1
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
2
|
McSwain LF, Pillsbury CE, Haji-Seyed-Javadi R, Rath SK, Chen V, Huang T, Shahab SW, Kunhiraman H, Ross J, Price GA, Dey A, Hambardzumyan D, MacDonald T, Yu DS, Porter CC, Kenney AM. YB1 modulates the DNA damage response in medulloblastoma. Sci Rep 2023; 13:8087. [PMID: 37208357 DOI: 10.1038/s41598-023-35220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Y-box binding protein 1 (YBX1 or YB1) is a therapeutically relevant oncoprotein capable of RNA and DNA binding and mediating protein-protein interactions that drive proliferation, stemness, and resistance to platinum-based therapies. Given our previously published findings, the potential for YB1-driven cisplatin resistance in medulloblastoma (MB), and the limited studies exploring YB1-DNA repair protein interactions, we chose to investigate the role of YB1 in mediating radiation resistance in MB. MB, the most common pediatric malignant brain tumor, is treated with surgical resection, cranio-spinal radiation, and platinum-based chemotherapy, and could potentially benefit from YB1 inhibition. The role of YB1 in the response of MB to ionizing radiation (IR) has not yet been studied but remains relevant for determining potential anti-tumor synergy of YB1 inhibition with standard radiation therapy. We have previously shown that YB1 drives proliferation of cerebellar granular neural precursor cells (CGNPs) and murine Sonic Hedgehog (SHH) group MB cells. While others have demonstrated a link between YB1 and homologous recombination protein binding, functional and therapeutic implications remain unclear, particularly following IR-induced damage. Here we show that depleting YB1 in both SHH and Group 3 MB results not only in reduced proliferation but also synergizes with radiation due to differential response dynamics. YB1 silencing through shRNA followed by IR drives a predominantly NHEJ-dependent repair mechanism, leading to faster γH2AX resolution, premature cell cycle re-entry, checkpoint bypass, reduced proliferation, and increased senescence. These findings show that depleting YB1 in combination with radiation sensitizes SHH and Group 3 MB cells to radiation.
Collapse
Affiliation(s)
- Leon F McSwain
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Claire E Pillsbury
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | | | | | - Victor Chen
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Tiffany Huang
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Shubin W Shahab
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Haritha Kunhiraman
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - James Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gabrielle A Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abhinav Dey
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Dolores Hambardzumyan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tobey MacDonald
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - David S Yu
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Anna M Kenney
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Zhong X, Wang T, Zhang W, Wang M, Xie Y, Dai L, He X, Madhusudhan T, Zeng H, Wang H. ERK/RSK-mediated phosphorylation of Y-box binding protein-1 aggravates diabetic cardiomyopathy by suppressing its interaction with deubiquitinase OTUB1. J Biol Chem 2022; 298:101989. [PMID: 35490780 PMCID: PMC9163515 DOI: 10.1016/j.jbc.2022.101989] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes, but its underlying mechanisms still remain unclear. The multifunctional protein Y-box binding protein-1 (YB-1) plays an important role in cardiac pathogenesis by regulating cardiac apoptosis, cardiac fibrosis, and pathological remodeling, whereas its role in chronic DCM requires further investigation. Here, we report that the phosphorylation of YB-1 at serine102 (S102) was markedly elevated in streptozotocin-induced diabetic mouse hearts and in high glucose-treated cardiomyocytes, whereas total YB-1 protein levels were significantly reduced. Coimmunoprecipitation experiments showed that YB-1 interacts with the deubiquitinase otubain-1, but hyperglycemia-induced phosphorylation of YB-1 at S102 diminished this homeostatic interaction, resulting in ubiquitination and degradation of YB-1. Mechanistically, the high glucose-induced phosphorylation of YB-1 at S102 is dependent on the upstream extracellular signal-regulated kinase (ERK)/Ras/mitogen-activated protein kinase (p90 ribosomal S6 kinase [RSK]) signaling pathway. Accordingly, pharmacological inhibition of the ERK pathway using the upstream kinase inhibitor U0126 ameliorated features of DCM compared with vehicle-treated diabetic mice. We demonstrate that ERK inhibition with U0126 also suppressed the phosphorylation of the downstream RSK and YB-1 (S102), which stabilized the interaction between YB-1 and otubain-1 and thereby preserved YB-1 protein expression in diabetic hearts. Taken together, we propose that targeting the ERK/RSK/YB-1 pathway could be a potential therapeutic approach for treating DCM.
