1
|
Muilwijk T, Baekelandt L, Akand M, Daelemans S, Marien K, Waumans Y, van Dam PJ, Kockx M, Van den Broeck T, Van Cleynenbreugel B, Van der Aa F, Gevaert T, Joniau S. Fibroblast Activation Protein-α and the Immune Landscape: Unraveling T1 Non-muscle-invasive Bladder Cancer Progression. EUR UROL SUPPL 2024; 66:67-74. [PMID: 39044944 PMCID: PMC11263494 DOI: 10.1016/j.euros.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background and objective The tumor microenvironment (TME) in non-muscle-invasive bladder cancer (NMIBC) plays an important role in the anticancer response. We aimed to identify the prognostic biomarkers in the TME of patients with NMIBC for progression to ≥T2. Methods From our institutional database, 40 patients with T1 high-risk NMIBC who progressed were pair matched for Club Urologico Español de Tratamiento Oncologico (CUETO) progression variables with 80 patients who never progressed despite longer follow-up. Progression was defined as ≥T2 or extravesical disease. Patients were treated at least with bacillus Calmette-Guérin (BCG) induction (five or more of six doses). Immunohistochemical (IHC) markers for the TME were used on tissue at first T1 diagnosis: CD8-PanCK, GZMB-CD8-FOXP3, CD163, PD-L1 SP142/SP263, fibroblast activation protein-α (FAP), and CK5-GATA3. Full tissue slides were annotated digitally. Relative marker area (IHC-positive area/total area) or density (IHC-positive cells per area; n/mm2) was calculated, differentiating between regions of interest (ROIs; T1, Ta, and carcinoma in situ) and between compartments (stromal, epithelial, and combined). Differences in IHC variables were assessed using the t test, for continuous variables using analysis of variance and comparisons of more than two groups using Tukey's test. Conditional logistic regression for progression at 5-yr follow-up was performed with clusters based on pair matching. Key findings and limitations Only FAP expression (increase per 50%) in T1 (odds ratio [OR]: 1.33; 95% confidence interval [CI]: 1.04-1.70) and all ROIs combined (OR: 1.62; 95% CI: 1.14-2.29) correlated significantly with progression. None of the other clinicopathological/IHC variables correlated with progression. Conclusions and clinical implications FAP is a potential prognostic biomarker for progression in high-risk NMIBC. FAP is a marker for cancer-associated fibroblasts and is linked to immunosuppression and neoangiogenesis, which makes future investigation clinically relevant. Patient summary We found that progression of high-risk non-muscle-invasive bladder cancer to muscle-invasive disease is less in patients with lower fibroblast activation protein-α (FAP) expression, which is a marker for cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Sofie Daelemans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
- Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Marien
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Yannick Waumans
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Pieter-Jan van Dam
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | - Mark Kockx
- Pathology – Histology, Imaging and Quantification, CellCarta, Antwerp, Belgium
| | | | | | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| | - Thomas Gevaert
- Organ Systems, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Organ Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Dziadek S, Kraxner A, Cheng WY, Ou Yang TH, Flores M, Theiss N, Tsao TS, Andersson E, Harring SV, Bröske AME, Ceppi M, Teichgräber V, Charo J. Comprehensive analysis of fibroblast activation protein expression across 23 tumor indications: insights for biomarker development in cancer immunotherapies. Front Immunol 2024; 15:1352615. [PMID: 38558814 PMCID: PMC10981271 DOI: 10.3389/fimmu.2024.1352615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Fibroblast activation protein (FAP) is predominantly upregulated in various tumor microenvironments and scarcely expressed in normal tissues. Methods We analyzed FAP across 1216 tissue samples covering 23 tumor types and 70 subtypes. Results Elevated FAP levels were notable in breast, pancreatic, esophageal, and lung cancers. Using immunohistochemistry and RNAseq, a correlation between FAP gene and protein expression was found. Evaluating FAP's clinical significance, we assessed 29 cohorts from 12 clinical trials, including both mono and combination therapies with the PD-L1 inhibitor atezolizumab and chemotherapy. A trend links higher FAP expression to poorer prognosis, particularly in RCC, across both treatment arms. However, four cohorts showed improved survival with high FAP, while in four others, FAP had no apparent survival impact. Conclusions Our results emphasize FAP's multifaceted role in therapy response, suggesting its potential as a cancer immunotherapy biomarker.
