1
|
Chen Y, Gao B, Pan Y, Wang Q, Zhang Q. MiR-525-5p modulates cell proliferation, cell cycle, and apoptosis in Burkitt's lymphoma by targeting MyD88 and regulating the NF-κB signaling pathway. Ann Hematol 2024:10.1007/s00277-024-06062-7. [PMID: 39495280 DOI: 10.1007/s00277-024-06062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
MiR-525-5p functions as an oncomiRNA or tumor suppressor, and has been reported in various cancer types, including laryngeal squamous cell carcinoma, glioma, breast cancer, and cervical cancer. However, the biological functions and precise mechanisms of miR-525-5p remain unclarified in Burkitt's lymphoma (BL). This study aimed to explore the roles of miR-525-5p in BL, with the goal of ascertaining its regulatory effects on the nuclear factor-kappaB (NF-κB) signaling pathway by targeting Myeloid differentiation factor 88 (MyD88). The expression levels of miR-525-5p and MyD88 were measured by quantitative real-time PCR and immunohistochemical staining, respectively. The effects of miR-525-5p overexpression on BL cell proliferation, colony-forming, and migration were evaluated by cell counting kit-8, soft agar colony-forming, and transwell assays, while cell cycle and cell apoptosis were analyzed by flow cytometry. Possible interactions between miR-525-5p and MyD88 was examined via luciferase reporter assay. The expression of MyD88 and NF-κB signaling pathway-related proteins, including p65, p-p65, IκBa, and p-ΙκBa was determined by western blotting. BL cells overexpressing miR-525-5p were treated with phorbol 12-myristate 13-acetate (PMA), and Hoechst 33258 staining and Calcein AM/EthD-I staining were used to analyze the changes in chemotherapy sensitivity of BL cells to doxorubicin (DOX). Compared with reactive lymphoid hyperplasia, miR-525-5p was dramatically downregulated in BL tissues, while the rate of MyD88 protein positivity was significantly increased. Upregulation of miR-525-5p suppressed cell proliferation, colony-forming, and migration, induced cell cycle arrest and apoptosis, and enhanced the chemosensitivity to DOX in BL cells. MiR-525-5p targeted MyD88 to inhibit the activation of NF-κB signaling pathway. PMA treatment reactivated the NF-κB pathway and reversed apoptosis mediated by miR-525-5p overexpression. These findings revealed that miR-525-5p acts as a tumor suppressor, targeting MyD88 to modulate proliferation, cell cycle progression, and apoptosis in BL cells by regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- College of Clinical Medicine, Dali University, Dali, Yunnan, 671000, P.R. China
| | - Bo Gao
- College of Clinical Medicine, Dali University, Dali, Yunnan, 671000, P.R. China.
- Department of Pathology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, Yunnan, 671000, P.R. China.
| | - Yun Pan
- College of Clinical Medicine, Dali University, Dali, Yunnan, 671000, P.R. China
- Department of Pathology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, Yunnan, 671000, P.R. China
| | - Qingqing Wang
- College of Basic Medicine, Dali University, Dali, Yunnan, 671000, P.R. China
| | - Qiurong Zhang
- Department of Hematology, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, P.R. China
| |
Collapse
|
2
|
Jalilian S, Bastani MN. From virus to cancer: Epstein-Barr virus miRNA connection in Burkitt's lymphoma. Infect Agent Cancer 2024; 19:54. [PMID: 39425210 PMCID: PMC11487968 DOI: 10.1186/s13027-024-00615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
In Burkitt's lymphoma (BL), Epstein-Barr virus-encoded microRNAs (EBV miRNAs) are emerging as crucial regulatory agents that impact cellular and viral gene regulation. This review investigates the multifaceted functions of EBV miRNAs in the pathogenesis of Burkitt lymphoma. EBV miRNAs regulate several cellular processes that are essential for BL development, such as apoptosis, immune evasion, and cellular proliferation. These small, non-coding RNAs target both viral and host mRNAs, finely adjusting the cellular environment to favor oncogenesis. Prominent miRNAs, such as BART (BamHI-A rightward transcript) and BHRF1 (BamHI fragment H rightward open reading frame 1), are emphasized for their roles in tumor growth and immune regulation. For example, BART miRNAs prevent apoptosis by suppressing pro-apoptotic proteins, whereas BHRF1 miRNAs promote viral latency and immunological evasion. Understanding the intricate connections among EBV miRNAs and their targets illuminates BL pathogenesis and suggests novel treatment approaches. Targeting EBV miRNAs or their specific pathways offers a feasible option for developing innovative therapies that aim to disrupt the carcinogenic processes initiated by these viral components. future studies should focus on precisely mapping miRNA‒target networks and developing miRNA-based diagnostic and therapeutic tools. This comprehensive article highlights the importance of EBV miRNAs in Burkitt lymphoma, indicating their potential as biomarkers and targets for innovative treatment strategies.
