1
|
García-Martínez JM, Chocarro-Calvo A, Martínez-Useros J, Regueira-Acebedo N, Fernández-Aceñero MJ, Muñoz A, Larriba MJ, García-Jiménez C. SIRT1 Mediates the Antagonism of Wnt/β-Catenin Pathway by Vitamin D in Colon Carcinoma Cells. Int J Biol Sci 2024; 20:5495-5509. [PMID: 39494323 PMCID: PMC11528448 DOI: 10.7150/ijbs.95875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer initiation and progression result from genetic and epigenetic alterations caused by interactions between environmental and endogenous factors leading to aberrant cell signalling. Colorectal cancers (CRC) are linked to abnormal activation of the Wnt/β-catenin pathway, whose key feature is the nuclear accumulation of acetylated β-catenin in colon epithelial cells. Nuclear β-catenin acts as a transcriptional co-activator, targeting genes involved in cell proliferation and invasion. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3 or calcitriol), the active form of vitamin D, antagonizes Wnt/β-catenin over-activation by engaging its high affinity receptor, VDR. Here we unveil that 1,25(OH)2D3-bound VDR activates Silent Information Regulator of Transcription, sirtuin 1 (SIRT1), leading to β-catenin deacetylation and nuclear exclusion, downregulation of its pro-tumourigenic target genes and inhibition of human colon carcinoma cell proliferation. Notably, orthogonal SIRT1 activation mimics nuclear exclusion of β-catenin while SIRT1 inhibition blocks the effects of 1,25(OH)2D3. Thus, SIRT1 emerges as a crucial mediator in the protective action of vitamin D against CRC. The mutual negative feedback loop unveiled here between Wnt and SIRT1 represents an important surrogate target in CRC. Since nuclear localisation of β-catenin is a critical driver of CRC that requires its acetylation, we provide a mechanistic foundation for the epidemiological evidence linking vitamin D deficiency and increased CRC risk and mortality.
Collapse
Affiliation(s)
- José Manuel García-Martínez
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Ana Chocarro-Calvo
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Javier Martínez-Useros
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Spain
| | - Nerea Regueira-Acebedo
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | | | - Alberto Muñoz
- Instituto de Investigaciones Βiomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Βiomédica en Red de Cáncer (CIΒERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Βiomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Βiomédica en Red de Cáncer (CIΒERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Custodia García-Jiménez
- Physiology Area, Department of Basic Health Sciences. Health Sciences Faculty, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| |
Collapse
|
2
|
Mikulić P, Ogorevc M, Petričević M, Kaličanin D, Tafra R, Saraga-Babić M, Mardešić S. SOX2, JAGGED1, β-Catenin, and Vitamin D Receptor Expression Patterns during Early Development and Innervation of the Human Inner Ear. Int J Mol Sci 2024; 25:8719. [PMID: 39201406 PMCID: PMC11354891 DOI: 10.3390/ijms25168719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Sensorineural hearing loss can be caused by lesions to the inner ear during development. Understanding the events and signaling pathways that drive inner ear formation is crucial for determining the possible causes of congenital hearing loss. We have analyzed the innervation and expression of SOX2, JAGGED1, β-catenin (CTNNB1), and vitamin D receptor (VDR) in the inner ears of human conceptuses aged 5 to 10 weeks after fertilization (W) using immunohistochemistry. The prosensory domains of the human inner ear displayed SOX2 and JAGGED1 expression throughout the analyzed period, with SOX2 expression being more extensive in all the analyzed timepoints. Innervation of vestibular prosensory domains was present at 6 W and extensive at 10 W, while nerve fibers reached the base of the cochlear prosensory domain at 7-8 W. CTNNB1 and VDR expression was mostly membranous and present during all analyzed timepoints in the inner ear, being the strongest in the non-sensory epithelium. Their expression was stronger in the vestibular region compared to the cochlear duct. CTNNB1 and VDR expression displayed opposite expression trends during the analyzed period, but additional studies are needed to elucidate whether they interact during inner ear development.
