1
|
Yin XF, Ye T, Chen HL, Liu J, Mu XF, Li H, Wang J, Hu YJ, Cao H, Kang WQ. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol Spectr 2024; 12:e0354923. [PMID: 38916335 PMCID: PMC11302734 DOI: 10.1128/spectrum.03549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Taoyu Ye
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Han-Lin Chen
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junyan Liu
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Xue-Feng Mu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hao Li
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Jun Wang
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuan-Jia Hu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hongzhi Cao
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- Department of Digital Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wen-Quan Kang
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Debelius JW, Engstrand L, Matussek A, Brusselaers N, Morton JT, Stenmarker M, Olsen RS. The Local Tumor Microbiome Is Associated with Survival in Late-Stage Colorectal Cancer Patients. Microbiol Spectr 2023; 11:e0506622. [PMID: 37042765 PMCID: PMC10269740 DOI: 10.1128/spectrum.05066-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
The gut microbiome is associated with survival in colorectal cancer. Single organisms have been identified as markers of poor prognosis. However, in situ imaging of tumors demonstrate a polymicrobial tumor-associated community. To understand the role of these polymicrobial communities in survival, we conducted a nested case-control study in late-stage cancer patients undergoing resection for primary adenocarcinoma. The microbiome of paired tumor and adjacent normal tissue samples was profiled using 16S rRNA sequencing. We found a consistent difference in the microbiome between paired tumor and adjacent tissue, despite strong individual microbial identities. Furthermore, a larger difference between normal and tumor tissue was associated with prognosis: patients with shorter survival had a larger difference between normal and tumor tissue. Within the tumor tissue, we identified a 39-member community statistic associated with survival; for every log2-fold increase in this value, an individual's odds of survival increased by 20% (odds ratio survival 1.20; 95% confidence interval = 1.04 to 1.33). Our results suggest that a polymicrobial tumor-specific microbiome is associated with survival in late-stage colorectal cancer patients. IMPORTANCE Microbiome studies in colorectal cancer (CRC) have primarily focused on the role of single organisms in cancer progression. Recent work has identified specific organisms throughout the intestinal tract, which may affect survival; however, the results are inconsistent. We found differences between the tumor microbiome and the microbiome of the rest of the intestine in patients, and the magnitude of this difference was associated with survival, or, the more like a healthy gut a tumor looked, the better a patient's prognosis. Our results suggest that future microbiome-based interventions to affect survival in CRC will need to target the tumor community.
Collapse
Affiliation(s)
- Justine W. Debelius
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Andreas Matussek
- Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden
- Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - James T. Morton
- Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaretha Stenmarker
- Futurum/Department of Pediatrics, Jönköping Region County, Jönköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Institute of Clinical Sciences, Department of Paediatrics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Renate S. Olsen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Pathology Laboratory, Department of Laboratory Medicine, Jönköping Region County, Jönköping, Sweden
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
3
|
Luu K, Ye JY, Lagishetty V, Liang F, Hauer M, Sedighian F, Kwaan MR, Kazanjian KK, Hecht JR, Lin AY, Jacobs JP. Fecal and Tissue Microbiota Are Associated with Tumor T-Cell Infiltration and Mesenteric Lymph Node Involvement in Colorectal Cancer. Nutrients 2023; 15:nu15020316. [PMID: 36678187 PMCID: PMC9861998 DOI: 10.3390/nu15020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is associated with alterations of the fecal and tissue-associated microbiome. Preclinical models support a pathogenic role of the microbiome in CRC, including in promoting metastasis and modulating antitumor immune responses. To investigate whether the microbiome is associated with lymph node metastasis and T cell infiltration in human CRC, we performed 16S rRNA gene sequencing of feces, tumor core, tumor surface, and healthy adjacent tissue collected from 34 CRC patients undergoing surgery (28 fecal samples and 39 tissue samples). Tissue microbiome profiles-including increased Fusobacterium-were significantly associated with mesenteric lymph node (MLN) involvement. Fecal microbes were also associated with MLN involvement and accurately classified CRC patients into those with or without MLN involvement. Tumor T cell infiltration was assessed by immunohistochemical staining of CD3 and CD8 in tumor tissue sections. Tumor core microbiota, including members of the Blautia and Faecalibacterium genera, were significantly associated with tumor T cell infiltration. Abundance of specific fecal microbes including a member of the Roseburia genus predicted high vs. low total and cytotoxic T cell infiltration in random forests classifiers. These findings support a link between the microbiome and antitumor immune responses that may influence prognosis of locally advanced CRC.