Collapse
Affiliation(s)
- Sebastian Dziadek
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anton Kraxner
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Wei-Yi Cheng
- Roche Pharma Research and Early Development, Data and Analytics, Roche Translational & Clinical Research Center, F. Hoffmann-La Roche Ltd, Little Falls, NJ, United States
| | - Tai-Hsien Ou Yang
- Roche Pharma Research and Early Development, Data and Analytics, Roche Translational & Clinical Research Center, F. Hoffmann-La Roche Ltd, Little Falls, NJ, United States
| | - Mike Flores
- Roche Tissue Diagnostics, Tucson, AZ, United States
| | - Noah Theiss
- Roche Tissue Diagnostics, Tucson, AZ, United States
| | | | - Emilia Andersson
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Suzana Vega Harring
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Marie E. Bröske
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Maurizio Ceppi
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Volker Teichgräber
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jehad Charo
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center Zurich, Roche Glycart AG, Schlieren, Switzerland
| |
Collapse
|
3
|
龙 世, 吴 翠, 曾 柱. [The Three-dimensional Environment of Type Ⅰ Collagen Gels With Varying Stiffness Modulates the Immunological Functions of NK Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:81-86. [PMID: 38322517 PMCID: PMC10839474 DOI: 10.12182/20240160401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 02/08/2024]
Abstract
Objective To construct type Ⅰ collagen gels with different stiffness and to investigate the effects of three-dimensional (3D) culture environments of the gels on the morphology, free migration ability, and cell killing function of natural killer (NK) cells. Methods Type Ⅰ collagen was isolated from the tails of Sprague Dawley (SD) rats and collagen gels with different levels of stiffnesses were prepared accordingly. The microstructure of the collagen gels was observed by laser confocal microscopy. The stiffness of the collagen gels was assessed by measuring the plateau modulus with a rheometer. NK-92MI cells were cultured in collagen gels with different levels of stiffness. The morphology of NK-92MI cells was observed by inverted microscope. High content imaging system was used to record the free migration process of NK-92MI cells and analyze the migration speed and distance. NK-92MI cells were cultured with type Ⅰ collagen gels with different levels of stiffness for 24 h and 48 h and, then, co-cultured with human colorectal DLD-1, a human adenocarcinoma epithelial cell line. CCK8 assay was performed to determine the proliferation rate of DLD-1 cells and analyze the cell killing ability of NK-92MI cells. Results Low-stiffness type Ⅰ collagen gel and high-stiffness type Ⅰ collagen gel with the respective stiffness of (10.970±2.10) Pa and (114.50±3.40) Pa were successfully prepared. Compared with those cultured with the low-stiffness type Ⅰ collagen gel, the NK-92MI cells in the high-stiffness type Ⅰ collagen gel showed a more elongated shape (P<0.05), the mean area of the cells was reduced ([69.88±26.97] μm2 vs. [46.59±21.62] μm2, P<0.05), the roundness of the cells decreased (0.82±0.12 vs. 0.78±0.18, P<0.05), cell migration speed decreased ([2.50±0.91] μm/min vs. [1.70±0.72] μm/min, P<0.001) and the migration distance was shortened ([147.10±53.74] μm vs. [98.03± 40.95] μm, P<0.0001), with all the differences being statistically significant. Compared with those cultured with the low-stiffness type Ⅰ collagen gel, NK-92MI cells cultured with high-stiffness type Ⅰ collagen gel for 24 h could promote DLD-1 cell proliferation, with the proliferation rate being (46.39±12.79)% vs. (65.87±4.45)% (P<0.05) and reduce the cell killing ability. Comparison of the cells cultured for 48 h led to similar results, with the proliferation rates being (31.36±2.88)% vs. (74.57±2.16)% (P<0.05), and the differences were all statistically significant. Conclusion The 3D culture environment of type Ⅰ collagen gels with different levels of stiffness alters the morphology, migration ability, and killing function of NK-92MI cells. This study provides the research basis for exploring and understanding the mechanisms by which the biomechanical microenvironment affects the immune response of NK cells, as well as laying the theoretical foundation for optimizing immunotherapy protocols.