Collapse
Affiliation(s)
- Petra Mikulić
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (P.M.); (R.T.)
| | - Marin Ogorevc
- Division of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.O.); (S.M.)
| | - Marin Petričević
- Institute of Emergency Medicine of Split-Dalmatia County, Spinčićeva 1, 21000 Split, Croatia;
| | - Dean Kaličanin
- Department of Medical Biology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia;
| | - Robert Tafra
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (P.M.); (R.T.)
| | - Mirna Saraga-Babić
- Division of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.O.); (S.M.)
| | - Snježana Mardešić
- Division of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.O.); (S.M.)
| |
Collapse
|
3
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
4
|
Zou M, Song Q, Yin T, Xu H, Nie G. Vitamin D improves autoimmune diseases by inhibiting Wnt signaling pathway. Immun Inflamm Dis 2024; 12:e1192. [PMID: 38414312 PMCID: PMC10899798 DOI: 10.1002/iid3.1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE In this study, we investigated the development of the Wnt signaling pathway in vitamin D (VitD) to improve systemic lupus erythematosus in mice to breakthrough clinical treatment approaches. METHODS Body weight changes were recorded during rearing. Antinuclear antibodies (ANA), anti-dsDNA, and anti-snRNP were detected in the mouse serum using an enzyme-linked immunosorbent assay. Apoptosis of Th1 and Th2 immune cells in mice was detected using flow cytometry. Reverse transcription polymerase chain reaction was used to detect the expression of T-bet, GATA3, and Wnt3a mRNA in the spleens of each group. Western blot analysis was performed to detect the expression of Wnt1, p-β-catenin, β-catenin, glycogen synthase kinsase3β (GSK-3β), Wnt3a, c-myc, and cyclin D1 protein in mice spleens. β-catenin in mice spleen was visualized using immunohistochemistry. RESULTS VitD did not substantial reduce the body weight of MRL/LPR mice, whereas the inhibitor did. VitD notably decreased the concentrations of ANA, anti-double-stranded DNA, and anti-snRNP in the serum of MRL/LPR mice and alleviated apoptosis of Th1 and Th2 cells. VitD markedly increased the expression of T-bet and GATA mRNA in the spleen of MRL/LPR mice and consequently increased the levels of Wnt3a and β-catenin. Western blot analysis revealed that the levels of GSK-3β, p-β-catenin, Wnt1, Wnt3a, c-myc, and cyclin D1 could be reduced by VitD, compared with MRL/LPR. Immunohistochemistry demonstrated that the expression of β-catenin was the most pronounced in the spleen of MRL/LPR mice, and the expression level of β-catenin decreased substantially after VitD intervention. CONCLUSIONS VitD can further inhibit the nuclear translocation of β-catenin by downregulating the expression of Wnt ligands (Wnt1 and Wnt3a), which reduces the expression of the downstream target gene cyclin D1. Systemic lupus erythematosus in mice was improved by inhibiting the activation of Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Minshu Zou
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| | - Qiuju Song
- Department of Obstetrics and Gynecology, General Hospital of Central Theater Command, Wuhan, China
| | - Taiyong Yin
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| | - Hongtao Xu
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| | - Guoming Nie
- Department of Pediatrics, General Hospital of Central Theater Command, Wuhan, China
| |
Collapse
|
5
|
Bird RP. Vitamin D and cancer. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:92-159. [PMID: 38777419 DOI: 10.1016/bs.afnr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The role of vitamin D in the prevention of chronic diseases including cancer, has received a great deal of attention during the past few decades. The term "Cancer" represents multiple disease states with varying biological complexities. The strongest link between vitamin D and cancer is provided by ecological and studies like observational, in preclinical models. It is apparent that vitamin D exerts diverse biological responses in a tissue specific manner. Moreover, several human factors could affect bioactivity of vitamin D. The mechanism(s) underlying vitamin D initiated anti-carcinogenic effects are diverse and includes changes at the muti-system levels. The oncogenic environment could easily corrupt the traditional role of vitamin D or could ensure resistance to vitamin D mediated responses. Several researchers have identified gaps in our knowledge pertaining to the role of vitamin D in cancer. Further areas are identified to solidify the role of vitamin D in cancer control strategies.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