Collapse
Affiliation(s)
- Kayti Luu
- John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI 96813, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jason Y. Ye
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Fengting Liang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Megan Hauer
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Farzaneh Sedighian
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Mary R. Kwaan
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kevork K. Kazanjian
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Randolph Hecht
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anne Y. Lin
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Correspondence:
| |
Collapse
|
4
|
Rautava S, Selma-Royo M, Oksanen T, Collado MC, Isolauri E. Shifting pattern of gut microbiota in pregnant women two decades apart - an observational study. Gut Microbes 2023; 15:2234656. [PMID: 37469006 PMCID: PMC10361139 DOI: 10.1080/19490976.2023.2234656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Past decades have witnessed a decrease in environmental biodiversity. We hypothesized a similar decrease in indigenous gut microbiota diversity, which may have contributed to the obesity epidemic. OBJECTIVE To investigate the changes in the composition and function of the gut microbiota in pregnant women over a period of 20 years. STUDY DESIGN Altogether 124 pregnant women (41 overweight and matched 83 normal weight) pregnant in 1997, 2007 or 2017 were included in the study. The gut microbiota composition was assessed from fecal samples obtained at 32 weeks of gestation by 16S rRNA gene sequencing. Fecal short chain fatty acid (SCFA) profiles were measured by gas chromatography mass spectrometry (GC-MS). RESULTS Distinct gut microbiota profiles were detected in pregnant women from 1997, 2007 and 2017 (PERMANOVA Bray-Curtis R2 = 0.029, p = 0.001). The women pregnant in 1997 exhibited significantly higher microbiota richness and diversity as compared to those pregnant in 2007 and 2017. The total concentration of fecal SCFAs was significantly higher in the pregnant women in 1997 compared to those in 2007 and 2017. Significant differences in gut microbiota composition between normal weight and overweight women were manifest in 1997 but not in 2007 or 2017. CONCLUSIONS The decrease in intestinal microbiota richness and diversity over two decades occurred in parallel with the decline in biodiversity in our natural surroundings. It appears that the gut microbiota of pregnant women has changed over time to a composition typical for overweight individuals.
Collapse
Affiliation(s)
- Samuli Rautava
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Helsinki and New Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA- CSIC), Valencia, Spain
| | - Teo Oksanen
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA- CSIC), Valencia, Spain
| | - Erika Isolauri
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Peskett ST, Rand AA. The human fecal microbiome contributes to the biotransformation of the PFAS surfactant 8:2 monosubstituted polyfluoroalkyl phosphate ester. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1758-1768. [PMID: 35979739 DOI: 10.1039/d2em00225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) can be found throughout society due to their numerous commercial applications. However, they also pose an environmental and health concern given their ability to undergo hydrolysis and oxidation to several bioactive and persistent products, including the perfluorocarboxylic acids (PFCAs). The metabolism of PAPs has been shown to occur in mammalian liver and intestine, however metabolism by the gut microbiome has not yet been investigated. In this study, human fecal samples were used to model the microbial population of the colon, to test whether these anaerobic microbes could facilitate 8:2 monosubstituted PAP (monoPAP) transformation. In vitro testing was completed by incubating the fecal samples with 8:2 monoPAP (400-10,000 nM) up to 120 minutes in an anaerobic chamber. Reactions were then terminated and the samples prepared for GC- and LC-MS/MS analysis. Metabolites of interest were the immediate hydrolysis product, the 8:2 fluorotelomer alcohol (FTOH), and 11 additional metabolites previously shown to form from 8:2 FTOH in both oxic and anoxic environments. The kinetics of 8:2 monoPAP transformation by gut microbiota were compared to those in human S9 liver and intestine fractions, both of which have active levels of hydrolyzing and oxidative enzymes that transform 8:2 monoPAP. Transformation rates from 8:2 monoPAP to 8:2 FTOH were highest in liver S9 > intestine S9 > fecal suspensions. The gut microbiome also produced a unique composition of oxidative metabolites, where the following intermediate metabolites were more abundant than terminal PFCAs: 8:2 fluorotelomer unsaturated carboxylic acid (FTUCA) > 8:2 fluorotelomer carboxylic acid (FTCA) > 7:2 Ketone ≈ perfluorohexanoic acid (PFHxA). Hydrolytic and oxidative metabolites contributed up to 30% of the molar balance after microbial 8:2 monoPAP transformation. Together, the results suggest that the gut microbiome can play a notable role in PAP biotransformation.
