1
|
Zhang W, Ding Y, He H, Chen K, Zeng Q, Cao X, Xiang Y, Zeng H. Prospects and challenges of ovarian cancer organoids in chemotherapy research (Review). Oncol Lett 2025; 29:198. [PMID: 40052067 PMCID: PMC11883337 DOI: 10.3892/ol.2025.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC), a prevalent and severe malignancy of the female reproductive system, often presents with mild early symptoms and is therefore diagnosed at advanced stages, leading to a poor prognosis. Current chemotherapeutic treatment relies on platinum-based combinational therapy and there have been no recent breakthroughs in the development of new drugs. Advances in organoid technology offer a novel approach to study OC by simulating tumors and their microenvironment, enhancing drug screening effectiveness and accuracy, and providing a foundation for personalized therapy. In recent years, researchers have made notable advancements, successfully developing a diverse array of OC organoid models, with biobanks serving a pivotal role in enhancing their success rates and overall efficiency. The present review summarizes the advantages of organoids over other models, such as two-dimensional cell models, three-dimensional spheres and patient-derived xenograft models, as well as the application of organoids. In particular, the current review emphasizes the application of organoids in chemotherapeutic drug screening, testing and personalized treatment. The limitations and prospects of organoid technology are also discussed. The present study aimed to reveal the unique advantages of OC organoids in chemotherapeutic applications, so as to provide insights into screening and testing new drugs for OC.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuqing Ding
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hui He
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Keming Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Qingsong Zeng
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaoming Cao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
2
|
Wang YW, Allen I, Funingana G, Tischkowitz M, Joko-Fru YW. Predictive biomarkers for the efficacy of PARP inhibitors in ovarian cancer: an updated systematic review. BJC REPORTS 2025; 3:14. [PMID: 40069561 PMCID: PMC11897386 DOI: 10.1038/s44276-025-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 01/09/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND PARP inhibitors are effective in treating ovarian cancer, especially for BRCA1/2 pathogenic variant carriers and those with HRD (homologous recombination deficiency). Concerns over toxicity and costs have led to the search for predictive biomarkers. We present an updated systematic review, expanding on a previous ESMO review on PARP inhibitor biomarkers. METHODS Following ESMO's 2020 review protocol, we extended our search to March 31, 2023, including PubMed and clinical trial data. We also reviewed the reference lists of review articles. We conducted a meta-analysis using a random-effects model to evaluate hazard ratios and assess the predictive potential of biomarkers and the effectiveness of PARP inhibitors in survival. RESULTS We found 375 articles, 103 of which were included after screening (62 primary research, 41 reviews). HRD remained the primary biomarker (95%), particularly BRCA1/2 variants (77%). In the non-HRD category, six articles (10%) introduced innovative biomarkers, including ADP-ribosylation, HOXA9 promoter methylation, patient-derived organoids, KELIM, and SLFN11. DISCUSSION Prospective assessment of real-time homologous recombination repair via nuclear RAD51 levels shows promise but needs validation. Emerging biomarkers like ADP-ribosylation, HOXA9 promoter methylation, patient-derived organoids, KELIM, and SLFN11 offer potential but require large-scale validation.
Collapse
Affiliation(s)
- Ying-Wen Wang
- Division of Gynaecologic Oncology, Department of Obstetrics and Gynaecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Isaac Allen
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Yvonne Walburga Joko-Fru
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Witz A, Dardare J, Betz M, Michel C, Husson M, Gilson P, Merlin JL, Harlé A. Homologous recombination deficiency (HRD) testing landscape: clinical applications and technical validation for routine diagnostics. Biomark Res 2025; 13:31. [PMID: 39985088 PMCID: PMC11846297 DOI: 10.1186/s40364-025-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
The use of poly(ADP-ribose) polymerase inhibitors (PARPi) revolutionized the treatment of BRCA-mutated cancers. Identifying patients exhibiting homologous recombination deficiency (HRD) has been proved useful to predict PARPi efficacy. However, obtaining HRD status remains an arduous task due to its evolution over the time. This causes HRD status to become obsolete when obtained from genomic scars, rendering PARPi ineffective for these patients. Only two HRD tests are currently FDA-approved, both based on genomic scars detection and BRCA mutations testing. Nevertheless, new technologies for obtaining an increasingly reliable HRD status continue to evolve. Application of these tests in clinical practice is an additional challenge due to the need for lower costs and shorter time to results delay.In this review, we describe the currently available methods for HRD testing, including the methodologies and corresponding tests for assessing HRD status, and discuss the clinical routine application of these tests and their technical validation.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cassandra Michel
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Marie Husson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
4
|
Talens F, Teixeira V, Kok Y, Chen M, Rosenberg E, Debipersad R, Duiker E, van den Tempel N, Janatova M, Zemankova P, Nederlof P, Wisman G, Kleibl Z, de Jong S, van Vugt MTM. RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models. NAR Cancer 2024; 6:zcae044. [PMID: 39611179 PMCID: PMC11604054 DOI: 10.1093/narcan/zcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently used to treat BRCA1/2 mutant cancers. Although PARPi sensitivity has been attributed to homologous recombination (HR) defects, other roles of HR factors have also been linked to response to PARPi, including replication fork protection. In this study, we investigated PARPi sensitivity in ovarian cancer patient-derived xenograft (PDX) models in relation to HR proficiency and replication fork protection. Analysis of BRCA1/2 status showed that in our cohort of 31 ovarian cancer PDX models 22.6% harbored a BRCA1/2 alteration (7/31), and 48.3% (15/31) were genomically unstable as measured by copy number alteration analysis. In vivo, PARPi olaparib response was measured in 15 selected PDX models. Functional assessment of HR using ex vivo irradiation-induced RAD51 foci formation identified all olaparib-sensitive PDX models, including four models without BRCA1/2 alterations. In contrast, replication fork protection or replication speed in ex vivo tumor tissue did not correlate with olaparib response. Targeted panel sequencing in olaparib-sensitive models lacking BRCA1/2 alterations revealed a MUS81 variant as a possible mechanism underlying PARPi sensitivity. Combined, we show that ex vivo RAD51 analysis effectively predicts in vivo olaparib response and revealed a subset of PARPi-sensitive, HR-deficient ovarian cancer PDX models, lacking a BRCA1/2 alteration.