6
|
Vîlcea AM, Stoica LE, Andreiana BC, Mirea CS, Ţenea Cojan TŞ, Vîlcea IC, Mărgăritescu C. Immunoexpression of Ki67, P16 and Beta-catenin in precursor lesions of cutaneous squamous cell carcinoma. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:19-25. [PMID: 38527980 PMCID: PMC11146555 DOI: 10.47162/rjme.65.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common type of skin cancer, after basal cell carcinoma, representing about 10-20% of all malignant skin tumors. The mortality rates of CSCC approach those of renal and oropharyngeal carcinomas, as well as melanoma, with the increasing of the risk once metastases and perineural invasion occur. Both actinic keratosis (AK) and Bowen's disease (BD) are direct precursors with the potential for progression to CSCC. In this study, we analyzed the expression of Ki67, P16 and Beta-catenin in the precursor lesions of CSCC in relation to histological prognostic parameters, respectively between them, with the aim of identifying possible correlations with a role in prognosis. Ki67 and P16 presented higher scores in advanced precancerous lesions, such as keratinocyte intraepithelial neoplasia (KIN) III and BD and low scores in seborrheic keratosis (SK). The immunoreactivity to the investigated markers confirms the multistage skin carcinogenesis, and their involvement starting from the initiation phase of the cancer process. The importance of the studied markers in the evolution and prognosis of precancerous lesions of CSCC is also supported by the linear correlations revealed between the immunoexpressions of P16, Ki67 and the membranous immunoexpression of Beta-catenin in AK.
Collapse
Affiliation(s)
- Alina Maria Vîlcea
- Department of Pathology, University of Medicine and Pharmacy of Craiova, Romania;
| | | | | | | | | | | | | |
Collapse
|
7
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
8
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
9
|
de Oliveira CS, Baptistella MM, Siqueira AP, Carvalho MO, Ramos LF, Souto BS, de Almeida LA, Dos Santos EG, Novaes RD, Nogueira ESC, de Oliveira PF. Combination of vitamin D and probiotics inhibits chemically induced colorectal carcinogenesis in Wistar rats. Life Sci 2023; 322:121617. [PMID: 37003542 DOI: 10.1016/j.lfs.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
The modulation of inflammatory elements, cell differentiation and proliferation by vitamin D and the role of probiotics in the intestinal microbiota and immunogenic response have sparked interest in the application of both in chemotherapeutics and chemoprevention of colorectal tumors. AIMS The present study aimed to investigate the effects of isolated and/or combined treatment of vitamin D3 and probiotics on colorectal carcinogenesis. MAIN METHODS Pre-neoplastic lesions were induced with 1,2-dimethylhydrazine in the colon of Wistar rats, which were treated with probiotics and/or vitamin D in three different approaches (simultaneous, pre-, and post-treatment). We investigated the frequency of aberrant crypt foci (ACF) and aberrant crypt (AC) in the distal colon, fecal microbiome composition, gene and protein expression through immunohistochemical and RT-PCR assays, and general toxicity through water consumption and weight gain monitoring. KEY FINDINGS Results confirm the systemic safety of treatments, and show a protective effect of vitamin D and probiotics in all approaches studied, as well as in combined treatments, with predominance of different bacterial phyla compared to controls. Treated groups show different levels of Nrf2, GST, COX2, iNOS, β-catenin and PCNA expression. SIGNIFICANCE These experimental conditions explore the combination of vitamin D and probiotics supplementation at low doses over pathways involved in distinct stages of colorectal carcinogenesis, with results supporting its application in prevention and long-term strategies.