Collapse
Affiliation(s)
- Sierra T Peskett
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, USA.
| | - Amy A Rand
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, USA.
| |
Collapse
|
6
|
The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143385. [PMID: 35884445 PMCID: PMC9317273 DOI: 10.3390/cancers14143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence shows a close relationship between the microbiome and colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this systematic review was to compile evidence on the relationship between tissue-associated microbiota and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups of bacteria with strong positive and 18 groups of bacteria with strong negative associations with colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that aim to prevent, detect, and treat colorectal cancer in the upcoming years. Abstract The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual’s local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.
Collapse
|
7
|
Schierova D, Roubalova R, Kolar M, Stehlikova Z, Rob F, Jackova Z, Coufal S, Thon T, Mihula M, Modrak M, Kverka M, Bajer L, Kostovcikova K, Drastich P, Hercogova J, Novakova M, Vasatko M, Lukas M, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Fecal Microbiome Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy. Cells 2021; 10:3188. [PMID: 34831411 PMCID: PMC8617723 DOI: 10.3390/cells10113188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract that have been linked to microbiome dysbiosis and immune system dysregulation. We investigated the longitudinal effect of anti-TNF therapy on gut microbiota composition and specific immune response to commensals in IBD patients. The study included 52 patients tracked over 38 weeks of therapy and 37 healthy controls (HC). To characterize the diversity and composition of the gut microbiota, we used amplicon sequencing of the V3V4 region of 16S rRNA for the bacterial community and of the ITS1 region for the fungal community. We measured total antibody levels as well as specific antibodies against assorted gut commensals by ELISA. We found diversity differences between HC, Crohn's disease, and ulcerative colitis patients. The bacterial community of patients with IBD was more similar to HC at the study endpoint, suggesting a beneficial shift in the microbiome in response to treatment. We identified factors such as disease severity, localization, and surgical intervention that significantly contribute to the observed changes in the gut bacteriome. Furthermore, we revealed increased IgM levels against specific gut commensals after anti-TNF treatment. In summary, this study, with its longitudinal design, brings insights into the course of anti-TNF therapy in patients with IBD and correlates the bacterial diversity with disease severity in patients with ulcerative colitis (UC).
Collapse
Affiliation(s)
- Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Martin Kolar
- IBD Clinical and Research Centre ISCARE a.s., 190 00 Prague, Czech Republic; (M.K.); (M.V.); (M.L.)
| | - Zuzana Stehlikova
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Filip Rob
- Dermatovenerology Department, Second Faculty of Medicine, University Hospital Bulovka, Charles University in Prague, 180 81 Prague, Czech Republic; (F.R.); (J.H.); (M.N.)