Collapse
Affiliation(s)
- 世棋 龙
- 贵州医科大学基础医学院/生物与工程学院 免疫学教研室 (贵阳 550029)School of Basic Medicine/School of Biology and Engineering, Guizhou Medical University, Guiyang 550029, China
| | - 翠芳 吴
- 贵州医科大学基础医学院/生物与工程学院 免疫学教研室 (贵阳 550029)School of Basic Medicine/School of Biology and Engineering, Guizhou Medical University, Guiyang 550029, China
| | - 柱 曾
- 贵州医科大学基础医学院/生物与工程学院 免疫学教研室 (贵阳 550029)School of Basic Medicine/School of Biology and Engineering, Guizhou Medical University, Guiyang 550029, China
| |
Collapse
|
4
|
Greimelmaier K, Klopp N, Mairinger E, Wessolly M, Borchert S, Steinborn J, Schmid KW, Wohlschlaeger J, Mairinger FD. Fibroblast activation protein-α expression in fibroblasts is common in the tumor microenvironment of colorectal cancer and may serve as a therapeutic target. Pathol Oncol Res 2023; 29:1611163. [PMID: 37614665 PMCID: PMC10442481 DOI: 10.3389/pore.2023.1611163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Background: Colorectal cancer (CRC) is still one of the leading causes of cancer death worldwide, emphasizing the need for further diagnostic and therapeutic approaches. Cancer invasion and metastasis are affected by the tumor microenvironment (TME), with cancer-associated fibroblasts (CAF) being the predominant cellular component. An important marker for CAF is fibroblast activation protein-α (FAP) which has been evaluated as therapeutic target for, e.g., radioligand therapy. The aim of this study was to examine CRC regarding the FAP expression as a candidate for targeted therapy. Methods: 67 CRC, 24 adenomas, 18 tissue samples of inflammation sites and 28 non-neoplastic, non-inflammatory tissue samples of colonic mucosa were evaluated for immunohistochemical FAP expression of CAF in tissue microarrays. The results were correlated with clinicopathological data, tumor biology and concurrent expression of additional immunohistochemical parameters. Results: 53/67 (79%) CRC and 6/18 (33%) inflammatory tissue specimens showed expression of FAP. However, FAP was only present in 1/24 (4%) adenomas and absent in normal mucosa (0/28). Thus, FAP expression in CRC was significantly higher than in the other investigated groups. Within the CRC cohort, expression of FAP did not correlate with tumor stage, grading or the MSI status. However, it was observed that tumors exhibiting high immunohistochemical expression of Ki-67, CD3, p53, and β-Catenin showed a significantly higher incidence of FAP expression. Conclusion: In the crosstalk between tumor cells and TME, CAF play a key role in carcinogenesis and metastatic spread. Expression of FAP was detectable in the majority of CRC but nearly absent in precursor lesions and non-neoplastic, non-inflammatory tissue. This finding indicates that FAP has the potential to emerge as a target for new diagnostic and therapeutic concepts in CRC. Additionally, the association between FAP expression and other immunohistochemical parameters displays the interaction between different components of the TME and demands further investigation.