Collapse
Affiliation(s)
- Francien Talens
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Vivian Oliviera Nunes Teixeira
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Efraim H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Rashmie Debipersad
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Evelien W Duiker
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 128 00 Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 128 00 Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 00 Prague, Czech Republic
| | - Petra M Nederlof
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - G Bea A Wisman
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 128 00 Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 00 Prague, Czech Republic
| | - Steven de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| |
Collapse
|
5
|
Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol 2024; 14:1405361. [PMID: 39220639 PMCID: PMC11361952 DOI: 10.3389/fonc.2024.1405361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
6
|
Ratnaparkhi R, Javellana M, Jewell A, Spoozak L. Evaluation of Homologous Recombination Deficiency in Ovarian Cancer. Curr Treat Options Oncol 2024; 25:237-260. [PMID: 38300479 DOI: 10.1007/s11864-024-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
OPINION STATEMENT Homologous recombination deficiency (HRD) is an important biomarker guiding selection of ovarian cancer patients who will derive the most benefit from poly(ADP-ribose) polymerase inhibitors (PARPi). HRD prevents cells from repairing double-stranded DNA damage with high fidelity, PARPis limit single-stranded repair, and together these deficits induce synthetic lethality. Germline or somatic BRCA mutations represent the narrowest definition of HRD, but do not reflect all patients who will have a durable PARPi response. HRD can also be defined by its downstream consequences, which are measured by different metrics depending on the test used. Ideally, all patients will undergo genetic counseling and germline testing shortly after diagnosis and have somatic testing sent once an adequate tumor sample is available. Should barriers to one test be higher, pursuing germline testing with reflex to somatic testing for BRCA wildtype patients or somatic testing first strategies are both evidence-based. Ultimately both tests offer complementary information, germline testing should be pursued for any patient with a history of ovarian cancer, and somatic testing is valuable at recurrence if not performed in the upfront setting. There is a paucity of data to suggest superiority of one germline or somatic assay; therefore, selection should optimize turnaround time, cost to patients, preferred result format, and logistical burden. Each clinic should implement a standard testing strategy for all ovarian cancer patients that ensures HRD status is known at the time of upfront chemotherapy completion to facilitate comprehensive counseling about anticipated maintenance PARPi benefit.
Collapse
Affiliation(s)
- Rubina Ratnaparkhi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Melissa Javellana
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lori Spoozak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Incorvaia L, Perez A, Marchetti C, Brando C, Gristina V, Cancelliere D, Pivetti A, Contino S, Di Giovanni E, Barraco N, Bono M, Giurintano A, Bazan Russo TD, Gottardo A, Cutaia S, Pedone E, Peri M, Corsini LR, Fanale D, Galvano A, Scambia G, Badalamenti G, Russo A, Bazan V. Theranostic biomarkers and PARP-inhibitors effectiveness in patients with non-BRCA associated homologous recombination deficient tumors: Still looking through a dirty glass window? Cancer Treat Rev 2023; 121:102650. [PMID: 37939446 DOI: 10.1016/j.ctrv.2023.102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) deleterious variants were the first and, still today, the main biomarkers of poly(ADP)ribose polymerase (PARP)-inhibitors (PARPis) benefit. The recent, increased, numbers of individuals referred for counseling and multigene panel testing, and the remarkable expansion of approved PARPis, not restricted to BRCA1/BRCA2-Pathogenic Variants (PVs), produced a strong clinical need for non-BRCA biomarkers. Significant limitations of the current testing and assays exist. The different approaches that identify the causes of Homologous Recombination Deficiency (HRD), such as the germline and somatic Homologous Recombination Repair (HRR) gene PVs, the testing showing its consequences, such as the genomic scars, or the novel functional assays such as the RAD51 foci testing, are not interchangeable, and should not be considered as substitutes for each other in clinical practice for guiding use of PARPi in non-BRCA, HRD-associated tumors. Today, the deeper knowledge on the significant relationship among all proteins involved in the HRR, not limited to BRCA, expands the possibility of a successful non-BRCA, HRD-PARPi synthetic lethality and, at the same time, reinforces the need for enhanced definition of HRD biomarkers predicting the magnitude of PARPi benefit.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Claudia Marchetti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Emilia Di Giovanni
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Ambra Giurintano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Andrea Gottardo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sofia Cutaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marta Peri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Giovanni Scambia
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
van Wijk LM, Vermeulen S, Ter Haar NT, Kramer CJH, Terlouw D, Vrieling H, Cohen D, Vreeswijk MPG. Performance of a RAD51-based functional HRD test on paraffin-embedded breast cancer tissue. Breast Cancer Res Treat 2023; 202:607-616. [PMID: 37725154 PMCID: PMC10564840 DOI: 10.1007/s10549-023-07102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE BRCA-deficient breast cancers (BC) are highly sensitive to platinum-based chemotherapy and PARP inhibitors due to their deficiency in the homologous recombination (HR) pathway. However, HR deficiency (HRD) extends beyond BRCA-associated BC, highlighting the need for a sensitive method to enrich for HRD tumors in an alternative way. A promising approach is the use of functional HRD tests which evaluate the HR capability of tumor cells by measuring RAD51 protein accumulation at DNA damage sites. This study aims to evaluate the performance of a functional RAD51-based HRD test for the identification of HRD BC. METHODS The functional HR status of 63 diagnostic formalin-fixed paraffin-embedded (FFPE) BC samples was determined by applying the RAD51-FFPE test. Samples were screened for the presence of (epi)genetic defects in HR and matching tumor samples were analyzed with the RECAP test, which requires ex vivo irradiated fresh tumor tissue on the premise that the HRD status as determined by the RECAP test faithfully represented the functional HR status. RESULTS The RAD51-FFPE test identified 23 (37%) of the tumors as HRD, including three tumors with pathogenic variants in BRCA1/2. The RAD51-FFPE test showed a sensitivity of 88% and a specificity of 76% in determining the HR-class as defined by the RECAP test. CONCLUSION Given its high sensitivity and compatibility with FFPE samples, the RAD51-FFPE test holds great potential to enrich for HRD tumors, including those associated with BRCA-deficiency. This potential extends to situations where DNA-based testing may be challenging or not easily accessible in routine clinical practice. This is particularly important considering the potential implications for treatment decisions and patient stratification.
