1
|
Halilovic M, Abdelsalam M, Zabkiewicz J, Lazenby M, Alvares C, Schmidt M, Brenner W, Najafi S, Oehme I, Hieber C, Zeyn Y, Bros M, Sippl W, Krämer OH. Selective degradation of mutant FMS-like tyrosine kinase-3 requires BIM-dependent depletion of heat shock proteins. Leukemia 2024; 38:2561-2572. [PMID: 39300221 PMCID: PMC11588663 DOI: 10.1038/s41375-024-02405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Internal tandem duplications in the FMS-like tyrosine kinase-3 (FLT3-ITD) are common mutations in acute myeloid leukemia (AML). Proteolysis-targeting chimeras (PROTACs) that induce proteasomal degradation of mutated FLT3 emerge as innovative pharmacological approach. Molecular mechanisms that control targeted proteolysis beyond the ubiquitin-proteasome-system are undefined and PROTACs are the only known type of FLT3 degraders. We report that the von-Hippel-Lindau ubiquitin-ligase based FLT3 PROTAC MA49 (melotinib-49) and the FLT3 hydrophobic tagging molecule MA50 (halotinib-50) reduce endoplasmic reticulum-associated, oncogenic FLT3-ITD but spare FLT3. Nanomolar doses of MA49 and MA50 induce apoptosis of human leukemic cell lines and primary AML blasts with FLT3-ITD (p < 0.05-0.0001), but not of primary hematopoietic stem cells and differentiated immune cells, FLT3 wild-type cells, retinal cells, and c-KIT-dependent cells. In vivo activity of MA49 against FLT3-ITD-positive leukemia cells is verified in a Danio rerio model. The degrader-induced loss of FLT3-ITD involves the pro-apoptotic BH3-only protein BIM and a previously unidentified degrader-induced depletion of protein-folding chaperones. The expression levels of HSP90 and HSP110 correlate with reduced AML patient survival (p < 0.1) and HSP90, HSP110, and BIM are linked to the expression of FLT3 in primary AML cells (p < 0.01). HSP90 suppresses degrader-induced FLT3-ITD elimination and thereby establishes a mechanistically defined feed-back circuit.
Collapse
Affiliation(s)
- Melisa Halilovic
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany
| | - Mohamed Abdelsalam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany
| | - Joanna Zabkiewicz
- Academic Department of Haematology, University of Cardiff, Heath Park, Cardiff, UK
| | - Michelle Lazenby
- Academic Department of Haematology, University of Cardiff, Heath Park, Cardiff, UK
| | - Caroline Alvares
- Academic Department of Haematology, University of Cardiff, Heath Park, Cardiff, UK
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women's Health, University Medical Center, 55131, Mainz, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (B310), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Christoph Hieber
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle, Saale, Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131, Mainz, Germany.
| |
Collapse
|
2
|
Saeed RH, Faqe Ahmed Abdulrahman Z, Mohammad DK. Exploring the interplay between microRNA expression and DNA mutation analysis in AML patients. Saudi J Biol Sci 2024; 31:104027. [PMID: 38831894 PMCID: PMC11145380 DOI: 10.1016/j.sjbs.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
MicroRNAs (miRNAs) are key regulators in Acute Myeloid Leukemia AML, affecting gene expression, including that of CD markers and impacting mutations within leukemic cells. Mutations in AML can alter miRNA profiles, which can affect the expression of CD markers and contribute to disease progression by influencing cellular processes such as differentiation, proliferation, and apoptosis. Here, we examined the interplay of cell surface protein expression (CD markers), DNA mutations, and microRNA expression in AML patients. We included 32 recently diagnosed AML patients, and CD marker expression was evaluated using flow cytometry and molecular techniques. This study aims to delve into this relationship within the context of AML, elucidating its potential implications for diagnosis, prognosis, and therapeutic interventions. Mutations were scrutinized in six patients using Whole-Exome Sequencing (WES), while quantitative PCR (qPCR) was employed to investigate the expression levels of nine microRNAs. Subsequently, a comprehensive interaction network was constructed using Cytoscape software, focusing on genes with significant mutations and their corresponding microRNAs. Cell surface protein expression analysis revealed upregulation of CD45, CD99, CD34, HLA-DR, CD38, CD13, CD33, MPO, CD15 and CD117 in AML patients. The molecular analysis results unveiled mutations in specific genes (FLT3, KIT, PTPN11, BCR, DNMT3A, and NRAS) targeted by nine microRNAs. Notably, eight microRNAs exhibited heightened expression levels. Network analysis highlighted interactions between the PTPN11 gene and six scrutinized microRNAs. Understanding the regulatory dynamics between gene mutations and microRNAs in AML patients is pivotal for unraveling the disease's molecular mechanisms and identifying potential therapeutic targets. Further exploration into the functional roles of microRNAs in gene regulation and AML pathogenesis is warranted to validate their potential as therapeutic targets, diagnostic markers, and advanced treatment strategies.