Collapse
Affiliation(s)
- K. Greimelmaier
- Institut für Pathologie, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - N. Klopp
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| | - E. Mairinger
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| | - M. Wessolly
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| | - S. Borchert
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| | - J. Steinborn
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| | - K. W. Schmid
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| | - J. Wohlschlaeger
- Institut für Pathologie, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - F. D. Mairinger
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
5
|
Gabriel EM, Sukniam K, Popp K, Bagaria SP. Human intravital microscopy in the study of sarcomas: an early trial of feasibility. Front Oncol 2023; 13:1151255. [PMID: 37124504 PMCID: PMC10130404 DOI: 10.3389/fonc.2023.1151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Sarcomas comprise a vast and heterogenous group of rare tumors. Because of their diversity, it is challenging to study sarcomas as a whole with regard to their biological and molecular characteristics. This diverse set of tumors may also possess differences related to their tumor-associated vasculature, which in turn may impact the ability to deliver systemic therapies (e.g., chemotherapy, targeted therapies, and immunotherapy). Consequently, response to systemic treatment may also be variable as these depend on the ability of the therapy to reach the tumor target via the tumor-associated vasculature. There is a paucity of data regarding sarcoma-related tumor vessels, likely in part to the rarity and heterogeneity of this cancer as well as the previously limited ability to image tumor-associated vessels in real time. Our group has previously utilized confocal fluorescent imaging technology to observe and characterize tumor-associated vessels in real time during surgical resection of tumors, including cutaneous melanoma and carcinomatosis implants derived from gastrointestinal, gynecological, or primary peritoneal (e.g., mesothelioma) tumors. Our prior studies have demonstrated the feasibility of real-time, human intravital microscopy in the study of these tumor types, leading to early but important new data regarding tumor vessel characteristics and their potential implications on drug delivery and efficacy. In this brief report, we present our latest descriptive findings in a cohort of patients with sarcoma who underwent surgical resection and real-time, intravital microscopy of their tumors. Overall, intravital imaging was feasible during the surgical resection of large sarcomas. Clinical trial registrations ClinicalTrials.gov, identifier NCT03517852; ClinicalTrials.gov, identifier NCT03823144.
Collapse
Affiliation(s)
- Emmanuel M. Gabriel
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Emmanuel M. Gabriel,
| | - Kulkaew Sukniam
- Department of General Surgery, Philadelphia College of Osteopathic Medicine, Suwanee, GA, United States
| | - Kyle Popp
- Florida State University, Tallahassee, FL, United States
| | - Sanjay P. Bagaria
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
6
|
Zheng X, Jiang K, Xiao W, Zeng D, Peng W, Bai J, Chen X, Li P, Zhang L, Zheng X, Miao Q, Wang H, Wu S, Xu Y, Xu H, Li C, Li L, Gao X, Zheng S, Li J, Wang D, Zhou Z, Xia X, Yang S, Li Y, Cui Z, Zhang Q, Chen L, Lin X, Lin G. CD8 + T cell/cancer-associated fibroblast ratio stratifies prognostic and predictive responses to immunotherapy across multiple cancer types. Front Immunol 2022; 13:974265. [PMID: 36439099 PMCID: PMC9682254 DOI: 10.3389/fimmu.2022.974265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 09/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are critical for immune suppression by restricting immune cell infiltration in the tumor stromal zones from penetrating tumor islands and changing their function status, particularly for CD8+ T cells. However, assessing and quantifying the impact of CAFs on immune cells and investigating how this impact is related to clinical outcomes, especially the efficacy of immunotherapy, remain unclear. Materials and methods The TME was characterized using immunohistochemical (IHC) analysis using a large-scale sample size of gene expression profiles. The CD8+ T cell/CAF ratio (CFR) association with survival was investigated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) lung cancer cohorts. The correlation between CFR and immunotherapeutic efficacy was computed in five independent cohorts. The correlation between CFR and objective response rates (ORRs) following pembrolizumab monotherapy was investigated in 20 solid tumor types. To facilitate clinical translation, the IHC-detected CD8/α-SMA ratio was applied as an immunotherapeutic predictive biomarker in a real-world lung cancer cohort. Results Compared with normal tissue, CAFs were enriched in cancer tissue, and the amount of CAFs was overwhelmingly higher than that in other immune cells. CAFs are positively correlated with the extent of immune infiltration. A higher CFR was strongly associated with improved survival in lung cancer, melanoma, and urothelial cancer immunotherapy cohorts. Within most cohorts, there was no clear evidence for an association between CFR and programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB). Compared with TMB and PD-L1, a higher correlation coefficient was observed between CFR and the ORR following pembrolizumab monotherapy in 20 solid tumor types (Spearman's r = 0.69 vs. 0.44 and 0.21). In a real-world cohort, patients with a high CFR detected by IHC benefited considerably from immunotherapy as compared with those with a low CFR (hazard ratio, 0.37; 95% confidence interval, 0.19-0.75; p < 0.001). Conclusions CFR is a newly found and simple parameter that can be used for identifying patients unlikely to benefit from immunotherapy. Future studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Xinlong Zheng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Kan Jiang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Weijin Xiao