Collapse
Affiliation(s)
- Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Natalja T Ter Haar
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Claire J H Kramer
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Lee CY, Cheng WF, Lin PH, Chen YL, Huang SH, Lei KH, Chang KY, Ko MY, Chi P. An activity-based functional test for identifying homologous recombination deficiencies across cancer types in real time. Cell Rep Med 2023; 4:101247. [PMID: 37863059 PMCID: PMC10694588 DOI: 10.1016/j.xcrm.2023.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
Homologous recombination (HR)-mediated DNA repair is a prerequisite for maintaining genome stability. Cancer cells displaying HR deficiency (HRD) are selectively eliminated by poly(ADP-ribose) polymerase inhibitors (PARPis). To date, sequencing of HR-associated genes and analyzing genome instability have been used as clinical predictions for PARPi therapy. However, these genetic tests cannot reflect dynamic changes in the HR status. Here, we have developed a virus- and activity-based functional assay to quantify real-time HR activity directly. Instead of focusing on a few HR-associated genes, our functional assay detects endpoint HR activity and establishes an activity threshold for identifying HRD across cancer types, validated by PARPi sensitivity and BRCA status. Notably, this fluorescence-based assay can be applied to primary ovarian cancer cells from patients to reflect their level of HRD, which is associated with survival benefits. Thus, our work provides a functional test to predict the response of primary cancer cells to PARPis.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Han Lin
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Han Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ko-Yu Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Min-Yu Ko
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Leman R, Muller E, Legros A, Goardon N, Chentli I, Atkinson A, Tranchant A, Castera L, Krieger S, Ricou A, Boulouard F, Joly F, Boucly R, Dumont A, Basset N, Coulet F, Chevalier LM, Rouleau E, Leitner K, González-Martin A, Gargiulo P, Lück HJ, Genestie C, Ray-Coquard I, Pujade-Lauraine E, Vaur D. Validation of the Clinical Use of GIScar, an Academic-developed Genomic Instability Score Predicting Sensitivity to Maintenance Olaparib for Ovarian Cancer. Clin Cancer Res 2023; 29:4419-4429. [PMID: 37756555 PMCID: PMC10618649 DOI: 10.1158/1078-0432.ccr-23-0898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE The optimal application of maintenance PARP inhibitor therapy for ovarian cancer requires accessible, robust, and rapid testing of homologous recombination deficiency (HRD). However, in many countries, access to HRD testing is problematic and the failure rate is high. We developed an academic HRD test to support treatment decision-making. EXPERIMENTAL DESIGN Genomic Instability Scar (GIScar) was developed through targeted sequencing of a 127-gene panel to determine HRD status. GIScar was trained from a noninterventional study with 250 prospectively collected ovarian tumor samples. GIScar was validated on 469 DNA tumor samples from the PAOLA-1 trial evaluating maintenance olaparib for newly diagnosed ovarian cancer, and its predictive value was compared with Myriad Genetics MyChoice (MGMC). RESULTS GIScar showed significant correlation with MGMC HRD classification (kappa statistics: 0.780). From PAOLA-1 samples, more HRD-positive tumors were identified by GIScar (258) than MGMC (242), with a lower proportion of inconclusive results (1% vs. 9%, respectively). The HRs for progression-free survival (PFS) with olaparib versus placebo were 0.45 [95% confidence interval (CI), 0.33-0.62] in GIScar-identified HRD-positive BRCA-mutated tumors, 0.50 (95% CI, 0.31-0.80) in HRD-positive BRCA-wild-type tumors, and 1.02 (95% CI, 0.74-1.40) in HRD-negative tumors. Tumors identified as HRD positive by GIScar but HRD negative by MGMC had better PFS with olaparib (HR, 0.23; 95% CI, 0.07-0.72). CONCLUSIONS GIScar is a valuable diagnostic tool, reliably detecting HRD and predicting sensitivity to olaparib for ovarian cancer. GIScar showed high analytic concordance with MGMC test and fewer inconclusive results. GIScar is easily implemented into diagnostic laboratories with a rapid turnaround.
Collapse
Affiliation(s)
- Raphaël Leman
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Etienne Muller
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Angelina Legros
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
| | - Nicolas Goardon
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Imène Chentli
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
| | - Alexandre Atkinson
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Aurore Tranchant
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
| | - Laurent Castera
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Sophie Krieger
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Agathe Ricou
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Flavie Boulouard
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Florence Joly
- Clinical Research, Centre François Baclesse, Caen, France
| | - Romain Boucly
- Unité d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, Lille, France
| | - Aurélie Dumont
- Unité d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, Lille, France
| | - Noémie Basset
- Département de Génétique Médicale, UF d'Onco-Angiogénétique et Génomique des Tumeurs Solides, Hôpital Pitié Salpêtrière APHP, Paris, France
- Sorbonne Université, Paris, France
| | - Florence Coulet
- Département de Génétique Médicale, UF d'Onco-Angiogénétique et Génomique des Tumeurs Solides, Hôpital Pitié Salpêtrière APHP, Paris, France
- Sorbonne Université, Paris, France
| | - Louise-Marie Chevalier
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l'Ouest, Angers, France
- Université Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, Angers, France
| | - Etienne Rouleau
- Service de Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Katharina Leitner
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
- AGO Austria, Vienna, Austria
| | - Antonio González-Martin
- Department of Medical Oncology and Program in Solid Tumors-Cima, Cancer Center Clinica Universidad de Navarra, Madrid, Spain
- GEICO, Cádiz, Spain
| | - Piera Gargiulo
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
- MITO, Italy
| | - Hans-Joachim Lück
- Gynäkologisch-Onkologische Praxis Hannover, Hannover, Germany
- AGO, Wiesbaden, Germany
| | | | - Isabelle Ray-Coquard
- Association de Recherche Cancers Gynécologiques (ARCAGY), Paris, France
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens et du sein (GINECO), France
| | - Eric Pujade-Lauraine
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens et du sein (GINECO), France
| | - Dominique Vaur
- Laboratoire de Biologie et de Génétique du Cancer, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Université, UNICAEN, FHU G4 Génomique, Rouen, France
| |
Collapse
|
11
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
12
|
Garg V, Oza AM. Assessment of Homologous Recombination Deficiency in Ovarian Cancer. Clin Cancer Res 2023; 29:2957-2960. [PMID: 37347464 DOI: 10.1158/1078-0432.ccr-23-0563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Accurately assessing homologous recombination deficiency (HRD) to use as a predictive biomarker is an area of intense research in ovarian cancer. Validated assays have demonstrated utility in determining maintenance therapy following platinum sensitive chemotherapy. Novel functional assays promise the potential to reflect HRD in real time and predict response to PARP inhibitors. See related articles by Pikkusaari et al., p. 3110 and Blanc-Durand et al., p. 3124.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Pikkusaari S, Tumiati M, Virtanen A, Oikkonen J, Li Y, Perez-Villatoro F, Muranen T, Salko M, Huhtinen K, Kanerva A, Koskela H, Tapper J, Koivisto-Korander R, Joutsiniemi T, Haltia UM, Lassus H, Hautaniemi S, Färkkilä A, Hynninen J, Hietanen S, Carpén O, Kauppi L. Functional Homologous Recombination Assay on FFPE Specimens of Advanced High-Grade Serous Ovarian Cancer Predicts Clinical Outcomes. Clin Cancer Res 2023; 29:3110-3123. [PMID: 36805632 PMCID: PMC10425726 DOI: 10.1158/1078-0432.ccr-22-3156] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