Collapse
Affiliation(s)
- Carolina S de Oliveira
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Biosciences Applied to Health, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Mariane M Baptistella
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Biosciences Applied to Health, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Alexia P Siqueira
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Michele O Carvalho
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Nutrition and Longevity, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Luiz Fernando Ramos
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Bianca S Souto
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Leonardo A de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Elda G Dos Santos
- Postgraduate Program in Biosciences Applied to Health, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rômulo D Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Ester S C Nogueira
- Animal Integrative Biology Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Pollyanna F de Oliveira
- Human Genetics Laboratory, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Postgraduate Program in Nutrition and Longevity, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil.
| |
Collapse
|
10
|
Jung F, Braune S, Jung CHG, Krüger-Genge A, Waldeck P, Petrick I, Küpper JH. Lipophilic and Hydrophilic Compounds from Arthrospira platensis and Its Effects on Tissue and Blood Cells-An Overview. Life (Basel) 2022; 12:1497. [PMID: 36294932 PMCID: PMC9605678 DOI: 10.3390/life12101497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/14/2024] Open
Abstract
The cyanobacterium Arthrospira platensis (Spirulina platensis) is a natural source of considerable amounts of ingredients that are relevant for nutra- and pharmaceutical uses. Different hydrophilic and hydrophobic substances can be obtained by extraction from the biomass. The respective extraction techniques determine the composition of substances in the extract and thus its biological activity. In this short review, we provide an overview of the hydrophilic compounds (phenols, phycobiliproteins, polysaccharides, and vitamins) and lipophilic ingredients (chlorophylls, vitamins, fatty acids, and glycolipids) of Arthrospira platensis. The principal influences of these substances on blood and tissue cells are briefly summarized.
Collapse
Affiliation(s)
- Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | | | - Anne Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research, 14476 Potsdam-Golm, Germany
| | - Peter Waldeck
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Ingolf Petrick
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany
| |
Collapse
|
11
|
Pancreatic ductal adenocarcinoma: tumor microenvironment and problems in the development of novel therapeutic strategies. Clin Exp Med 2022:10.1007/s10238-022-00886-1. [DOI: 10.1007/s10238-022-00886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 12/19/2022]
|
12
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Irving AA, Waters BJ, Seeman JR, Plum LA, DeLuca HF. Vitamin D receptor absence does not enhance intestinal tumorigenesis in ApcPirc/+ rats. Biol Open 2022; 11:275913. [PMID: 35662320 PMCID: PMC9277077 DOI: 10.1242/bio.059290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Epidemiological observations have prompted some to posit that elevated circulating vitamin D is responsible for reduced colon cancer in individuals residing near the equator. We have previously demonstrated that vitamin D has no effect on colon cancer in two rodent models of intestinal tumorigenesis. We have now extended this line of inquiry to ask whether ablation of vitamin D receptor (VDR) affects tumorigenesis. A VDR null rat was developed using Cas9-CRISPR technology, which allowed us to investigate whether 1,25(OH)D3 signaling through its receptor plays a role in intestinal tumorigenesis. Loss of VDR expression alone did not induce tumorigenesis, even in animals exposed to the inflammatory agent dextran sodium sulfate. These VDR−/− rats were then crossed with ApcPirc/+ rats, which are predisposed to the development of intestinal neoplasms. In combination with the Pirc/+ mutation, VDR loss did not enhance tumor multiplicity, growth, or progression in the colon or small intestine. This study demonstrates that the vitamin D receptor does not impact tumor development, and strongly supports previous findings that vitamin D itself does not play a role in colon cancer development or progression. Alternative explanations are needed for the original latitude hypothesis, as well as observational data in humans. This article has an associated First Person interview with the first author of the paper. Summary: Loss of vitamin D receptor, alone or in combination with either an inflammatory agent or the ApcPirc/+ rat intestinal tumor model, did not enhance tumor occurrence, growth, or progression.
