1
|
Sun L, Lu T, Jiang L, Yao H, Xu Q, Sun J, Yang X, He S, Zhu X. ALDOA contributes to colorectal tumorigenesis and metastasis by targeting YAP. Cell Death Discov 2025; 10:489. [PMID: 39755705 DOI: 10.1038/s41420-024-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
Abstract
Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers. The current study aimed to investigate the role of ALDOA in the initiation and development of colorectal cancer (CRC). In this study, we observed an elevated expression of ALDOA in human CRC tissues and a positive correlation of elevated ALDOA expression with tumor size, invasion depth, LNM, and TNM stage. Kaplan-Meier analysis revealed that elevated ALDOA levels correlated with a poor prognosis in CRC patients with stage I-III, whereas the prognosis tends to be favorable in patients with advanced CRC. In addition, loss of function and gain of function experiments showed that ALDOA promoted CRC cell proliferation and migration in vitro and in vivo. Mechanistically, high ALDOA expression inhibited AMP-activated protein kinase (AMPK) phosphorylation possibly through regulating cellular glycolysis or the formation of v-ATPase-regulator-AXIN/LKB1 complex, which led to Yes-associated protein (YAP) unphosphorylation and enhanced the proliferative and migratory potential of CRC cells. Finally, the positive correlation between ALDOA and YAP signaling was also confirmed in clinical CRC tissues and the public data. Herein, ALDOA was identified to be a new metabolic regulator of YAP that suppresses the activation of AMPK signaling. This could suggest a novel avenue for treating CRC by inhibiting both ALDOA and YAP signaling.
Collapse
Affiliation(s)
- Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Lu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qixuan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqin Yang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Mouillet-Richard S, Cazelles A, Sroussi M, Gallois C, Taieb J, Laurent-Puig P. Clinical Challenges of Consensus Molecular Subtype CMS4 Colon Cancer in the Era of Precision Medicine. Clin Cancer Res 2024; 30:2351-2358. [PMID: 38564259 PMCID: PMC11145159 DOI: 10.1158/1078-0432.ccr-23-3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Over the past decade, our understanding of the diversity of colorectal cancer has expanded significantly, raising hopes of tailoring treatments more precisely for individual patients. A key achievement in this direction was the establishment of the consensus molecular classification, particularly identifying the challenging consensus molecular subtype (CMS) CMS4 associated with poor prognosis. Because of its aggressive nature, extensive research is dedicated to the CMS4 subgroup. Recent years have unveiled molecular and microenvironmental features at the tissue level specific to CMS4 colorectal cancer. This has paved the way for mechanistic studies and the development of preclinical models. Simultaneously, efforts have been made to easily identify patients with CMS4 colorectal cancer. Reassessing clinical trial results through the CMS classification lens has improved our understanding of the therapeutic challenges linked to this subtype. Exploration of the biology of CMS4 colorectal cancer is yielding potential biomarkers and novel treatment approaches. This overview aims to provide insights into the clinico-biological characteristics of the CMS4 subgroup, the molecular pathways driving this subtype, and available diagnostic options. We also emphasize the therapeutic challenges associated with this subtype, offering potential explanations. Finally, we summarize the current tailored treatments for CMS4 colorectal cancer emerging from fundamental and preclinical studies.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Antoine Cazelles
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Gallois
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Gastroenterology and Gastrointestinal Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Taieb
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Gastroenterology and Gastrointestinal Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| |
Collapse
|
4
|
Mouillet-Richard S, Gougelet A, Passet B, Brochard C, Le Corre D, Pitasi CL, Joubel C, Sroussi M, Gallois C, Lavergne J, Castille J, Vilotte M, Daniel-Carlier N, Pilati C, de Reyniès A, Djouadi F, Colnot S, André T, Taieb J, Vilotte JL, Romagnolo B, Laurent-Puig P. Wnt, glucocorticoid and cellular prion protein cooperate to drive a mesenchymal phenotype with poor prognosis in colon cancer. J Transl Med 2024; 22:337. [PMID: 38589873 PMCID: PMC11003154 DOI: 10.1186/s12967-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS In silico analyses combined with cell-based assays identified the Wnt-β-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, β-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| | - Angélique Gougelet
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camille Brochard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Pathology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Delphine Le Corre
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Camille Joubel
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Marine Sroussi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Claire Gallois
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Lavergne
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Histology, Imaging and Cytometry Center (CHIC), Paris, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Nathalie Daniel-Carlier
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camilla Pilati
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Fatima Djouadi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Sabine Colnot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Thierry André
- Saint-Antoine Hospital, INSERM, Unité Mixte de Recherche Scientifique 938, Sorbonne Université, Paris, France
| | - Julien Taieb
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France.
| |
Collapse
|
5
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
6
|
Franklin JM, Wu Z, Guan KL. Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00579-1. [PMID: 37308716 DOI: 10.1038/s41568-023-00579-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/14/2023]
Abstract
Decades of research have mapped out the basic mechanics of the Hippo pathway. The paralogues Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), as the central transcription control module of the Hippo pathway, have long been implicated in the progression of various human cancers. The current literature regarding oncogenic YAP and TAZ activities consists mostly of context-specific mechanisms and treatments of human cancers. Furthermore, a growing number of studies demonstrate tumour-suppressor functions of YAP and TAZ. In this Review we aim to synthesize an integrated perspective of the many disparate findings regarding YAP and TAZ in cancer. We then conclude with the various strategies for targeting and treating YAP- and TAZ-dependent cancers.