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Tomas Thon
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Martin Mihula
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Martin Modrak
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
- Institute for Clinical and Experimental Medicine of the Czech Academy of Science, 140 21 Prague, Czech Republic;
| | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Pavel Drastich
- Institute for Clinical and Experimental Medicine of the Czech Academy of Science, 140 21 Prague, Czech Republic;
| | - Jana Hercogova
- Dermatovenerology Department, Second Faculty of Medicine, University Hospital Bulovka, Charles University in Prague, 180 81 Prague, Czech Republic; (F.R.); (J.H.); (M.N.)
| | - Michaela Novakova
- Dermatovenerology Department, Second Faculty of Medicine, University Hospital Bulovka, Charles University in Prague, 180 81 Prague, Czech Republic; (F.R.); (J.H.); (M.N.)
| | - Martin Vasatko
- IBD Clinical and Research Centre ISCARE a.s., 190 00 Prague, Czech Republic; (M.K.); (M.V.); (M.L.)
| | - Milan Lukas
- IBD Clinical and Research Centre ISCARE a.s., 190 00 Prague, Czech Republic; (M.K.); (M.V.); (M.L.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, 128 08 Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| | - Zuzana Jiraskova Zakostelska
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (D.S.); (R.R.); (Z.S.); (Z.J.); (S.C.); (T.T.); (M.M.); (M.M.); (M.K.); (L.B.); (K.K.); (H.T.-H.)
| |
Collapse
|
8
|
Microbiota: An Emerging Biomarker in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13215530. [PMID: 34771692 PMCID: PMC8583410 DOI: 10.3390/cancers13215530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023] Open
Abstract
This series of 10 articles (four original articles, five literature reviews, and one systematic review) is presented by international experts in the study of microbiota and its relation to colorectal cancer (CRC) [...].
Collapse
|
9
|
Borgognone A, Serna G, Noguera-Julian M, Alonso L, Parera M, Català-Moll F, Sanchez L, Fasani R, Paredes R, Nuciforo P. Performance of 16S Metagenomic Profiling in Formalin-Fixed Paraffin-Embedded versus Fresh-Frozen Colorectal Cancer Tissues. Cancers (Basel) 2021; 13:cancers13215421. [PMID: 34771584 PMCID: PMC8582506 DOI: 10.3390/cancers13215421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most widely available clinical material to study colorectal cancer (CRC). However, the accuracy and clinical validity of FFPE microbiome profiling in CRC is uncertain. Here, we compared the microbial composition of 10 paired fresh-frozen (FF) and FFPE CRC tissues using 16S rRNA sequencing and RNA-ISH. Both sample types showed different microbial diversity and composition. FF samples were enriched in archaea and representative CRC-associated bacteria, such as Firmicutes, Bacteroidetes and Fusobacteria. Conversely, FFPE samples were mainly enriched in typical contaminants, such as Sphingomonadales and Rhodobacterales. RNA-ISH in FFPE tissues confirmed the presence of CRC-associated bacteria, such as Fusobacterium and Bacteroides, as well as Propionibacterium allowing discrimination between tumor-associated and contaminant taxa. An internal quality index showed that the degree of similarity within sample pairs inversely correlated with the dominance of contaminant taxa. Given the importance of FFPE specimens for larger studies in human cancer genomics, our findings may provide useful indications on potential confounding factors to consider for accurate and reproducible metagenomics analyses.
Collapse
Affiliation(s)
- Alessandra Borgognone
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (A.B.); (M.N.-J.); (M.P.); (F.C.-M.)
| | - Garazi Serna
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (G.S.); (L.A.); (L.S.); (R.F.)
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (A.B.); (M.N.-J.); (M.P.); (F.C.-M.)
- Faculty of Medicine, University of Vic–Central University of Catalonia (UVic–UCC), 08500 Vic, Barcelona, Spain
| | - Lidia Alonso
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (G.S.); (L.A.); (L.S.); (R.F.)
| | - Mariona Parera
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (A.B.); (M.N.-J.); (M.P.); (F.C.-M.)
| | - Francesc Català-Moll
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (A.B.); (M.N.-J.); (M.P.); (F.C.-M.)
| | - Lidia Sanchez
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (G.S.); (L.A.); (L.S.); (R.F.)
| | - Roberta Fasani
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (G.S.); (L.A.); (L.S.); (R.F.)