PURPOSE Deficiency in homologous recombination (HR) repair of DNA damage is characteristic of many high-grade serous ovarian cancers (HGSC). It is imperative to identify patients with homologous recombination-deficient (HRD) tumors as they are most likely to benefit from platinum-based chemotherapy and PARP inhibitors (PARPi). Existing methods measure historical, not necessarily current HRD and/or require high tumor cell content, which is not achievable for many patients. We set out to develop a clinically feasible assay for identifying functionally HRD tumors that can predict clinical outcomes. EXPERIMENTAL DESIGN We quantified RAD51, a key HR protein, in immunostained formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained from chemotherapy-naïve and neoadjuvant chemotherapy (NACT)-treated HGSC patients. We defined cutoffs for functional HRD separately for these sample types, classified the patients accordingly as HRD or HR-proficient, and analyzed correlations with clinical outcomes. From the same specimens, genomics-based HRD estimates (HR gene mutations, genomic signatures, and genomic scars) were also determined, and compared with functional HR (fHR) status. RESULTS fHR status significantly predicted several clinical outcomes, including progression-free survival (PFS) and overall survival (OS), when determined from chemo-naïve (PFS, P < 0.0001; OS, P < 0.0001) as well as NACT-treated (PFS, P < 0.0001; OS, P = 0.0033) tumor specimens. The fHR test also identified as HRD those PARPi-at-recurrence-treated patients with longer OS (P = 0.0188). CONCLUSIONS We developed an fHR assay performed on routine FFPE specimens, obtained from either chemo-naïve or NACT-treated HGSC patients, that can significantly predict real-world platinum-based chemotherapy and PARPi response. See related commentary by Garg and Oza, p. 2957.
Collapse
Affiliation(s)
- Sanna Pikkusaari
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manuela Tumiati
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fernando Perez-Villatoro
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taru Muranen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matilda Salko
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Koskela
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Johanna Tapper
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | | | - Titta Joutsiniemi
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Ulla-Maija Haltia
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Heini Lassus
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN digital precision cancer medicine flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN digital precision cancer medicine flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Zelceski A, Francica P, Lingg L, Mutlu M, Stok C, Liptay M, Alexander J, Baxter JS, Brough R, Gulati A, Haider S, Raghunandan M, Song F, Sridhar S, Forment JV, O'Connor MJ, Davies BR, van Vugt MATM, Krastev DB, Pettitt SJ, Tutt ANJ, Rottenberg S, Lord CJ. MND1 and PSMC3IP control PARP inhibitor sensitivity in mitotic cells. Cell Rep 2023; 42:112484. [PMID: 37163373 DOI: 10.1016/j.celrep.2023.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.
Collapse
Affiliation(s)
- Anabel Zelceski
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland
| | - Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland
| | - Merve Mutlu
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joseph S Baxter
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Aditi Gulati
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Maya Raghunandan
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Sandhya Sridhar
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Departement of Biomedical Research (DBMR), Cancer Therapy Resistance Cluster, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
15
|
O'Neill E, Mosley M, Cornelissen B. Imaging DNA damage response by γH2AX in vivo predicts treatment response to Lutetium-177 radioligand therapy and suggests senescence as a therapeutically desirable outcome. Theranostics 2023; 13:1302-1310. [PMID: 36923536 PMCID: PMC10008745 DOI: 10.7150/thno.82101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
Rationale: An effective absorbed dose response relationship is yet to be established for Lutetium-177 based radionuclide therapies such as 177Lu-DOTATATE and 177Lu-PSMA. The inherent biological heterogeneity of neuroendocrine and prostate cancers may make the prospect of establishing cohort-based dose-response relationships unobtainable. Instead, an individual-based approach, monitoring the dose-response within each tumor could provide the necessary metric to monitor treatment efficacy. Methods: We developed a dual isotope SPECT imaging strategy to monitor the change over time in the relationship between 177Lu-DOTATATE and 111In-anti-γH2AX-TAT, a modified radiolabelled antibody that allows imaging of DNA double strand breaks, in mice bearing rat pancreatic cancer xenografts. The dynamics of γH2AX foci, apoptosis and senescence following exposure to 177Lu-DOTATATE was further investigated in vitro and in ex vivo tumor sections. Results: The change in slope of the 111In-anti-γH2AX-TAT to 177Lu signal between days 5 and 7 was found to be highly predictive of survival (r = 0.955, P < 0.0001). This pivotal timeframe was investigated further in vitro: clonogenic survival correlated with the number of γH2AX foci at day 6 (r = -0.995, P < 0.0005). While there was evidence of continuously low levels of apoptosis, delayed induction of senescence in vitro appeared to better account for the γH2AX response to 177Lu. The induction of senescence was further investigated by ex vivo analysis and corresponded with sustained retention of 177Lu within tumor regions. Conclusions: Dual isotope SPECT imaging can provide individualized tumor dose-responses that can be used to predict lutetium-177 treatment efficacy. This bio-dosimeter metric appears to be dependent upon the extent of senescence induction and suggests an integral role that senescence plays in lutetium-177 treatment efficacy.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Michael Mosley
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Clinical Utility of Genomic Tests Evaluating Homologous Recombination Repair Deficiency (HRD) for Treatment Decisions in Early and Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15041299. [PMID: 36831640 PMCID: PMC9954086 DOI: 10.3390/cancers15041299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most frequently occurring cancer worldwide. With its increasing incidence, it is a major public health problem, with many therapeutic challenges such as precision medicine for personalized treatment. Thanks to next-generation sequencing (NGS), progress in biomedical technologies, and the use of bioinformatics, it is now possible to identify specific molecular alterations in tumor cells-such as homologous recombination deficiencies (HRD)-enabling us to consider using DNA-damaging agents such as platinum salts or PARP inhibitors. Different approaches currently exist to analyze impairment of the homologous recombination pathway, e.g., the search for specific mutations in homologous recombination repair (HRR) genes, such as BRCA1/2; the use of genomic scars or mutational signatures; or the development of functional tests. Nevertheless, the role and value of these different tests in breast cancer treatment decisions remains to be clarified. In this review, we summarize current knowledge on the clinical utility of genomic tests, evaluating HRR deficiency for treatment decisions in early and metastatic breast cancer.