Collapse
Affiliation(s)
- Xiaodan Zhong
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Tao Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, PR China
| | - Wenjun Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Mengwen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Yang Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Lei Dai
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Xingwei He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Hesong Zeng
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China.
| | - Hongjie Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China.
| |
Collapse
|
6
|
Diosa-Toro M, Kennedy DR, Chuo V, Popov VL, Pompon J, Garcia-Blanco MA. Y-Box Binding Protein 1 Interacts with Dengue Virus Nucleocapsid and Mediates Viral Assembly. mBio 2022; 13:e0019622. [PMID: 35189699 PMCID: PMC8903895 DOI: 10.1128/mbio.00196-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Infection with dengue virus (DENV) induces vast rearrangements of the endoplasmic reticulum, which allows the compartmentalization of viral RNA replication and particle assembly. Both processes occur in concert with viral and cellular proteins. Prior studies from our group suggest that the host RNA-binding protein (RBP) Y-box binding protein 1 (YBX1) is required for a late step in the DENV replication cycle. Here we report that YBX1 interacts with the viral nucleocapsid, distributes to DENV assembly sites and is required for efficient assembly of intracellular infectious virions and their secretion. Genetic ablation of YBX1 decreased the spatial proximity between capsid and envelope, increased the susceptibility of envelope to proteinase K mediated degradation, resulted in the formation of rough empty-looking particles, and decreased the secretion of viral particles. We propose a model wherein YBX1 enables the interaction between the viral nucleocapsid with the structural protein E, which is required for proper assembly of intracellular virus particles and their secretion. IMPORTANCE The global incidence of dengue virus (DENV) infections has steadily increased over the past decades representing an enormous challenge for public health. During infection, DENV viral RNA interacts with numerous host RNA binding proteins (RBPs) that aid viral replication and thus constitute potential molecular targets to curb infection. We recently reported that Y-box-binding protein 1 (YBX1) interacts with DENV RNA and is required at a late step of the replication cycle. Here we describe the molecular mechanism by which YBX1 mediates DENV infection. We show that YBX1 interacts with the viral nucleocapsid, distributes to DENV assembly sites and is required for efficient assembly of intracellular infectious virions. These results provide important insights into DENV assembly, revealing novel functions of host RBPs during viral infection and opening new avenues for antiviral intervention.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Debbie R. Kennedy
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Mariano A. Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
McDougall L, Kueh JTB, Ward J, Tyndall JDA, Woolley AG, Mehta S, Stayner C, Larsen DS, Eccles MR. Chemical Synthesis of the PAX Protein Inhibitor EG1 and Its Ability to Slow the Growth of Human Colorectal Carcinoma Cells. Front Oncol 2021; 11:709540. [PMID: 34722257 PMCID: PMC8549845 DOI: 10.3389/fonc.2021.709540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer is primarily a disease of the developed world. The incidence rate has continued to increase over time, reflecting both demographic and lifestyle changes, which have resulted in genomic and epigenomic modifications. Many of the epigenetic modifications occur in genes known to be closely associated with embryonic development and cellular growth. In particular, the paired box (PAX) transcription factors are crucial for correct tissue development during embryogenesis due to their role in regulating genes involved in proliferation and cellular maintenance. In a number of cancers, including colorectal cancer, the PAX transcription factors are aberrantly expressed, driving proliferation and thus increased tumour growth. Here we have synthesized and used a small molecule PAX inhibitor, EG1, to inhibit PAX transcription factors in HCT116 colorectal cell cultures which resulted in reduced proliferation after three days of treatment. These results highlight PAX transcription factors as playing an important role in the proliferation of HCT116 colorectal cancer cells, suggesting there may be a potential therapeutic role for inhibition of PAX in limiting cancer cell growth.
Collapse
Affiliation(s)
- Lorissa McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Jake Ward
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
8
|
Yang JW, Sun C, Jin QY, Qiao XH, Guo XL. Potential therapeutic strategies for targeting Y-box-binding protein 1 in cancers. Curr Cancer Drug Targets 2021; 21:897-906. [PMID: 34465278 DOI: 10.2174/1568009621666210831125001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
As one of the most conservative proteins in evolution, Y-box-binding protein 1 (YB-1) has long been considered as a potential cancer target. YB-1 is usually poorly expressed in normal cells and exerts cellular physiological functions such as DNA repair, pre-mRNA splicing and mRNA stabilizing. In cancer cells, the expression of YB-1 is up-regulated and undergoes nuclear translocation and contributes to tumorigenesis, angiogenesis, tumor proliferation, invasion, migration and chemotherapy drug resistance. During the past decades, a variety of pharmacological tools such as siRNA, shRNA, microRNA, circular RNA, lncRNA and various compounds have been developed to target YB-1 for cancer therapy. In this review, we describe the physiological characteristics of YB-1 in detail, highlight the role of YB-1 in tumors and summarize the current therapeutic methods for targeting YB-1 in cancer.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Qiu-Yang Jin
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xing-Hui Qiao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| |
Collapse
|
9
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|