Collapse
Affiliation(s)
- Rastee H. Saeed
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Dara K. Mohammad
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, SE-141 83, Stockholm, Sweden
| |
Collapse
|
3
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Gutierrez-Camino A, Richer C, Ouimet M, Fuchs C, Langlois S, Khater F, Caron M, Beaulieu P, St-Onge P, Bataille AR, Sinnett D. Characterisation of FLT3 alterations in childhood acute lymphoblastic leukaemia. Br J Cancer 2024; 130:317-326. [PMID: 38049555 PMCID: PMC10803556 DOI: 10.1038/s41416-023-02511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Alterations of FLT3 are among the most common driver events in acute leukaemia with important clinical implications, since it allows patient classification into prognostic groups and the possibility of personalising therapy thanks to the availability of FLT3 inhibitors. Most of the knowledge on FLT3 implications comes from the study of acute myeloid leukaemia and so far, few studies have been performed in other leukaemias. METHODS A comprehensive genomic (DNA-seq in 267 patients) and transcriptomic (RNA-seq in 160 patients) analysis of FLT3 in 342 childhood acute lymphoblastic leukaemia (ALL) patients was performed. Mutations were functionally characterised by in vitro experiments. RESULTS Point mutations (PM) and internal tandem duplications (ITD) were detected in 4.3% and 2.7% of the patients, respectively. A new activating mutation of the TKD, G846D, conferred oncogenic properties and sorafenib resistance. Moreover, a novel alteration involving the circularisation of read-through transcripts (rt-circRNAs) was observed in 10% of the cases. Patients presenting FLT3 alterations exhibited higher levels of the receptor. In addition, patients with ZNF384- and MLL/KMT2A-rearranged ALL, as well as hyperdiploid subtype, overexpressed FLT3. DISCUSSION Our results suggest that specific ALL subgroups may also benefit from a deeper understanding of the biology of FLT3 alterations and their clinical implications.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Manon Ouimet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sylvie Langlois
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Fida Khater
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Alain R Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Klement L, Drube J. The interplay of FLT3 and CXCR4 in acute myeloid leukemia: an ongoing debate. Front Oncol 2023; 13:1258679. [PMID: 37849810 PMCID: PMC10577206 DOI: 10.3389/fonc.2023.1258679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
FLT3 mutations are very frequent in AML and utilization of FLT3 inhibitors as approved treatment options are very common. Despite the initial success of inhibitor treatment, the development of resistances against this treatment is a major challenge in AML therapy. One of the mechanisms causing resistance is the homing of the leukemic cells in the protective niche of the bone marrow microenvironment (BMM). A pathway mediating homing to the BMM and leukemic cell survival is the CXCL12/CXCR4 axis. The analysis of patient samples in several independent studies indicated that FLT3-ITD expression led to higher CXCR4 surface expression. However, several in vitro studies reported contradictory findings, suggesting that FLT3-ITD signaling negatively influenced CXCR4 expression. In this commentary, we provide an overview summarizing the studies dealing with the relationship of FLT3 and CXCR4. Taken together, the current research status is not sufficient to answer the question whether FLT3 and CXCR4 act together or independently in leukemia progression. Systematic analyses in model cell systems are needed to understand the interplay between FLT3 and CXCR4, since this knowledge could lead to the development of more effective treatment strategies for AML patients.