Collapse
Affiliation(s)
- Shahram Jalilian
- Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 15794 - 61357, Iran
| | - Mohammad-Navid Bastani
- Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 15794 - 61357, Iran.
| |
Collapse
|
3
|
Abedi Kichi Z, Dini N, Rojhannezhad M, Shirvani Farsani Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024; 917:148480. [PMID: 38636814 DOI: 10.1016/j.gene.2024.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Niloofar Dini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
4
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
5
|
Mathur A, Singh A, Hussain Y, Mishra A, Meena A, Mishra N, Luqman S. Regulating pri/pre-microRNA up/down expressed in cancer proliferation, angiogenesis and metastasis using selected potent triterpenoids. Int J Biol Macromol 2024; 257:127945. [PMID: 37951434 DOI: 10.1016/j.ijbiomac.2023.127945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
MicroRNAs (miRNAs) play a crucial role in cancer progression by selectively inducing translational degradation of messenger RNA (mRNA) via sequence-specific interactions with the 3'-untranslated region (3'-UTR). The potential targeting of miRNA has been recognized as a significant avenue for investigating the biological progression of diverse cancer types. Consequently, targeting of pri-miRNA and pre-miRNA by phytochemicals emerges as a viable strategy in the realm of anticancer therapies. Among phytochemicals, triterpenoids have garnered significant recognition for their chemotherapeutic and chemopreventive capabilities in combating multiple cancers. To date, there is a dearth of literature about the molecular interactions between triterpenoids and miRNAs. The primary objective of this investigation is to discern the potential triterpenoids that can function as modulators for specific miRNAs, namely pri-miRNA-19b-2, pre-miR21, microRNA 20b, pri-miRNA-208a, pri-miRNA-378a, pri-miRNA-320b-2, and pri-miRNA-300, achieved through the use of in silico investigations. The study primarily focused on performing drug-likeness, computer-aided toxicity, and pharmacokinetic prediction studies for triterpenoids. Furthermore, molecular docking and simulation techniques were employed to investigate these compounds. The triterpenoids studied were shown to have drug-likeness characteristics, although asiatic acid, lupeol, and pristimerin were able to pass all toxicity tests. Among the triterpenoids that underwent docking, pristimerin had a significant binding energy of -10.9 kcal/mol during its interaction with pri-miR-378a. The stable interaction between the pristimerin and miRNA complex was demonstrated by molecular dynamics simulation. As a result, pristimerin has the potential to act as a modulator of carcinogenic miRNAs, making it a promising candidate for cancer prevention and treatment due to its tailored modulation of miRNA activity.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akanksha Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj 211012, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj 211012, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Garbin A, Contarini G, Damanti CC, Tosato A, Bortoluzzi S, Gaffo E, Pizzi M, Carraro E, Lo Nigro L, Vinti L, Pillon M, Biffi A, Lovisa F, Mussolin L. MiR-146a-5p enrichment in small-extracellular vesicles of relapsed pediatric ALCL patients promotes macrophages infiltration and differentiation. Biochem Pharmacol 2023; 215:115747. [PMID: 37591448 DOI: 10.1016/j.bcp.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Anaplastic large cell lymphoma (ALCL) is a CD30-positive lymphoma accounting for 20% of all pediatric T-cell lymphomas. Current first line treatment can cure most of ALCL patients but 10-30% of them are resistant or relapse. In this context, liquid biopsy has the potential to help clinicians in disease screening and treatment response monitoring. Small-RNA-sequencing analysis performed on plasma small-extracellular vesicles (s-EVs) from 20 pediatric anaplastic lymphoma kinase positive (ALK + ) ALCL patients at diagnosis revealed a specific miRNAs cargo in relapsed patients compared to non-relapsed, with seven miRNAs enriched