Collapse
|
17
|
Oswald AJ, Gourley C. Development of Homologous Recombination Functional Assays for Targeting the DDR. Cancer Treat Res 2023; 186:43-70. [PMID: 37978130 DOI: 10.1007/978-3-031-30065-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Identification of tumours that have homologous recombination deficiency (HRD) has become of increasing interest following the licensing of PARP inhibitors. Potential methods to assess HRD status include; clinical selection for platinum sensitive disease, mutational/methylation status, genomic scars/signature and functional RAD51 assays. Homologous recombination (HR) is a dynamic process with the potential to evolve over a disease course, particularly in relation to previous treatment. This is one of the major drawbacks of genomic scars/signatures, as they only demonstrate historic HR status. Functional HR assays have the benefit of giving a real time HR status readout and therefore have the potential for clearer identification of patients who may benefit from PARP inhibitors at that specific time point. However, the development of RAD51 foci assays ready for clinical practice has been challenging. Pre-clinical considerations have included; controlling for variation in tumour proliferation, tissue type and whether DNA damage induction is required. Furthermore, the assays require correlation with clinical outcomes, an understanding of how they complement current testing modalities and validation of test performance in large cohorts. Despite these challenges, given the profound benefit from PARP inhibitors seen in those with an HRD phenotype to date, the ongoing development and validation of these functional HR assays remains of high clinical importance.
Collapse
Affiliation(s)
- Ailsa J Oswald
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| | - Charlie Gourley
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Paulet L, Trecourt A, Leary A, Peron J, Descotes F, Devouassoux-Shisheboran M, Leroy K, You B, Lopez J. Cracking the homologous recombination deficiency code: how to identify responders to PARP inhibitors. Eur J Cancer 2022; 166:87-99. [DOI: 10.1016/j.ejca.2022.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
|
19
|
O'Neill E, Cornelissen B. Know thy tumour: Biomarkers to improve treatment of molecular radionuclide therapy. Nucl Med Biol 2022; 108-109:44-53. [PMID: 35276447 DOI: 10.1016/j.nucmedbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
20
|
Kramer CJH, Vreeswijk MPG, Thijssen B, Bosse T, Wesseling J. Beyond the snapshot: optimizing prognostication and prediction by moving from fixed to functional multidimensional cancer pathology. J Pathol 2022; 257:403-412. [PMID: 35438188 PMCID: PMC9324156 DOI: 10.1002/path.5915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
The role of pathology in patient management has evolved over time from the retrospective review of cells, tissue, and disease (‘what happened’) to a prospective outlook (‘what will happen’). Examination of a static, two‐dimensional hematoxylin and eosin (H&E)‐stained tissue slide has traditionally been the pathologist's primary task, but novel ancillary techniques enabled by technological breakthroughs have supported pathologists in their increasing ability to predict disease status and behaviour. Nevertheless, the informational limits of 2D, fixed tissue are now being reached and technological innovation is urgently needed to ensure that our understanding of disease entities continues to support improved individualized treatment options. Here we review pioneering work currently underway in the field of cancer pathology that has the potential to capture information beyond the current basic snapshot. A selection of exciting new technologies is discussed that promise to facilitate integration of the functional and multidimensional (space and time) information needed to optimize the prognostic and predictive value of cancer pathology. Learning how to analyse, interpret, and apply the wealth of data acquired by these new approaches will challenge the knowledge and skills of the pathology community. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C J H Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - B Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wesseling
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Clark J, Fotopoulou C, Cunnea P, Krell J. Novel Ex Vivo Models of Epithelial Ovarian Cancer: The Future of Biomarker and Therapeutic Research. Front Oncol 2022; 12:837233. [PMID: 35402223 PMCID: PMC8990887 DOI: 10.3389/fonc.2022.837233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogenous disease associated with variations in presentation, pathology and prognosis. Advanced EOC is typified by frequent relapse and a historical 5-year survival of less than 30% despite improvements in surgical and systemic treatment. The advent of next generation sequencing has led to notable advances in the field of personalised medicine for many cancer types. Success in achieving cure in advanced EOC has however been limited, although significant prolongation of survival has been demonstrated. Development of novel research platforms is therefore necessary to address the rapidly advancing field of early diagnostics and therapeutics, whilst also acknowledging the significant tumour heterogeneity associated with EOC. Within available tumour models, patient-derived organoids (PDO) and explant tumour slices have demonstrated particular promise as novel ex vivo systems to model different cancer types including ovarian cancer. PDOs are organ specific 3D tumour cultures that can accurately represent the histology and genomics of their native tumour, as well as offer the possibility as models for pharmaceutical drug testing platforms, offering timing advantages and potential use as prospective personalised models to guide clinical decision-making. Such applications could maximise the benefit of drug treatments to patients on an individual level whilst minimising use of less effective, yet toxic, therapies. PDOs are likely to play a greater role in both academic research and drug development in the future and have the potential to revolutionise future patient treatment and clinical trial pathways. Similarly, ex vivo tumour slices or explants have also shown recent renewed promise in their ability to provide a fast, specific, platform for drug testing that accurately represents in vivo tumour response. Tumour explants retain tissue architecture, and thus incorporate the majority of tumour microenvironment making them an attractive method to re-capitulate in vivo conditions, again with significant timing and personalisation of treatment advantages for patients. This review will discuss the current treatment landscape and research models for EOC, their development and new advances towards the discovery of novel biomarkers or combinational therapeutic strategies to increase treatment options for women with ovarian cancer.