- Department of Pathology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Dongqiang Zeng
- Department of Oncology, Southern Medical University, Guangzhou, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Jing Bai
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Pansong Li
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Longfeng Zhang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Xiaobin Zheng
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Qian Miao
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Haibo Wang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Shiwen Wu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Haipeng Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Chao Li
- Department of Pathology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Lifeng Li
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xuan Gao
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Suya Zheng
- Chinese People’s Liberation Army 92403 Unit Support Department, Navy Fujian Base Hospital, Fuzhou, China
| | - Junhui Li
- Department of Medical Genetics and Genomics, National Protein Science Center, Beijing, China
| | - Deqiang Wang
- Department of Medical Oncology, Cancer Therapy Center, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Zhou
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Xuefeng Xia
- R&D Department, Geneplus-Beijing Institute, Beijing, China
| | - Shanshan Yang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yujing Li
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Ling Chen
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| |
Collapse
|
7
|
Zhao Y, Liu Y, Jia Y, Wang X, He J, Zhen S, Wang J, Liu L. Fibroblast activation protein in the tumor microenvironment predicts outcomes of PD-1 blockade therapy in advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04250-4. [PMID: 35951090 DOI: 10.1007/s00432-022-04250-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The identification of robust predictive biomarkers of the response to programmed cell death-1 (PD-1) blockade remains a critical concern. Here, we investigated on fibroblast activation protein (FAP) as a microenvironment-derived biomarker of clinical outcomes of PD-1 blockade therapy, and the correlation between FAP expression and T cell infiltration in advanced non-small cell lung cancer (NSCLC). METHODS A total of 135 patients with advanced NSCLC who received PD-1 blockade therapy were retrospectively analyzed. The potential associations among FAP expression, CD3 + T cell and CD8 + T cell infiltration, and clinical outcomes of immunotherapy were validated by immunohistochemistry, bioinformatic analyses, and statistical measurements. RESULTS FAP was widely expressed in advanced NSCLC tissues. FAP was correlated with decreased density of CD8 + T cells (Spearman's rho - 0.32, p < 0.001) and immunosuppressive tumor microenvironment (TME) status. No correlations were detected between FAP and PD-L1 expression or with the density of CD3 + T cells. The patients with higher expression of FAP showed worse response rate (16.4% vs. 38.7%, p < 0.001) and worse progression-free survival (HR = 2.56, 95% CI 1.69-3.87, p < 0.001). In addition, FAP contributed to shortened overall survival in subgroups of the patients with squamous cell lung cancer (p = 0.020), PD-1 blockade monotherapy (p = 0.017), and first-line therapy (p = 0.028). CONCLUSION FAP is a potential predictive biomarker of resistance to PD-1 blockade. Further investigation is warranted to identify a strategy for targeting FAP to alleviate the immunosuppressive TME and broaden the clinical effectiveness of PD-1 blockade therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China.,Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Xiaoxiao Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiankun He
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shuman Zhen
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Jiali Wang
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China. .,Cancer Research Institute of Hebei Province, Shijiazhuang, 050011, China. .,China International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
8
|
Koppensteiner L, Mathieson L, O’Connor RA, Akram AR. Cancer Associated Fibroblasts - An Impediment to Effective Anti-Cancer T Cell Immunity. Front Immunol 2022; 13:887380. [PMID: 35479076 PMCID: PMC9035846 DOI: 10.3389/fimmu.2022.887380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of functionally efficient cytotoxic T lymphocytes (CTL) in the Tumour nest is crucial in mediating a successful immune response to cancer. The detection and elimination of cancer cells by CTL can be impaired by cancer-mediated immune evasion. In recent years, it has become increasingly clear that not only neoplastic cells themselves, but also cells of the tumour microenvironment (TME) exert immunosuppressive functions and thereby play an integral part in the immune escape of cancer. The most abundant stromal cells of the TME, cancer associated fibroblasts (CAFs), promote tumour progression via multiple pathways and play a role in dampening the immune response to cancer. Recent research indicates that T cells react to CAF signalling and establish bidirectional crosstalk that plays a significant role in the tumour immune response. This review discusses the various mechanisms by which the CAF/T cell crosstalk may impede anti-cancer immunity.