Collapse
Affiliation(s)
- Amy A Irving
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Bayley J Waters
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Jeremy R Seeman
- DiaSorin Inc, 1951 Northwestern Avenue, Stillwater, MN 55082, USA
| | - Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
14
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
15
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|
16
|
Muñoz A, Grant WB. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022; 14:1448. [PMID: 35406059 PMCID: PMC9003337 DOI: 10.3390/nu14071448] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
This is a narrative review of the evidence supporting vitamin D's anticancer actions. The first section reviews the findings from ecological studies of cancer with respect to indices of solar radiation, which found a reduced risk of incidence and mortality for approximately 23 types of cancer. Meta-analyses of observational studies reported the inverse correlations of serum 25-hydroxyvitamin D [25(OH)D] with the incidence of 12 types of cancer. Case-control studies with a 25(OH)D concentration measured near the time of cancer diagnosis are stronger than nested case-control and cohort studies as long follow-up times reduce the correlations due to changes in 25(OH)D with time. There is no evidence that undiagnosed cancer reduces 25(OH)D concentrations unless the cancer is at a very advanced stage. Meta-analyses of cancer incidence with respect to dietary intake have had limited success due to the low amount of vitamin D in most diets. An analysis of 25(OH)D-cancer incidence rates suggests that achieving 80 ng/mL vs. 10 ng/mL would reduce cancer incidence rates by 70 ± 10%. Clinical trials have provided limited support for the UVB-vitamin D-cancer hypothesis due to poor design and execution. In recent decades, many experimental studies in cultured cells and animal models have described a wide range of anticancer effects of vitamin D compounds. This paper will review studies showing the inhibition of tumor cell proliferation, dedifferentiation, and invasion together with the sensitization to proapoptotic agents. Moreover, 1,25-(OH)2D3 and other vitamin D receptor agonists modulate the biology of several types of stromal cells such as fibroblasts, endothelial and immune cells in a way that interferes the apparition of metastases. In sum, the available mechanistic data support the global protective action of vitamin D against several important types of cancer.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, CIBERONC and IdiPAZ, 28029 Madrid, Spain;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| |
Collapse
|
17
|
Agwa MM, Abu-Serie MM, Abdelmonsif DA, Moussa N, Elsayed H, Khattab SN, Sabra S. Vitamin D3/phospholipid complex decorated caseinate nanomicelles for targeted delivery of synergistic combination therapy in breast cancer. Int J Pharm 2021; 607:120965. [PMID: 34339814 DOI: 10.1016/j.ijpharm.2021.120965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
Targeted delivery of cytotoxic drugs has shown great potential in cancer therapy. In this light, vitamin D3 (vit.D3)-coated micelles were fabricated to encapsulate the cytotoxic drug; etoposide (ETP). Sodium caseinate micelles were first utilized to encapsulate vit.D3 and ETP within their hydrophobic core, then drug-loaded micelles were further decorated with an envelope of vit.D3/ phospholipid complex to enhance the active targeting potency of fabricated micelles via exploiting vit.D3 receptors (VDRs) overexpressed on the outer surface of breast cancer cells. In vitro cytotoxicity studies showed that fabricated micelles exhibited improved anticancer effect on MDA MB-231 and MCF-7 human breast cancer cell lines in comparison to free vit.D3 + ETP without any significant toxicity on normal human lung fibroblast (Wi-38) cells. In vivo biodistribution and efficacy studies in Ehrlich ascites tumor animal model revealed that fabricated micelles manifested improved accumulation in tumor tissue due to active targeting potential of vit.D3 without any remarkable toxicity. More importantly, fabricated micelles resulted in enhanced tumor apoptosis, reduced angiogenesis, invasion and autophagy, besides a decline in the tumor expression levels of both miR-21 and miR-192. Therefore, vit.D3/ETP micelles could serve as a favorable actively targeted anticancer delivery system having a superior effect over the free combination.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
18
|
Xun J, Gao R, Wang B, Li Y, Ma Y, Guan J, Zhang Q. Histone demethylase KDM6B inhibits breast cancer metastasis by regulating Wnt/β-catenin signaling. FEBS Open Bio 2021. [PMID: 34165914 PMCID: PMC8329947 DOI: 10.1002/2211-5463.13236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Abstract