Collapse
Affiliation(s)
- James Clark
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.,West London Gynaecological Cancer Centre, Imperial College NHS Trust, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Tumor BRCA Testing in Epithelial Ovarian Cancers: Past and Future-Five-Years' Single-Institution Experience of 762 Consecutive Patients. Cancers (Basel) 2022; 14:cancers14071638. [PMID: 35406410 PMCID: PMC8996829 DOI: 10.3390/cancers14071638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumor BRCA testing is crucial in the clinical management of women affected by epithelial ovarian cancer (EOC). In the present study, we aimed to report the results of five years of experience in tumor BRCA testing performed in a single-institution diagnostic setting. We profiled 762 consecutive EOC patients with a failure rate of less than 1% and less than two weeks of turnaround time, which is consistent with the clinical needs. We identified 23.4% of cases with pathogenic/likely pathogenic mutations, including 76% of patients affected by germline and 24% by somatic alterations. Here, we proposed a comprehensive and multidisciplinary clinical workflow that could be successfully followed for the identification of somatic as well as germline alterations, maximizing the benefit of BRCA testing both from a therapeutic and risk assessment perspective. Abstract The establishment of PARP inhibitors in the treatment of epithelial ovarian carcinoma (EOC) has prompt BRCA assessment at the time of diagnosis. We described our five years of experience of tumor BRCA testing, as part of a multidisciplinary workflow for the management of EOC patients. We used a BRCA next-generation sequencing (NGS) test for profiling formalin-fixed, paraffin-embedded (FFPE) EOCs of 762 consecutive patients, with a success rate of 99.7% and a median turnaround time of 12 days. We found 178 (23.4%) cases with pathogenic/likely pathogenic (P/LP) mutations, 74 (9.7%) cases with variants of uncertain significance and 508 (66.8%) wild type tumors. Among 174 patients without P/LP mutations and investigated with multiple-ligation probe-amplification analysis on peripheral blood, two (1.1%) were positive for large rearrangements. Patients with P/LP alterations and/or with positive family history were referred to genetic counselling. Comparing tumor and blood NGS test results of 256 patients, we obtained a tumor test negative predictive value of 100% and we defined 76% of P/LP alterations as germline and 24% as somatic variants. The proposed workflow may successfully identify EOC patients with BRCA1/2 alteration, guiding both therapeutic and risk assessment clinical decisions.
Collapse
|
23
|
O’Sullivan Coyne G, Karlovich C, Wilsker D, Voth AR, Parchment RE, Chen AP, Doroshow JH. PARP Inhibitor Applicability: Detailed Assays for Homologous Recombination Repair Pathway Components. Onco Targets Ther 2022; 15:165-180. [PMID: 35237050 PMCID: PMC8885121 DOI: 10.2147/ott.s278092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.
Collapse
Affiliation(s)
- Geraldine O’Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Karlovich
- Leidos Biomedical Research Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
25
|
The Evolution of Ovarian Carcinoma Subclassification. Cancers (Basel) 2022; 14:cancers14020416. [PMID: 35053578 PMCID: PMC8774015 DOI: 10.3390/cancers14020416] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Historically, cancers presenting with their main tumor mass in the ovary have been classified as ovarian carcinomas (a concise term for epithelial ovarian cancer) and treated with a one-size-fits-all approach. Over the last two decades, a growing molecular understanding established that ovarian carcinomas consist of several distinct histologic types, which practically represent different diseases. Further research is now delineating several molecular subtypes within each histotype. This histotype/molecular subtype subclassification provides a framework of grouping tumors based on molecular similarities for research, clinical trial inclusion and future patient management. Abstract The phenotypically informed histotype classification remains the mainstay of ovarian carcinoma subclassification. Histotypes of ovarian epithelial neoplasms have evolved with each edition of the WHO Classification of Female Genital Tumours. The current fifth edition (2020) lists five principal histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), mucinous carcinoma (MC), endometrioid carcinoma (EC) and clear cell carcinoma (CCC). Since histotypes arise from different cells of origin, cell lineage-specific diagnostic immunohistochemical markers and histotype-specific oncogenic alterations can confirm the morphological diagnosis. A four-marker immunohistochemical panel (WT1/p53/napsin A/PR) can distinguish the five principal histotypes with high accuracy, and additional immunohistochemical markers can be used depending on the diagnostic considerations. Histotypes are further stratified into molecular subtypes and assessed with predictive biomarker tests. HGSCs have recently been subclassified based on mechanisms of chromosomal instability, mRNA expression profiles or individual candidate biomarkers. ECs are composed of the same molecular subtypes (POLE-mutated/mismatch repair-deficient/no specific molecular profile/p53-abnormal) with the same prognostic stratification as their endometrial counterparts. Although methylation analyses and gene expression and sequencing showed at least two clusters, the molecular subtypes of CCCs remain largely elusive to date. Mutational and immunohistochemical data on LGSC have suggested five molecular subtypes with prognostic differences. While our understanding of the molecular composition of ovarian carcinomas has significantly advanced and continues to evolve, the need for treatment options suitable for these alterations is becoming more obvious. Further preclinical studies using histotype-defined and molecular subtype-characterized model systems are needed to expand the therapeutic spectrum for women diagnosed with ovarian carcinomas.
Collapse
|
26
|
Stewart MD, Merino Vega D, Arend RC, Baden JF, Barbash O, Beaubier N, Collins G, French T, Ghahramani N, Hinson P, Jelinic P, Marton MJ, McGregor K, Parsons J, Ramamurthy L, Sausen M, Sokol ES, Stenzinger A, Stires H, Timms KM, Turco D, Wang I, Williams JA, Wong-Ho E, Allen J. OUP accepted manuscript. Oncologist 2022; 27:167-174. [PMID: 35274707 PMCID: PMC8914493 DOI: 10.1093/oncolo/oyab053] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/05/2021] [Indexed: 11/12/2022] Open
Abstract
Background Homologous recombination deficiency (HRD) is a phenotype that is characterized by the inability of a cell to effectively repair DNA double-strand breaks using the homologous recombination repair (HRR) pathway. Loss-of-function genes involved in this pathway can sensitize tumors to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapy, which target the destruction of cancer cells by working in concert with HRD through synthetic lethality. However, to identify patients with these tumors, it is vital to understand how to best measure homologous repair (HR) status and to characterize the level of alignment in these measurements across different diagnostic platforms. A key current challenge is that there is no standardized method to define, measure, and report HR status using diagnostics in the clinical setting. Methods Friends of Cancer Research convened a consortium of project partners from key healthcare sectors to address concerns about the lack of consistency in the way HRD is defined and methods for measuring HR status. Results This publication provides findings from the group’s discussions that identified opportunities to align the definition of HRD and the parameters that contribute to the determination of HR status. The consortium proposed recommendations and best practices to benefit the broader cancer community. Conclusion Overall, this publication provides additional perspectives for scientist, physician, laboratory, and patient communities to contextualize the definition of HRD and various platforms that are used to measure HRD in tumors.