Collapse
Affiliation(s)
- Lilian Koppensteiner
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Layla Mathieson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Hu S, Qu X, Jiao Y, Hu J, Wang B. Immune Classification and Immune Landscape Analysis of Triple-Negative Breast Cancer. Front Genet 2021; 12:710534. [PMID: 34795691 PMCID: PMC8593253 DOI: 10.3389/fgene.2021.710534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Background: To classify triple-negative breast cancer (TNBC) immunotyping using the public database, analyze the differences between subtypes in terms of clinical characteristics and explore the role and clinical significance of immune subtypes in TNBC immunotherapy. Methods: We downloaded TNBC data from the cBioPortal and GEO databases. The immune genes were grouped to obtain immune gene modules and annotate their biological functions. Log-rank tests and Cox regression were used to evaluate the prognosis of immune subtypes (IS). Drug sensitivity analysis was also performed for the differences among immune subtypes in immunotherapy and chemotherapy. In addition, dimension reduction analysis based on graph learning was utilized to reveal the internal structure of the immune system and visualize the distribution of patients. Results: Significant differences in prognosis were observed between subtypes (IS1, IS2, and IS3), with the best in IS3 and the worst in IS1. The sensitivity of IS3 to immunotherapy and chemotherapy was better than the other two subtypes. In addition, Immune landscape analysis found the intra-class heterogeneity of immune subtypes and further classified IS3 subtypes (IS3A and IS3B). Immune-related genes were divided into seven functional modules (The turquoise module has the worst prognosis). Five hub genes (RASSF5, CD8A, ICOS, IRF8, and CD247) were screened out as the final characteristic genes related to poor prognosis by low expression. Conclusions: The immune subtypes of TNBC were significantly different in prognosis, gene mutation, immune infiltration, drug sensitivity, and heterogeneity. We validated the independent role of immune subtypes in tumor progression and immunotherapy for TNBC. This study provides a new perspective for personalized immunotherapy and the prognosis evaluation of TNBC patients in the future.