Tumor metastasis remains a major challenge for patients with breast cancer. Aberrant epigenetic factor lysine‐specific demethylase 6B (KDM6B) has been associated with tumor progression. Here, we show that KDM6B is significantly down‐regulated in human breast cancer tissues, and its low expression is associated with poor prognosis of patients with breast cancer. Furthermore, overexpression of KDM6B remarkably inhibited cell proliferation, invasion, migration and epithelial–mesenchymal transition markers of breast cancer cells in vitro and tumor growth and lung metastasis in vivo. Notably, the expression of KDM6B in breast cancer tissues was negatively correlated with that of β‐catenin, and overexpression of KDM6B decreased the expression of β‐catenin and its accumulation in the nucleus of breast cancer cells. Overall, our findings provide novel insights into suppression of metastasis of breast cancer cells by KDM6B via β‐catenin and suggest involvement of the KDM6B‐Wnt/β‐catenin axis in breast cancer progression.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, China
| | - Ruifang Gao
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
| | - Botao Wang
- Graduate School of Tianjin Medical University, China
| | - Yifan Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, China
| | - Yuan Ma
- Graduate School of Tianjin Medical University, China
| | - Jun Guan
- Graduate School of Tianjin Medical University, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, China
| |
Collapse
|
19
|
Organoids and Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112657. [PMID: 34071313 PMCID: PMC8197877 DOI: 10.3390/cancers13112657] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids were first established as a three-dimensional cell culture system from mouse small intestine. Subsequent development has made organoids a key system to study many human physiological and pathological processes that affect a variety of tissues and organs. In particular, organoids are becoming very useful tools to dissect colorectal cancer (CRC) by allowing the circumvention of classical problems and limitations, such as the impossibility of long-term culture of normal intestinal epithelial cells and the lack of good animal models for CRC. In this review, we describe the features and current knowledge of intestinal organoids and how they are largely contributing to our better understanding of intestinal cell biology and CRC genetics. Moreover, recent data show that organoids are appropriate systems for antitumoral drug testing and for the personalized treatment of CRC patients.
Collapse
|
20
|
Lemke D, Klement RJ, Schweiger F, Schweiger B, Spitz J. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. Front Immunol 2021; 12:655739. [PMID: 33897704 PMCID: PMC8058406 DOI: 10.3389/fimmu.2021.655739] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023] Open
Abstract
Vitamin D3 (cholecalciferol) is a secosteroid and prohormone which is metabolized in various tissues to the biologically most active vitamin D hormone 1,25(OH)2D3 (calcitriol). 1,25(OH)2D3 has multiple pleiotropic effects, particularly within the immune system, and is increasingly utilized not only within prophylaxis, but also within therapy of various diseases. In this context, the latest research has revealed clinical benefits of high dose vitamin D3 therapy in autoimmune diseases. The necessity of high doses of vitamin D3 for treatment success can be explained by the concept of an acquired form of vitamin D resistance. Its etiology is based on the one hand on polymorphisms within genes affecting the vitamin D system, causing susceptibility towards developing low vitamin D responsiveness and autoimmune diseases; on the other hand it is based on a blockade of vitamin D receptor signaling, e.g. through pathogen infections. In this paper, we review observational and mechanistic evidence for the acquired vitamin D resistance hypothesis. We particularly focus on its clinical confirmation from our experience of treating multiple sclerosis patients with the so-called Coimbra protocol, in which daily doses up to 1000 I.U. vitamin D3 per kg body weight can be administered safely. Parathyroid hormone levels in serum thereby provide the key information for finding the right dose. We argue that acquired vitamin D resistance provides a plausible pathomechanism for the development of autoimmune diseases, which could be treated using high-dose vitamin D3 therapy.
Collapse
Affiliation(s)
- Dirk Lemke
- Praxis Dr. Beatrix Schweiger, Bensheim, Germany
| | - Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | | | | | - Jörg Spitz
- Akademie für menschliche Medizin und evolutionäre Gesundheit, Schlangenbad, Germany
| |
Collapse
|