Collapse
Affiliation(s)
- Mark D Stewart
- Corresponding author: Mark D. Stewart, 1800 M Street NW, Suite 1050 South, Washington, DC 20036, USA;
| | | | - Rebecca C Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingam, AL, USA
| | | | - Olena Barbash
- Oncology Experimental Medicine Unit, GlaxoSmithKline, Philadelphia, PA, USA
| | | | | | - Tim French
- Global Medical Affairs, Diagnostics, AstraZeneca, Cambridge, UK
| | - Negar Ghahramani
- Molecular Genetic Pathology Regional Laboratory, SCPMG Regional Reference Laboratories, Los Angeles, CA, USA
| | - Patsy Hinson
- Independent Cancer Research Patient Advocate, Charlotte, NC, USA
| | - Petar Jelinic
- Early Clinical Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Kimberly McGregor
- Cancer Genomics Research Group, Foundation Medicine, Cambridge, MA, USA
| | | | | | - Mark Sausen
- Translational Medicine, Bristol Myers Squibb, New York, NY, USA
| | - Ethan S Sokol
- Cancer Genomics Research Group, Foundation Medicine, Cambridge, MA, USA
| | | | | | | | - Diana Turco
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | - Iris Wang
- Global Precision Medicine, Novartis Pharmaceuticals Corporation, New York, NY, USA
| | | | - Elaine Wong-Ho
- Clinical Sequencing Division, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Jeff Allen
- Friends of Cancer Research, Washington, DC, USA
| |
Collapse
|
27
|
van Wijk LM, Nilas AB, Vrieling H, Vreeswijk MPG. RAD51 as a functional biomarker for homologous recombination deficiency in cancer: a promising addition to the HRD toolbox? Expert Rev Mol Diagn 2021; 22:185-199. [PMID: 34913794 DOI: 10.1080/14737159.2022.2020102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carcinomas with defects in the homologous recombination (HR) pathway are sensitive to PARP inhibitors (PARPi). A robust method to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. Currently available DNA-based HRD tests either scan HR-related genes such as BRCA1 and BRCA2 for the presence of pathogenic variants or identify HRD-related genomic scars or mutational signatures by using whole-exome or whole-genome sequencing data. As an alternative to DNA-based tests, functional HRD tests have been developed that assess the actual ability of tumors to accumulate RAD51 protein at DNA double strand breaks as a proxy for HR proficiency. AREAS COVERED This review presents an overview of currently available HRD tests and discuss the pros and cons of the different methodologies including their sensitivity for the identification of HRD tumors, their concordance with other HRD tests, and their capacity to predict therapy response. EXPERT OPINION With the increasing use of PARP inhibitors in the treatment of several cancers there is an urgent need to implement HRD testing in routine clinical practice. To this end, calibration of HRD thresholds and clinical validation of both DNA-based and RAD51-based HRD tests should have top-priority in the coming years.
Collapse
Affiliation(s)
- Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Andreea B Nilas
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
28
|
Tao M, Wu X. The role of patient-derived ovarian cancer organoids in the study of PARP inhibitors sensitivity and resistance: from genomic analysis to functional testing. J Exp Clin Cancer Res 2021; 40:338. [PMID: 34702316 PMCID: PMC8547054 DOI: 10.1186/s13046-021-02139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) harbors distinct genetic features such as homologous recombination repair (HRR) deficiency, and therefore may respond to poly ADP-ribose polymerase inhibitors (PARPi). Over the past few years, PARPi have been added to the standard of care for EOC patients in both front-line and recurrent settings. Next-generation sequencing (NGS) genomic analysis provides key information, allowing for the prediction of PARPi response in patients who are PARPi naïve. However, there are indeed some limitations in NGS analyses. A subset of patients can benefit from PARPi, despite the failed detection of the predictive biomarkers such as BRCA1/2 mutations or HRR deficiency. Moreover, in the recurrent setting, the sequencing of initial tumor does not allow for the detection of reversions or secondary mutations restoring proficient HRR and thus leading to PARPi resistance. Therefore, it becomes crucial to better screen patients who will likely benefit from PARPi treatment, especially those with prior receipt of maintenance PARPi therapy. Recently, patient-derived organoids (PDOs) have been regarded as a reliable preclinical platform with clonal heterogeneity and genetic features of original tumors. PDOs are found feasible for functional testing and interrogation of biomarkers for predicting response to PARPi in EOC. Hence, we review the strengths and limitations of various predictive biomarkers and highlight the role of patient-derived ovarian cancer organoids as functional assays in the study of PARPi response. It was found that a combination of NGS and functional assays using PDOs could enhance the efficient screening of EOC patients suitable for PARPi, thus prolonging their survival time.
Collapse
Affiliation(s)
- Mengyu Tao
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China
| | - Xia Wu
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
29
|
Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. Cancers (Basel) 2021; 13:cancers13133349. [PMID: 34283069 PMCID: PMC8268501 DOI: 10.3390/cancers13133349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Recent advances in our understanding of the stem cell potential in adult tissues have far-reaching implications for cancer research, and this creates new opportunities for the development of new therapeutic strategies. Here we outline changes in stem cell biology that characterize main gynaecological malignancies, ovarian, endometrial, and cervical cancer, and focus on specific differences between them. We highlight the importance of the local niche environment as a driver of malignant transformation in addition to mutations in key cancer-driving genes. Patient-derived organoids capture in vitro main aspects of cancer tissue architecture and stemness regulatory mechanisms, thus providing a valuable new platform for a personalized approach in the treatment of gynecological malignancies. This review summarizes the main achievement and formulates remaining open questions in this fast-evolving research field. Abstract Gynaecological malignancies represent a heterogeneous group of neoplasms with vastly different aetiology, risk factors, molecular drivers, and disease outcomes. From HPV-driven cervical cancer where early screening and molecular diagnostics efficiently reduced the number of advanced-stage diagnosis, prevalent and relatively well-treated endometrial cancers, to highly aggressive and mostly lethal high-grade serous ovarian cancer, malignancies of the female genital tract have unique presentations and distinct cell biology features. Recent discoveries of stem cell regulatory mechanisms, development of organoid cultures, and NGS analysis have provided valuable insights into the basic biology of these cancers that could help advance new-targeted therapeutic approaches. This review revisits new findings on stemness and differentiation, considering main challenges and open questions. We focus on the role of stem cell niche and tumour microenvironment in early and metastatic stages of the disease progression and highlight the potential of patient-derived organoid models to study key events in tumour evolution, the appearance of resistance mechanisms, and as screening tools to enable personalisation of drug treatments.