Collapse
Affiliation(s)
- Shaojun Hu
- Oncology Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xiusheng Qu
- Chemotherapy Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yu Jiao
- Oncology Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jiahui Hu
- Chemotherapy Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Bo Wang
- Oncology Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
10
|
Du Y, Cao J, Jiang X, Cai X, Wang B, Wang Y, Wang X, Xue B. Comprehensive analysis of CXCL12 expression reveals the significance of inflammatory fibroblasts in bladder cancer carcinogenesis and progression. Cancer Cell Int 2021; 21:613. [PMID: 34801033 PMCID: PMC8606085 DOI: 10.1186/s12935-021-02314-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background Bladder cancer (BLCA) is the most common genitourinary tumor but lacks specific diagnostic biomarkers. Recent years have witnessed significant advances in the use and approval of immune checkpoint blockade (ICB) therapy to manage BLCA at advanced stages when platinum-based therapy has failed. The tumor microenvironment (TME) is essential in impacting BLCA patients' prognosis and responsiveness to ICB therapy. CXCL12 is a stromal secreted factor that was essentially involved in regulating the TME among cancers. In this article, we thoroughly investigated the TME regulating roles of CXCL12 in BLCA and revealed its critical involvement in the development of BLCA, which was closely correlated with inflammatory fibroblasts (iCAFs). Methods We examined the gene expression profiles in the TCGA and GEO database to reveal the potential association of CXCL12 with the carcinogenesis and prognosis of BLCA. The receiver operating characteristic curve was used to explore the accuracy of CXCL12 along with multiple iCAFs-associated genes in the diagnosis of BLCA. The MCP-COUNTER, ESTIMATE, and TIDE algorithms were applied to estimate the TME components and predict immunotherapy responsiveness. An iCAFs signature was constructed using the ssGSEA algorithm. The "maftool" R package analyzed the oncogenic mutations in BLCA patients. Bioinformatics analysis results were further validated through immunohistochemistry of clinical samples. IMvigor210 cohort was used to validate bioinformatic predictions of therapeutic responsiveness to immune checkpoint inhibitors. Results This manuscript revealed a significantly reduced expression of CXCL12 in BLCA compared with normal tissue. The expressions of various marker genes for iCAFs were also reduced considerably in BLCA tissues, highlighting the reduction of iCAFs in the pathogenesis of BLCA. Further studies revealed that CXCL12 and iCAFs were associated with pathological features, TME remodeling and aging in BLCA patients. The iCAFs signature further confirmed the intricate immunomodulatory roles of iCAFs in BLCA. Gene mutation analysis revealed the essential relationship between iCAFs and the mutation frequency of oncogenic genes, including TP53 and FGFR3. Meantimes, iCAFs levels also significantly affected BLCA patients' mutations in the TP53 and RTK-RAS pathways. Finally, our results confirmed the significant exclusion of CD8 + T cells by iCAFs, which further influenced the immunotherapy responsiveness in BLCA patients. Conclusions This article highlighted the impact of CXCL12 on the pathogenesis and progression of BLCA. The reduced expression levels of iCAFs markers, including CXCL12, were highly accurate in the diagnosis of BLCA, suggesting the reduction of iCAFs accompanied bladder carcinogenesis. However, both CXCL12 and iCAFs significantly impacted the prognosis and immunotherapy responsiveness for BLCA patients by remodeling the TME. Our results critically suggested the dual roles of iCAFs in the carcinogenesis and progression of BLCA. Further exploration of iCAFs might unravel potential diagnostic biomarkers and therapeutic targets for BLCA.
Collapse
Affiliation(s)
- YiHeng Du
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Jin Cao
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Xiang Jiang
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - XiaoWei Cai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Bo Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Yi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - XiZhi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China.
| | - BoXin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
11
|
Mezheyeuski A, Micke P, Martín-Bernabé A, Backman M, Hrynchyk I, Hammarström K, Ström S, Ekström J, Edqvist PH, Sundström M, Ponten F, Leandersson K, Glimelius B, Sjöblom T. The Immune Landscape of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13215545. [PMID: 34771707 PMCID: PMC8583221 DOI: 10.3390/cancers13215545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary We sought to provide a detailed overview of the immune landscape of colorectal cancer in the largest study to date in terms of patient numbers and analyzed immune cell types. We applied a multiplex in situ staining method in combination with an advanced scanning and image analysis pipeline akin to flow cytometry, and analyzed 5968 individual multi-layer images of tissue defining in a total of 39,078,450 cells. We considered the location of immune cells with respect to the stroma, and tumor cell compartment and tumor regions in the central part or the invasive margin. To the best of our knowledge, this study is the first comprehensive spatial description of the immune landscape in colorectal cancer using a large population-based cohort and a multiplex immune cell identification. Abstract While the clinical importance of CD8+ and CD3+ cells in colorectal cancer (CRC) is well established, the impact of other immune cell subsets is less well described. We sought to provide a detailed overview of the immune landscape of CRC in the largest study to date in terms of patient numbers and in situ analyzed immune cell types. Tissue microarrays from 536 patients were stained using multiplexed immunofluorescence panels, and fifteen immune cell subclasses, representing adaptive and innate immunity, were analyzed. Overall, therapy-naïve CRC patients clustered into an ‘inflamed’ and a ‘desert’ group. Most T cell subsets and M2 macrophages were enriched in the right colon (p-values 0.046–0.004), while pDC cells were in the rectum (p = 0.008). Elderly patients had higher infiltration of M2 macrophages (p = 0.024). CD8+ cells were linked to improved survival in colon cancer stages I-III (q = 0.014), while CD4+ cells had the strongest impact on overall survival in metastatic CRC (q = 0.031). Finally, we demonstrated repopulation of the immune infiltrate in rectal tumors post radiation, following an initial radiation-induced depletion. This study provides a detailed analysis of the in situ immune landscape of CRC paving the way for better diagnostics and providing hints to better target the immune microenvironment.