Collapse
Affiliation(s)
- J Matthew Franklin
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Wang CH, Baskaran R, Ng SSC, Wang TF, Li CC, Ho TJ, Hsieh DJY, Kuo CH, Chen MC, Huang CY. Platycodin D confers oxaliplatin Resistance in Colorectal Cancer by activating the LATS2/YAP1 axis of the hippo signaling pathway. J Cancer 2023; 14:393-402. [PMID: 36860929 PMCID: PMC9969589 DOI: 10.7150/jca.77322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
Oxaliplatin-based therapy is used as a first-line drug to treat metastatic colorectal cancer. However, long-term and repeated drug treatment resulted in drug resistance and the failure of chemotherapy. Various natural compounds were previously reported to act as chemosensitizers to reverse drug resistance. In this study, we found that platycodin D (PD), a saponin found in Platycodon grandiflorum, inhibited LoVo and OR-LoVo cells proliferation, invasion, and migration ability. Our results indicated that combined treatment of oxaliplatin with PD dramatically reduced the cellular proliferation in both LoVo and OR-LoVo cells. Furthermore, treatment with PD dose-dependently decreased LATS2/YAP1 hippo signaling and survival marker p-AKT expression, as well as increased cyclin-dependent kinase inhibitor proteins such as p21 and p27 expression. Importantly, PD activates and promotes YAP1 degradation through the ubiquitination and proteasome pathway. The nuclear transactivation of YAP was significantly reduced under PD treatment, leading to transcriptional inhibition of the downstream genes regulating cell proliferation, pro-survival, and metastasis. In conclusion, our results showed that PD is suitable as a promising agent for overcoming oxaliplatin-resistant colorectal cancer.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Shawn Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan,Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,✉ Corresponding author: Chih-Yang Huang Ph.D., Chair Professor, Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Tel: +886-4-22053366 ext 3313. Fax: +886-4-22032295. E-mail address:
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan,Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan,Department of Biotechnology, Asia University, Taichung 413, Taiwan,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan,✉ Corresponding author: Chih-Yang Huang Ph.D., Chair Professor, Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Tel: +886-4-22053366 ext 3313. Fax: +886-4-22032295. E-mail address:
| |
Collapse
|
8
|
Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. NATURE CANCER 2023; 4:9-26. [PMID: 36564601 PMCID: PMC7614914 DOI: 10.1038/s43018-022-00473-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Our understanding of the function of the transcriptional regulators YAP and TAZ (YAP/TAZ) in cancer is advancing. In this Review, we provide an update on recent progress in YAP/TAZ biology, their regulation by Hippo signaling and mechanotransduction and highlight open questions. YAP/TAZ signaling is an addiction shared by multiple tumor types and their microenvironments, providing many malignant attributes. As such, it represents an important vulnerability that may offer a broad window of therapeutic efficacy, and here we give an overview of the current treatment strategies and pioneering clinical trials.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
9
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
10
|
Wang Y, Nie H, Li H, Liao Z, Yang X, He X, Ma J, Zhou J, Ou C. The Hippo Pathway Effector Transcriptional Co-activator With PDZ-Binding Motif Correlates With Clinical Prognosis and Immune Infiltration in Colorectal Cancer. Front Med (Lausanne) 2022; 9:888093. [PMID: 35865173 PMCID: PMC9295930 DOI: 10.3389/fmed.2022.888093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The transcriptional co-activator with PDZ-binding motif (TAZ) is a downstream effector of the Hippo pathway. It has been identified as an oncogene in certain tumor types; however, the function and role of TAZ in colorectal cancer (CRC) has not been illustrated. Here, we aimed to analyze the expression and role of TAZ in CRC. In this study, we investigated the expression level of TAZ in 127 CRC and matched adjacent normal tissues by immunohistochemistry (IHC) and analyzed its correlation with clinicopathological characteristics in CRC. Moreover, we further analyzed the role of TAZ in the CRC-associated immunology using integrative bioinformatic analyses. The cBioPortal and WebGestalt database were used to analyze the co-expressed genes and related pathways of TAZ in CRC by gene ontology (GO) and KEGG enrichment analyses. Meanwhile, the correlations between TAZ and the infiltrating immune cells and gene markers were analyzed by TIMER database. Our study revealed that TAZ expression is higher in CRC tissues than in matched adjacent non-tumor tissues. In addition, CRC patients with higher TAZ expression demonstrated poor overall survival (OS) and recurrent-free survival rates as compared to CRC patients with lower expression of TAZ. Furthermore, the TAZ expression was identified to closely associate with the immune infiltration of CD4 + T, CD8 + T, and B cells. Taken together, our findings suggest that TAZ may serve as a promising prognostic biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiling Li
- Department of Pathology, Rizhao City People’s Hospital, Rizhao, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Department of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Chunlin Ou,
| |
Collapse
|
11
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
12
|