in s-EVs of relapsed patients. MiR-146a-5p and miR-378a-3p showed a negative prognostic impact both in univariate and multivariate analysis, possibly representing, together with let-7 g-5p, a miRNA panel for the early identification of high-risk patients. Among them, miR-146a-5p is known to modulate tumor supporting-M2 macrophages differentiation, but the role of these cells in pediatric ALK + ALCL is still unknown. To elucidate the role of miR-146a-5p and M2 macrophages in pediatric ALCL disease, THP-1-derived macrophages were treated with s-EVs from ALK + ALCL cell lines, showing increased miR-146a-5p intracellular expression, migrating capability and M2-markers CD163 and Arginase-1 upregulation. In turn, conditioned media from M2 macrophages or miR-146a-5p-transfected THP-1 increased ALCL cells' aggressive features and were enriched in interleukin-8. Overall, these data suggest a role of miR-146a-5p in promoting macrophage infiltration and M2-like polarization in ALCL. Our findings incite further investigation on the role of M2 macrophages in ALCL aggressiveness and dissemination, also considering the novel treatment options targeting tumor associated macrophages.
Collapse
Affiliation(s)
- Anna Garbin
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Giorgia Contarini
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Carlotta C Damanti
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Anna Tosato
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | | | - Enrico Gaffo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University of Padua, Padua, Italy
| | - Elisa Carraro
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Luca Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Pillon
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Alessandra Biffi
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Federica Lovisa
- Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy.
| |
Collapse
|
7
|
Xu X, Li Y, Liu G, Li K, Chen P, Gao Y, Liang W, Xi H, Wang X, Wei B, Li H, Chen L. MiR-378a-3p acts as a tumor suppressor in gastric cancer via directly targeting RAB31 and inhibiting the Hedgehog pathway proteins GLI1/2. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0337. [PMID: 36245214 PMCID: PMC9755959 DOI: 10.20892/j.issn.2095-3941.2022.0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To improve the prognosis of patients with gastric cancer (GC), more effective therapeutic targets are urgently needed. Increasing evidence indicates that miRNAs are involved in the progression of various tumors, and RAS-associated protein in the brain 31 (RAB31) is upregulated and promotes the progression of multiple malignant tumors. Here, we focused on identifying RAB31-targeted miRNAs and elucidating their potential mechanism in the progression of GC. METHODS RAB31 and miR-378a-3p expression levels were detected in paired fresh GC tissues and GC cell lines. Bioinformatics analysis was used to predict the miRNAs targeting RAB31 and the relationships between RAB31 and other genes. Dual-luciferase reporter assays were applied to verify the targeted interaction relationship. CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of GC cells. Tumorsphere formation assays were performed to assess the stemness of gastric cancer stem cells. Related proteins were detected by Western blot. Xenograft assays in nude mice were performed to explore the effect of miR-378a-3p in vivo. RESULTS We report the first evidence that miR-378a-3p is downregulated in GC, whereas its overexpression inhibits proliferation, invasion, and migration as well as promotes apoptosis in GC cells. Mechanistically, miR-378a-3p inhibits the progression of GC by directly targeting RAB31. Restoring RAB31 expression partially offsets the inhibitory effect of miR-378a-3p. Further research revealed that miR-378a-3p inhibits GLI1/2 in the Hedgehog signaling pathway and attenuates the stemness of gastric cancer stem cells. Finally, xenograft assays showed that miR-378a-3p inhibits GC tumorigenesis in vivo. CONCLUSIONS MiR-378a-3p inhibits GC progression by directly targeting RAB31 and inhibiting the Hedgehog signaling pathway proteins GLI1/2.