Collapse
|
30
|
The RAD51-FFPE Test; Calibration of a Functional Homologous Recombination Deficiency Test on Diagnostic Endometrial and Ovarian Tumor Blocks. Cancers (Basel) 2021; 13:cancers13122994. [PMID: 34203855 PMCID: PMC8232577 DOI: 10.3390/cancers13122994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Rapid and reliable identification of patients with homologous recombination deficient (HRD) tumors is important for treatment choice as these tumors tend to respond well to platinum-based chemotherapy and PARP inhibitors (PARPi). In this study, a RAD51-based functional HRD test that can be performed on routine diagnostic formalin-fixed paraffin-embedded (FFPE) tissues (RAD51-FFPE test), was further improved and optimal test parameters were determined. The RAD51-FFPE test was able to determine tumor HR status with high sensitivity and specificity, making it an attractive test to be applied as routine diagnostic tool in the near future. Abstract PARP inhibitor (PARPi) sensitivity is related to tumor-specific defects in homologous recombination (HR). Therefore, there is great clinical interest in tests that can rapidly and reliably identify HR deficiency (HRD). Functional HRD tests determine the actual HR status by using the (dis)ability to accumulate RAD51 protein at sites of DNA damage as read-out. In this study, we further improved and calibrated a previously described RAD51-based functional HRD test on 74 diagnostic formalin-fixed paraffin-embedded (FFPE) specimens (RAD51-FFPE test) from endometrial cancer (EC n = 25) and epithelial ovarian cancer (OC n = 49) patients. We established optimal parameters with regard to RAD51 foci cut-off (≥2) and HRD threshold (15%) using matched endometrial and ovarian carcinoma specimens for which HR status had been established using a RAD51-based test that required ex vivo irradiation of fresh tissue (RECAP test). The RAD51-FFPE test detected BRCA deficient tumors with 90% sensitivity and RECAP-HRD tumors with 87% sensitivity, indicating that it is an attractive alternative to DNA-based tests with the potential to be applied in routine diagnostic pathology.
Collapse
|
31
|
Ngoi NYL, Tan DSP. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it? ESMO Open 2021; 6:100144. [PMID: 34015643 PMCID: PMC8141874 DOI: 10.1016/j.esmoop.2021.100144] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
The recognition of homologous recombination deficiency (HRD) as a frequent feature of high-grade serous ovarian cancer (HGSOC) has transformed treatment paradigms. Poly(ADP-ribose) polymerase inhibitors (PARPis), developed based on the rationale of synthetic lethality that predicates antitumor efficacy in tumors harboring underlying HRD, now represents an important class of therapy for HGSOC. Recent data have drawn attention to the assessment of homologous recombination DNA repair (HRR) as a prognostic and predictive biomarker in HGSOC, leading to increasing debate on the optimal means of defining and evaluating HRD, both genotypically and phenotypically. At present, clinical-grade assays such as myChoice CDx and FoundationOne CDx are approved companion diagnostics which can identify patients with HRD-positive HGSOC by diagnosing a 'genomic scar' reflecting underlying genomic instability. Yet despite the rapid maturation of this field, tumoral HRD status has been recognized to be dynamic over time and with treatment pressure. In practice, this means that restoration of HRR through mechanisms of platinum and PARPi resistance are not adequately represented by genomic scar assays, and contribute toward discordance with clinical PARPi response, or lack-thereof. It is thus critical that HRD testing is optimized to address the controversies of diverse HRD testing methodology, appropriate thresholds for HRD identification, and relevant timepoints for HRD testing, in order to realize the potential for PARPis to maximally benefit patients with HGSOC. Here, we discuss the premise of HRD testing in HGSOC, current methodologies for HRD identification and their performance in the clinic, highlight upcoming strategies, and discuss the challenges faced in moving this field forward.
Collapse
Affiliation(s)
- N Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - D S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore; Cancer Science Institute, National University of Singapore, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
Age-related activity of Poly (ADP-Ribose) Polymerase (PARP) in men with localized prostate cancer. Mech Ageing Dev 2021; 196:111494. [PMID: 33887280 DOI: 10.1016/j.mad.2021.111494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Mutations in DNA repair genes have been connected with familial prostate cancer and sensitivity to targeted drugs like PARP-inhibitors. Clinical use of this information is limited by the small fraction of prostate cancer risk gene carriers, variants of unknown pathogenicity and the focus on monogenic disease mechanisms. Functional assays capturing mono- and polygenic defects were shown to detect breast and ovarian cancer risk in blood-derived cells. Here, we comparatively analyzed lymphocytes from prostate cancer patients and controls applying a sensitive DNA double-strand break (DSB) repair assay and a flow cytometrybased assay measuring the activity of Poly(ADP-Ribose)-Polymerase, a target in treatment of metastatic prostate cancer. Contrary to breast and ovarian cancer patients, error-prone DNA double-strand break repair was not activated in prostate cancer patients. Yet, the activity of PARP discriminated between prostate cancer cases and controls. PARylation also correlated with the age of male probands, suggesting male-specific links between mutation-based and aging-associated DNA damage accumulation and PARP. Our work identifies prostate cancer-specific DNA repair phenotypes characterized by increased PARP activities and carboplatin-sensitivities, detected by functional testing of lymphocytes. This provides new insights for further investigation of PARP and carboplatin sensitivity as biomarkers in peripheral cells of men and prostate cancer patients.
Collapse
|
33
|
Ladan MM, van Gent DC, Jager A. Homologous Recombination Deficiency Testing for BRCA-Like Tumors: The Road to Clinical Validation. Cancers (Basel) 2021; 13:1004. [PMID: 33670893 PMCID: PMC7957671 DOI: 10.3390/cancers13051004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Germline BRCA mutations result in homologous recombination deficiency (HRD) in hereditary breast and ovarian cancer, as well as several types of sporadic tumors. The HRD phenotype makes these tumors sensitive to DNA double strand break-inducing agents, including poly-(ADP-ribose)-polymerase (PARP) inhibitors. Interestingly, a subgroup of cancers without a BRCA mutation also shows an HRD phenotype. Various methods for selecting patients with HRD tumors beyond BRCA-mutations have been explored. These methods are mainly based on DNA sequencing or functional characteristics of the tumor. We here discuss the various tests and the status of their clinical validation.
Collapse
Affiliation(s)
- Marjolijn M. Ladan
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
- Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
- Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| |
Collapse
|