Collapse
Affiliation(s)
- Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
- Correspondence:
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Alfonso Martín-Bernabé
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 17164 Stockholm, Sweden;
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Ina Hrynchyk
- City Clinical Pathologoanatomic Bureau, 220116 Minsk, Belarus;
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Simon Ström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Joakim Ekström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Magnus Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Karin Leandersson
- Department of Translational Medicine, Lund University, 20502 Malmö, Sweden;
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| |
Collapse
|
12
|
The Microenvironment's Role in Mycosis Fungoides and Sézary Syndrome: From Progression to Therapeutic Implications. Cells 2021; 10:cells10102780. [PMID: 34685762 PMCID: PMC8534987 DOI: 10.3390/cells10102780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mycosis fungoides (MF) and Sezary Syndrome (SS) are the most common cutaneous T-cell lymphomas. It has been hypothesized that the interaction between the immune system, cutaneous cells, and neoplastic elements may play a role in MF/SS pathogenesis and progression. METHODS This paper aims to revise in a narrative way our current knowledge of the microenvironment's role in MF/SS. RESULTS AND CONCLUSIONS Literature data support a possible implication of microenvironment cells in MF/SS pathogenesis and progression, opening up new therapeutic avenues.
Collapse
|
13
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
14
|
Tumor Microenvironment in Metastatic Colorectal Cancer: The Arbitrator in Patients' Outcome. Cancers (Basel) 2021; 13:cancers13051130. [PMID: 33800796 PMCID: PMC7961499 DOI: 10.3390/cancers13051130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer accounts for approximately 10% of all annually diagnosed cancers worldwide being liver metastasis, the most common cause of death in patients with colorectal cancer. The interplay between tumor and stromal cells in the primary tumor microenvironment and at distant metastases are rising in importance as potential mechanisms of the tumor progression. In this review we discuss the new biomarkers derived from tumor microenvironment and liquid biopsy as emerging prognostic and treatments response markers for metastatic colorectal cancer. We also review the developing new clinical strategies based on tumor microenvironmental cells to tackle metastatic disease in metastatic colorectal cancer patients. Abstract Colorectal cancer (CRC) is one of the most common cancers in western countries. Its mortality rate varies greatly, depending on the stage of the disease. The main cause of CRC mortality is metastasis, which most commonly affects the liver. The role of tumor microenvironment in tumor initiation, progression and metastasis development has been widely studied. In this review we summarize the role of the tumor microenvironment in the liver pre-metastatic niche formation, paying attention to the distant cellular crosstalk mediated by exosomes. Moreover, and based on the prognostic and predictive capacity of alterations in the stromal compartment of tumors, we describe the role of tumor microenvironment cells and related liquid biopsy biomarkers in the delivery of precise medication for metastatic CRC. Finally, we evaluate the different clinical strategies to prevent and treat liver metastatic disease, based on the targeting of the tumor microenvironment. Specifically, targeting angiogenesis pathways and regulating immune response are two important research pipelines that are being widely developed and promise great benefits.
Collapse
|