Collapse
Affiliation(s)
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
6
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
7
|
Azlan A, Khor KZ, Rajasegaran Y, Rosli AA, Said MSM, Yusoff NM, Moses EJ. RUNX1/ETO regulates reactive oxygen species (ROS) levels in t(8,21) acute myeloid leukaemia via FLT3 and RAC1. Med Oncol 2023; 40:208. [PMID: 37341821 DOI: 10.1007/s12032-023-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Reactive oxygen species (ROS) homeostasis is crucial for leukaemogenesisand deregulation would hamper leukaemic progression. Although the regulatory effects of RUNX1/ETO has been extensively studied, its underlying molecular mechanims in ROS production in t(8,21) AML is yet to be fully elucidated. Here, we report that RUNX1/ETO could directly control FLT3 by occupying several DNA elements on FLT3 locus. The possible hijacking mechanism by RUNX1/ETO over FLT3 mediated ROS modulation in AML t(8;21) was made apparent when suppression of RUNX1/ETO led to decrement in ROS levels and the direct oxidative marker FOXO3 but not in FLT3 and RAC1 suppressed t(8,21) AML cell line Furthermore, nuclear import of RUNX1/ETO was aberrated following RUNX1/ETO and RAC1 suppression suggesting association in ROS control. A different picture was depicted in non t(8;21) cells where suppression of RAC1 and FLT3 led to decreased levels of FOXO3a and ROS. Results alltogether indicate a possible dysregulation of ROS levels by RUNX1/ETO in t(8,21) AML.
Collapse
Affiliation(s)
- Adam Azlan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Kang Zi Khor
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Aliaa Arina Rosli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | | | - Narazah Mohd Yusoff
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.
| |
Collapse
|
8
|
Richardson GE, Al-Rajabi R, Uprety D, Hamid A, Williamson SK, Baranda J, Mamdani H, Lee YL, Nitika, Li L, Wang X, Dong X. A Multicenter, Open-Label, Phase I/II Study of FN-1501 in Patients with Advanced Solid Tumors. Cancers (Basel) 2023; 15:2553. [PMID: 37174019 PMCID: PMC10177510 DOI: 10.3390/cancers15092553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND FN-1501, a potent inhibitor of receptor FMS-like tyrosine kinase 3 (FLT3) and CDK4/6, KIT, PDGFR, VEGFR2, ALK, and RET tyrosine kinase proteins, has demonstrated significant in vivo activity in various solid tumor and leukemia human xenograft models. Anomalies in FLT3 have an established role as a therapeutic target where the gene has been shown to play a critical role in the growth, differentiation, and survival of various cell types in hematopoietic cancer and have shown promise in various solid tumors. An open-label, Phase I/II study (NCT03690154) was designed to evaluate the safety and PK profile of FN-1501 as monotherapy in patients (pts) with advanced solid tumors and relapsed, refractory (R/R) AML. METHODS Pts received FN-1501 IV three times a week for 2 weeks, followed by 1 week off treatment in continuous 21-day cycles. Dose escalation followed a standard 3 + 3 design. Primary objectives include the determination of the maximum tolerated dose (MTD), safety, and recommended Phase 2 dose (RP2D). Secondary objectives include pharmacokinetics (PK) and preliminary anti-tumor activity. Exploratory objectives include the relationship between pharmacogenetic mutations (e.g., FLT3, TP53, KRAS, NRAS, etc.), safety, and efficacy; as well as an evaluation of the pharmacodynamic effects of treatment with FN-1501. Dose expansion at RP2D further explored the safety and efficacy of FN-1501 in this treatment setting. RESULTS A total of 48 adult pts with advanced solid tumors (N = 47) and AML (N = 1) were enrolled at doses ranging from 2.5 to 226 mg IV three times a week for two weeks in 21-day cycles (2 weeks on and 1 week off treatment). The median age was 65 years (range 30-92); 57% were female and 43% were male. The median number of prior lines of treatment was 5 (range 1-12). Forty patients evaluable for dose-limiting toxicity (DLT) assessment had a median exposure of 9.5 cycles (range 1-18 cycles). Treatment-related adverse events (TRAEs) were reported for 64% of the pts. The most common treatment-emergent adverse events (TEAEs), defined as those occurring in ≥20% of pts, primarily consisted of reversible Grade 1-2 fatigue (34%), nausea (32%), and diarrhea (26%). The most common Grade ≥3 events occurring in ≥5% of pts consisted of diarrhea and hyponatremia. Dose escalation was discontinued due to DLTs of Grade 3 thrombocytopenia (N = 1) and Grade 3 infusion-related reaction (N = 1) occurring in 2 pts. The maximum tolerated dose (MTD) was determined to be 170 mg. CONCLUSIONS FN-1501 demonstrated reasonable safety, tolerability, and preliminary activity against solid tumors in doses up to 170 mg. Dose escalation was terminated based on 2 DLTs occurring at the 226 mg dose level.
