levels of PCa metabolic pathways were determined using mRNA expression profiling of The Cancer Genome Atlas Prostate Adenocarcinoma cohort via single-sample gene set enrichment analysis (ssGSEA). The analyzed samples were divided into three subtypes based on the partitioning around medication algorithm. Tumor characteristics of the subsets were then investigated using t-distributed stochastic neighbor embedding (t-SNE) analysis, differential analysis, Kaplan–Meier survival analysis, and GSEA. Finally, we developed and validated a metabolism-associated prognostic risk model using weighted gene co-expression network analysis, univariate Cox analysis, least absolute shrinkage and selection operator, and multivariate Cox analysis. Other cohorts (GSE54460, GSE70768, genotype-tissue expression, and International Cancer Genome Consortium) were utilized for external validation. Drug sensibility analysis was performed on Genomics of Drug Sensitivity in Cancer and GSE78220 datasets. In total, 1,039 samples and six cell lines were concluded in our work. Results Three metabolism-associated clusters with significantly different characteristics in disease-free survival (DFS), clinical stage, stemness index, tumor microenvironment including stromal and immune cells, DNA mutation (TP53 and SPOP), copy number variation, and microsatellite instability were identified in PCa. Eighty-four of the metabolism-associated module genes were narrowed to a six-gene signature associated with DFS, CACNG4, SLC2A4, EPHX2, CA14, NUDT7, and ADH5 (p <0.05). A risk model was developed, and external validation revealed the strong robustness our risk model possessed in diagnosis and prognosis as well as the association with the cancer feature of drug sensitivity. Conclusions The identified metabolism-associated subtypes reflected the pathogenesis, essential features, and heterogeneity of PCa tumors. Our metabolism-associated risk model may provide clinicians with predictive values for diagnosis, prognosis, and treatment guidance in patients with PCa.
Collapse
Affiliation(s)
- Yanlong Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruiqiao Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Fangzhi Liang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xuezhi Liang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|