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain; (A.B.); (M.N.-J.); (M.P.); (F.C.-M.)
- Faculty of Medicine, University of Vic–Central University of Catalonia (UVic–UCC), 08500 Vic, Barcelona, Spain
- Facultat de Medicina, Universitat Autonoma de Barcelona (UAB), 08193 Barcelona, Spain
- Fight AIDS Foundation, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
- Infectious Diseases Service, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (R.P.); (P.N.)
| | - Paolo Nuciforo
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (G.S.); (L.A.); (L.S.); (R.F.)
- Correspondence: (R.P.); (P.N.)
| |
Collapse
|
10
|
Ikegami H, Noguchi S, Fukuda K, Akata K, Yamasaki K, Kawanami T, Mukae H, Yatera K. Refinement of microbiota analysis of specimens from patients with respiratory infections using next-generation sequencing. Sci Rep 2021; 11:19534. [PMID: 34599245 PMCID: PMC8486753 DOI: 10.1038/s41598-021-98985-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been applied in bacterial flora analysis. However, there is no standardized protocol, and the optimal clustering threshold for estimating bacterial species in respiratory infection specimens is unknown. This study was conducted to investigate the optimal threshold for clustering 16S ribosomal RNA gene sequences into operational taxonomic units (OTUs) by comparing the results of NGS technology with those of the Sanger method, which has a higher accuracy of sequence per single read than NGS technology. This study included 45 patients with pneumonia with aspiration risks and 35 patients with lung abscess. Compared to Sanger method, the concordance rates of NGS technology (clustered at 100%, 99%, and 97% homology) with the predominant phylotype were 78.8%, 71.3%, and 65.0%, respectively. With respect to the specimens dominated by the Streptococcus mitis group, containing several important causative agents of pneumonia, Bray Curtis dissimilarity revealed that the OTUs obtained at 100% clustering threshold (versus those obtained at 99% and 97% thresholds; medians of 0.35, 0.69, and 0.71, respectively) were more similar to those obtained by the Sanger method, with statistical significance (p < 0.05). Clustering with 100% sequence identity is necessary when analyzing the microbiota of respiratory infections using NGS technology.
Collapse
Affiliation(s)
- Hiroaki Ikegami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kentaro Akata
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Toshinori Kawanami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan.
| |
Collapse
|
11
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
12
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
13
|
Oral and Intravenous Iron Therapy Differentially Alter the On- and Off-Tumor Microbiota in Anemic Colorectal Cancer Patients. Cancers (Basel) 2021; 13:cancers13061341. [PMID: 33809624 PMCID: PMC8002270 DOI: 10.3390/cancers13061341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Iron deficiency anemia is a common complication of colorectal cancer and may require iron therapy. Oral iron can increase the iron available to gut bacteria and may alter the colonic microbiota. We performed an intervention study to compare oral and intravenous iron therapy on the colonic tumor-associated (on-tumor) and paired non-tumor-associated adjacent (off-tumor) microbiota. Anemic patients with colorectal adenocarcinoma received either oral ferrous sulphate (n = 16) or intravenous ferric carboxymaltose (n = 24). On- and off-tumor biopsies were obtained post-surgery and microbial profiling was performed using 16S ribosomal RNA analysis. Off-tumor α- and β-diversity were significantly different between iron treatment groups. No differences in on-tumor diversity were observed. Off-tumor microbiota of oral iron-treated patients showed higher abundances of the orders Clostridiales, Cytophagales, and Anaeroplasmatales compared to intravenous iron-treated patients. The on-tumor microbiota was enriched with the orders Lactobacillales and Alteromonadales in the oral and intravenous iron groups, respectively. The on- and off-tumor microbiota associated with intravenous iron-treated patients infers increased abundances of enzymes involved in iron sequestration and anti-inflammatory/oncogenic metabolite production, compared to oral iron-treated patients. Collectively, this suggests that intravenous iron may be a more appropriate therapy to limit adverse microbial outcomes compared to oral iron.
Collapse
|