Collapse
Affiliation(s)
| | - Raed Al-Rajabi
- University of Kansas Cancer Center, Kansas City, KS 64114, USA
| | - Dipesh Uprety
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anis Hamid
- Cabrini Health, Malvern, VIC 3144, Australia
| | | | | | - Hirva Mamdani
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ya-Li Lee
- Fosun Pharma USA, Princeton, NJ 08540, USA
| | - Nitika
- Fosun Pharma USA, Princeton, NJ 08540, USA
| | - Li Li
- Fosun Pharma USA, Princeton, NJ 08540, USA
| | | | | |
Collapse
|
9
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
10
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|
11
|
Tong L, Wang P, Li X, Dong X, Hu X, Wang C, Liu T, Li J, Zhou Y. Identification of 2-Aminopyrimidine Derivatives as FLT3 Kinase Inhibitors with High Selectivity over c-KIT. J Med Chem 2022; 65:3229-3248. [PMID: 35138851 DOI: 10.1021/acs.jmedchem.1c01792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report two promising compounds 30 and 36 possessing nanomolar FLT3 inhibitory activities (IC50 = 1.5-7.2 nM), high selectivity over c-KIT (>1000-fold), and excellent anti-AML activity (MV4-11 IC50 = 0.8-3.2 nM). Furthermore, these two compounds efficiently inhibited the growth of multiple mutant BaF3 cells expressing FLT3-ITD, FLT3-D835V/F, FLT3-F691L, FLT3-ITD-F691L, and FLT3-ITD-D835Y. Oral administration of 30 and 36 at 6 mg/kg/d could significantly suppress tumor growth in the MV4-11 cell-inoculated xenograft model, exhibiting tumor growth inhibitory rates of 83.5% and 95.1%, respectively. Importantly, 36 could prolong the mouse survival time in the FLT3-ITD-TKD dual mutation syngeneic mouse model (BaF3-FLT3-ITD-D835Y) at a dose of 6 mg/kg p.o. bid/4W. No clear myelosuppression was observed in the treated group of 36 in the MPO strain of zebrafish, even at 10 μM. In summary, our data demonstrated that 36 may represent a promising candidate for the treatment of FLT3 mutant AML.
Collapse
Affiliation(s)
- Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China.,Hangzhou Institute of Innovative Medicine Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.,Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, P. R. China
| | - Chang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, P. R. China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, P. R. China
| |
Collapse
|
12
|
Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med 2021; 9:20503121211067083. [PMID: 34992782 PMCID: PMC8725032 DOI: 10.1177/20503121211067083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in cancer diagnosis, prevention, detection, as well as management, the disease is expected to be the top cause of death globally. The chemotherapy approach for cancer has become more advanced in its design, yet no medication can cure enough against all types of cancer and its stage. Thus, this review aimed to summarize a recent development of new therapeutic agents and novel drug targets for the treatment of cancer. Several obstacles stand in the way of effective cancer treatment and drug development, including inaccessibility of tumor site by appropriate drug concentration, debilitating untoward effects caused by non-selective tissue distribution of chemotherapeutic agents, and occurrence of drug resistance, which leads to cross-resistance to a variety of drugs. Resistance to treatment with anticancer drugs results from multiple factors and the most common reason for acquiring drug resistance is marking and expelling drugs that prevent cancer cells to be targeted by chemotherapeutic agents. Moreover, insensitivity to drug-induced apoptosis, alteration, and mutation of drug target and interference/change of DNA replication are other main causes of treatment failure.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Meklit Tadele
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Eyerusalem Alemu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tadele Gedamu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Golla U, Ehudin MA, Annageldiyev C, Zeng Z, Bastihalli Tukaramrao D, Tarren A, Date AA, Elcheva I, Berg A, Amin S, Loughran TP, Kester M, Desai D, Dovat S, Claxton D, Sharma A. DJ4 Targets the Rho-Associated Protein Kinase Pathway and Attenuates Disease Progression in Preclinical Murine Models of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:4889. [PMID: 34638385 PMCID: PMC8508452 DOI: 10.3390/cancers13194889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