Takeda T, Yamamoto Y, Tsubaki M, Matsuda T, Kimura A, Shimo N, Nishida S. PI3K/Akt/YAP signaling promotes migration and invasion of DLD‑1 colorectal cancer cells. Oncol Lett 2022; 23:106. [DOI: 10.3892/ol.2022.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Yuuta Yamamoto
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Akihiro Kimura
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Natsumi Shimo
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi‑Osaka, Osaka 577‑8502, Japan
| |
Collapse
|
13
|
Mouillet-Richard S, Ghazi A, Laurent-Puig P. The Cellular Prion Protein and the Hallmarks of Cancer. Cancers (Basel) 2021; 13:cancers13195032. [PMID: 34638517 PMCID: PMC8508458 DOI: 10.3390/cancers13195032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary The cellular prion protein PrPC is best known for its involvement, under its pathogenic isoform, in a group of neurodegenerative diseases. Notwithstanding, an emerging role for PrPC in various cancer-associated processes has attracted increasing attention over recent years. PrPC is overexpressed in diverse types of solid cancers and has been incriminated in various aspects of cancer biology, most notably proliferation, migration, invasion and metastasis, as well as resistance to cytotoxic agents. This article aims to provide a comprehensive overview of the current knowledge of PrPC with respect to the hallmarks of cancer, a reference framework encompassing the major characteristics of cancer cells. Abstract Beyond its causal involvement in a group of neurodegenerative diseases known as Transmissible Spongiform Encephalopathies, the cellular prion protein PrPC is now taking centre stage as an important contributor to cancer progression in various types of solid tumours. The prion cancer research field has progressively expanded in the last few years and has yielded consistent evidence for an involvement of PrPC in cancer cell proliferation, migration and invasion, therapeutic resistance and cancer stem cell properties. Most recent data have uncovered new facets of the biology of PrPC in cancer, ranging from its control on enzymes involved in immune tolerance to its radio-protective activity, by way of promoting angiogenesis. In the present review, we aim to summarise the body of literature dedicated to the study of PrPC in relation to cancer from the perspective of the hallmarks of cancer, the reference framework defined by Hanahan and Weinberg.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Correspondence:
| | - Alexandre Ghazi
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Department of Biology, Institut du Cancer Paris CARPEM, APHP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| |
Collapse
|
14
|
Qian X, Zhang W, Yang H, Zhang L, Kang N, Lai J. Role of Yes-associated Protein-1 in Gastrointestinal Cancers and Hepatocellular Carcinoma. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 6:110-117. [PMID: 34589656 PMCID: PMC8478289 DOI: 10.14218/erhm.2021.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Yes-associated protein-1 (YAP1) is a potent transcriptional co-activator and functions as an important downstream effector of the Hippo signaling pathway, which is key to regulating cell proliferation, apoptosis, and organ growth. YAP1 has been implicated as an oncogene for various human cancers including gastrointestinal cancers and hepatocellular carcinoma (HCC). YAP1 promotes tumorigenesis and cancer progression by multiple mechanisms, such as by promoting malignant phenotypes, expanding cancer stem cells, and inducing epithelial-mesenchymal transition. YAP1 overexpression or its activated forms are associated with advanced pathological grades and poor prognosis of cancer, and therefore targeting YAP1 may open a fertile avenue for cancer therapy. In this review, we summarize the recent evidence regarding the role of YAP1 in the carcinogenesis of gastrointestinal cancers and HCC.
Collapse
Affiliation(s)
- Xia Qian
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Hua Yang
- Department of Ophthalmology, Emory Eye Center, Emory University, Atlanta, GA, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical center, Rutgers University, Plainsboro, NJ, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, USA
- Correspondence to: Jinping Lai, Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825, USA. Tel:+1 916-973-7260, Fax:+1 916-973-7283,
| |
Collapse
|
15
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
16
|
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett 2021; 507:112-123. [PMID: 33737002 PMCID: PMC10370464 DOI: 10.1016/j.canlet.2021.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Hippo pathway is a master regulator of development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size control. Hippo pathway relays signals from different extracellular and intracellular events to regulate cell behavior and functions. Hippo pathway is conserved from Protista to eukaryotes. Deregulation of the Hippo pathway is associated with numerous cancers. Alteration of the Hippo pathway results in cell invasion, migration, disease progression, and therapy resistance in cancers. However, the function of the various components of the mammalian Hippo pathway is yet to be elucidated in detail especially concerning tumor biology. In the present review, we focused on the Hippo pathway in different model organisms, its regulation and deregulation, and possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, LSUHSC, Shreveport, USA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Mousa Vatanmakarian
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | | | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Sweaty Koul
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Urology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA.
| |
Collapse
|
17
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|