1
|
Lin X, Yang C, Lv Y, Zhang B, Kan J, Li H, Tao J, Yang C, Li X, Liu Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300457. [PMID: 38221652 DOI: 10.1002/jbio.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Bowen Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Cai H, Li Z, Shi Q, Yang H, Xiao L, Li M, Lin H, Wu X, She T, Chen L, Li L, Lu X. Preclinical evaluation of 68Ga-radiolabeled trimeric affibody for PDGFRβ-targeting PET imaging of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:2952-2961. [PMID: 37256321 PMCID: PMC10382327 DOI: 10.1007/s00259-023-06260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a highly vascularized solid carcinoma and tumor vessel-targeted molecular imaging might be effective for early diagnosis of HCC. Herein, we developed a novel trimeric affibody (ZTRI) with highly specific binding to the platelet-derived growth factor receptor beta (PDGFRβ). The aim of this study is to evaluate the feasibility of 68Ga-radiolabeled ZTRI ([68Ga]Ga-DOTA-ZTRI) as PET tracer for diagnosis of HCC. METHODS The bioinformatics analysis of clinical database and immunoblotting of clinical specimens were performed to validate the potential of PDGFRβ as HCC biomarker. The trimeric affibody ZTRI was conjugated with DOTA-NHS-ester and radiolabeled with 68Ga to produce [68Ga]Ga-DOTA-ZTRI conjugate. Immunoreactivity and specific uptake of [68Ga]Ga-DOTA-ZTRI were assessed by dose-dependent cell binding, autoradiography, and biodistribution analysis. [68Ga]Ga-DOTA-ZTRI PET/CT scanning of diethylnitrosamine (DEN)-induced primary HCC rats and a rare case of idiopathical HCC rhesus monkey was performed to evaluate the imaging capability and radiation dosimetry of [68Ga]Ga-DOTA-ZTRI in vivo. RESULTS Excessive PDGFRβ was validated as a representative biomarker of HCC neovascularization. The radiolabeling of [68Ga]Ga-DOTA-ZTRI was achieved at more than 95% radiochemical yield. In vitro assays showed specific uptake of [68Ga]Ga-DOTA-ZTRI in HCC tumor vessels by autoradiography. Animal PET/CT imaging with [68Ga]Ga-DOTA-ZTRI successfully visualized the tumor lesions in primary HCC rats and rhesus monkey, and indicated radiation absorbed dose of 2.03E-02 mSv/MBq for each scanning. CONCLUSIONS Our results demonstrated that [68Ga]Ga-DOTA-ZTRI conjugate could be applied as a promising PET tracer for early diagnosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huawei Cai
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhao Li
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuxiao Shi
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liu Xiao
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mufeng Li
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Lin
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianshan She
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lin Li
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaofeng Lu
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Qi X, Gao C, Yin C, Fan J, Wu X, Di G, Wang J, Guo C. Development of quercetin-loaded PVCL–PVA–PEG micelles and application in inhibiting tumor angiogenesis through the PI3K/Akt/VEGF pathway. Toxicol Appl Pharmacol 2022; 437:115889. [DOI: 10.1016/j.taap.2022.115889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
6
|
Saccu G, Menchise V, Giordano C, Delli Castelli D, Dastrù W, Pellicano R, Tolosano E, Van Pham P, Altruda F, Fagoonee S. Regenerative Approaches and Future Trends for the Treatment of Corneal Burn Injuries. J Clin Med 2021; 10:jcm10020317. [PMID: 33467167 PMCID: PMC7830803 DOI: 10.3390/jcm10020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ocular chemical and thermal burns are frequent causes of hospitalization and require immediate interventions and care. Various surgical and pharmacological treatment strategies are employed according to damage severity. Controlling inflammation and neovascularization while promoting normal ocular surface anatomy and function restoration is the principal aim. In the most severe cases, when epithelial healing is severely affected, reconstruction of the ocular surface may be a valid option, which, however, requires expertise, adequate instruments, and qualified donors. Numerous endogenous and exogenous strategies have been considered for corneal repair. Among these, stem cells and their derivatives have offered numerous attractive possibilities in finding an effective way in stimulating corneal regeneration. Limbal epithelial stem cells and mesenchymal cells from the ocular tissue as well as from various sources have demonstrated their effectiveness in dampening neovascularization, scarring, and inflammation, while promoting epithelialization of the injured cornea. Moreover, a plethora of cytokines and growth factors, and extracellular vesicles, which constitute the secretome of these cells, work in concert to enhance wound healing. In this review, we provide an update on the recent potential therapeutic avenues and clinical applications of stem cells and their products in corneal regeneration after burn injury, as well as current imaging strategies for monitoring therapeutic efficacy and damage resolution.
Collapse
Affiliation(s)
- Gabriele Saccu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (G.S.); (D.D.C.); (W.D.); (E.T.)
| | - Valeria Menchise
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, 10126 Turin, Italy
- Correspondence: (V.M.); (F.A.); (S.F.); Tel.: +39-0116706423 (S.F.)
| | - Cristina Giordano
- Ophthalmology Veterinary Practice, c.so Galileo Ferraris 121, 10126 Turin, Italy;
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (G.S.); (D.D.C.); (W.D.); (E.T.)
| | - Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (G.S.); (D.D.C.); (W.D.); (E.T.)
| | | | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (G.S.); (D.D.C.); (W.D.); (E.T.)
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, and Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City 08000, Vietnam;
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (G.S.); (D.D.C.); (W.D.); (E.T.)
- Correspondence: (V.M.); (F.A.); (S.F.); Tel.: +39-0116706423 (S.F.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, 10126 Turin, Italy
- Correspondence: (V.M.); (F.A.); (S.F.); Tel.: +39-0116706423 (S.F.)
| |
Collapse
|