The poor prognosis of acute myeloid leukemia (AML) and the highly heterogenous nature of the disease motivates targeted gene therapeutic investigations. Rho-associated protein kinases (ROCKs) are crucial for various actin cytoskeletal changes, which have established malignant consequences in various cancers, yet are still not being successfully utilized clinically towards cancer treatment. This work establishes the therapeutic activity of ROCK inhibitor (5Z)-2-5-(1H-pyrrolo[2,3-b]pyridine-3-ylmethylene)-1,3-thiazol-4(5H)-one (DJ4) in both in vitro and in vivo preclinical models of AML to highlight the potential of this class of inhibitors. Herein, DJ4 induced cytotoxic and proapoptotic effects in a dose-dependent manner in human AML cell lines (IC50: 0.05-1.68 μM) and primary patient cells (IC50: 0.264-13.43 μM); however, normal hematopoietic cells were largely spared. ROCK inhibition by DJ4 disrupts the phosphorylation of downstream targets, myosin light chain (MLC2) and myosin-binding subunit of MLC phosphatase (MYPT), yielding a potent yet selective treatment response at micromolar concentrations, from 0.02 to 1 μM. Murine models injected with luciferase-expressing leukemia cell lines subcutaneously or intravenously and treated with DJ4 exhibited an increase in overall survival and reduction in disease progression relative to the vehicle-treated control mice. Overall, DJ4 is a promising candidate to utilize in future investigations to advance the current AML therapy.
Collapse
Affiliation(s)
- Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (C.A.); (A.T.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
| | - Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (D.B.T.); (I.E.)
| | - Charyguly Annageldiyev
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (C.A.); (A.T.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
| | - Zheng Zeng
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (Z.Z.); (M.K.)
| | - Diwakar Bastihalli Tukaramrao
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (D.B.T.); (I.E.)
| | - Anna Tarren
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (C.A.); (A.T.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
| | - Abhijit A. Date
- The Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, HI 96720, USA;
| | - Irina Elcheva
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (D.B.T.); (I.E.)
| | - Arthur Berg
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
| | - Shantu Amin
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (Z.Z.); (M.K.)
| | - Thomas P. Loughran
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
| | - Mark Kester
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (Z.Z.); (M.K.)
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (Z.Z.); (M.K.)
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (D.B.T.); (I.E.)
| | - David Claxton
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (C.A.); (A.T.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
| | - Arati Sharma
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (C.A.); (A.T.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.B.); (S.A.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (Z.Z.); (M.K.)
| |
Collapse
|
14
|
Protein Kinases in Leukemias. Cancers (Basel) 2021; 13:cancers13112747. [PMID: 34206000 PMCID: PMC8198986 DOI: 10.3390/cancers13112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
|
15
|
Ishitsuka Y, Hanaoka Y, Tanemura A, Fujimoto M. Cutaneous Squamous Cell Carcinoma in the Age of Immunotherapy. Cancers (Basel) 2021; 13:1148. [PMID: 33800195 PMCID: PMC7962464 DOI: 10.3390/cancers13051148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent skin cancer globally. Because most cSCC cases are manageable by local excision/radiotherapy and hardly become life-threatening, they are often excluded from cancer registries in most countries. Compared with cutaneous melanoma that originates from the melanin-producing, neural crest-derived epidermal resident, keratinocyte (KC)-derived cancers are influenced by the immune system with regards to their pathogenetic behaviour. Congenital or acquired immunosurveillance impairments compromise tumoricidal activity and raises cSCC incidence rates. Intriguingly, expanded applications of programmed death-1 (PD-1) blockade therapies have revealed cSCC to be one of the most amenable targets, particularly when compared with the mucosal counterparts arisen in the esophagus or the cervix. The clinical observation reminds us that cutaneous tissue has a peculiarly high immunogenicity that can evoke tumoricidal recall responses topically. Here we attempt to redefine cSCC biology and review current knowledge about cSCC from multiple viewpoints that involve epidemiology, clinicopathology, molecular genetics, molecular immunology, and developmental biology. This synthesis not only underscores the primal importance of the immune system, rather than just a mere accumulation of ultraviolet-induced mutations but also reinforces the following hypothesis: PD-1 blockade effectively restores the immunity specially allowed to exist within the fully cornified squamous epithelium, that is, the epidermis.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.H.); (A.T.); (M.F.)
| | | | | | | |
Collapse
|