Collapse
Affiliation(s)
- Xinxin Xu
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Li
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoxiao Liu
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Kai Li
- Medical School of Chinese PLA, Beijing 100853, China,Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Peng Chen
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People’s Liberation Army, Lanzhou 730050, China
| | - Yunhe Gao
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenquan Liang
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinxin Wang
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Wei
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongtao Li
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People’s Liberation Army, Lanzhou 730050, China,Correspondence to: Hongtao Li and Lin Chen, E-mail: and
| | - Lin Chen
- Senior Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China,Correspondence to: Hongtao Li and Lin Chen, E-mail: and
| |
Collapse
|
8
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
9
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
10
|
Singh S, Srivastava PN, Meena A, Luqman S. Dietary flavonoid narirutin as a prospective antagonist of oncogenic pri/pre-microRNAs. Phytother Res 2022; 36:963-983. [PMID: 35040205 DOI: 10.1002/ptr.7367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are involved in cancer progression via translational degradation in a sequence-specific manner of the 3'-untranslated region (3'UTR) of messenger RNA (mRNA). The involvement of miRNA in the biological progression of various cancer types is considered to be a potential target. Primary miRNA (pri-miRNA) and precursor-miRNA (pre-miRNA) synthesize the miRNA by dicer-catalyzed processes thus targeting pri/pre-miRNA by phytochemicals is amongst the appropriate approaches for anticancer therapies. Flavonoids category of phytochemicals is well-known for its chemotherapeutic and chemopreventive potential against multiple cancer types. However, the molecular interactions of flavonoids with miRNAs are not reported so far. Thus, this study aims to identify the promising flavonoids as the antagonist of miRNAs (pre-miR21, pri-miR-208a, pri-miR-378a, pri-miR320b, pri-miR-300, pri-miR-19b, and pre-miR-20b) using molecular docking simulations studies. Among the tested flavonoids, narirutin showed highest binding energy (-11.7 kcal/mol) against pri-miR19b followed by pri-miR-378a (-11.4 kcal/mol) > pri-miR320b (-11.2 kcal/mol) = pri-miR-300 (-11.2 kcal/mol) > pri-miR-208a (-9.0 kcal/mol) > pre-miR-20b (- 8.3 kcal/mol). The molecular dynamic simulation experiment confirmed that narirutin destabilizes the tertiary structure of pri-miRNA in comparison to apo-RNA. The finding indicates that narirutin binding with pre-miRNA causes disruption of pri-RNA structure that creates a loss of DICER-pre-miRNA interactions by hindering the pre-miRNA synthesis, thereby affecting miRNA processing. Further pharmacokinetics and toxicity prediction revealed that it is non-carcinogenic, non-mutagenic, and does not inhibit the CYPs activity. Thus, narirutin could be a possible antagonist of oncogenic miRNAs, therefore could be useful for miRNA-targeted cancer prevention and treatment.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pratik Narain Srivastava
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Liaño-Pons J, Arsenian-Henriksson M, León J. The Multiple Faces of MNT and Its Role as a MYC Modulator. Cancers (Basel) 2021; 13:4682. [PMID: 34572909 PMCID: PMC8465425 DOI: 10.3390/cancers13184682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT's obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Javier León
- Departmento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain;
| |
Collapse
|
12
|
Deciphering miRNA-Target Relationships to Understand miRNA-Mediated Carcinogenesis. Cancers (Basel) 2021; 13:cancers13102415. [PMID: 34067691 PMCID: PMC8156494 DOI: 10.3390/cancers13102415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
|