1
|
Olvera-León R, Zhang F, Offord V, Zhao Y, Tan HK, Gupta P, Pal T, Robles-Espinoza CD, Arriaga-González FG, Matsuyama LSAS, Delage E, Dicks E, Ezquina S, Rowlands CF, Turnbull C, Pharoah P, Perry JRB, Jasin M, Waters AJ, Adams DJ. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 2024; 187:5719-5734.e19. [PMID: 39299233 DOI: 10.1016/j.cell.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Pathogenic variants in RAD51C confer an elevated risk of breast and ovarian cancer, while individuals homozygous for specific RAD51C alleles may develop Fanconi anemia. Using saturation genome editing (SGE), we functionally assess 9,188 unique variants, including >99.5% of all possible coding sequence single-nucleotide alterations. By computing changes in variant abundance and Gaussian mixture modeling (GMM), we functionally classify 3,094 variants to be disruptive and use clinical truth sets to reveal an accuracy/concordance of variant classification >99.9%. Cell fitness was the primary assay readout allowing us to observe a phenomenon where specific missense variants exhibit distinct depletion kinetics potentially suggesting that they represent hypomorphic alleles. We further explored our exhaustive functional map, revealing critical residues on the RAD51C structure and resolving variants found in cancer-segregating kindred. Furthermore, through interrogation of UK Biobank and a large multi-center ovarian cancer cohort, we find significant associations between SGE-depleted variants and cancer diagnoses.
Collapse
Affiliation(s)
- Rebeca Olvera-León
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fang Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Hong Kee Tan
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Prashant Gupta
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Tuya Pal
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center (VUMC)/Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN, USA
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fernanda G Arriaga-González
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | | | - Erwan Delage
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Ed Dicks
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Suzana Ezquina
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Charlie F Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; National Cancer Registration and Analysis Service, National Health Service (NHS) England, London, UK; Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Paul Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Waters
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
2
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
3
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Esteban-Sánchez A, Lorca V, Llinares-Burguet I, García-Álvarez A, Pérez-Segura P, Infante M, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco-Sampedro EA. Systematic Minigene-Based Splicing Analysis and Tentative Clinical Classification of 52 CHEK2 Splice-Site Variants. Clin Chem 2024; 70:319-338. [PMID: 37725924 DOI: 10.1093/clinchem/hvad125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Disrupted pre-mRNA splicing is a frequent deleterious mechanism in hereditary cancer. We aimed to functionally analyze candidate spliceogenic variants of the breast cancer susceptibility gene CHEK2 by splicing reporter minigenes. METHODS A total of 128 CHEK2 splice-site variants identified in the Breast Cancer After Diagnostic Gene Sequencing (BRIDGES) project (https://cordis.europa.eu/project/id/634935) were analyzed with MaxEntScan and subsetted to 52 variants predicted to impact splicing. Three CHEK2 minigenes, which span all 15 exons, were constructed and validated. The 52 selected variants were then genetically engineered into the minigenes and assayed in MCF-7 (human breast adenocarcinoma) cells. RESULTS Of 52 variants, 46 (88.5%) impaired splicing. Some of them led to complex splicing patterns with up to 11 different transcripts. Thirty-four variants induced splicing anomalies without any trace or negligible amounts of the full-length transcript. A total of 89 different transcripts were annotated, which derived from different events: single- or multi-exon skipping, alternative site-usage, mutually exclusive exon inclusion, intron retention or combinations of the abovementioned events. Fifty-nine transcripts were predicted to introduce premature termination codons, 7 kept the original open-reading frame, 5 removed the translation start codon, 6 affected the 5'UTR (Untranslated Region), and 2 included missense variations. Analysis of variant c.684-2A > G revealed the activation of a non-canonical TG-acceptor site and exon 6 sequences critical for its recognition. CONCLUSIONS Incorporation of minigene read-outs into an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme allowed us to classify 32 CHEK2 variants (27 pathogenic/likely pathogenic and 5 likely benign). However, 20 variants (38%) remained of uncertain significance, reflecting in part the complex splicing patterns of this gene.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Ada Esteban-Sánchez
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Mar Infante
- Cancer Genetics, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, Cambridge, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
4
|
Turchiano A, Piglionica M, Martino S, Bagnulo R, Garganese A, De Luisi A, Chirulli S, Iacoviello M, Stasi M, Tabaku O, Meneleo E, Capurso M, Crocetta S, Lattarulo S, Krylovska Y, Lastella P, Forleo C, Stella A, Bukvic N, Simone C, Resta N. Impact of High-to-Moderate Penetrance Genes on Genetic Testing: Looking over Breast Cancer. Genes (Basel) 2023; 14:1530. [PMID: 37628581 PMCID: PMC10454640 DOI: 10.3390/genes14081530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) is the most common cancer and the leading cause of cancer death in women worldwide. Since the discovery of the highly penetrant susceptibility genes BRCA1 and BRCA2, many other predisposition genes that confer a moderate risk of BC have been identified. Advances in multigene panel testing have allowed the simultaneous sequencing of BRCA1/2 with these genes in a cost-effective way. Germline DNA from 521 cases with BC fulfilling diagnostic criteria for hereditary BC were screened with multigene NGS testing. Pathogenic (PVs) and likely pathogenic (LPVs) variants in moderate penetrance genes were identified in 15 out of 521 patients (2.9%), including 2 missense, 7 non-sense, 1 indel, and 3 splice variants, as well as two different exon deletions, as follows: ATM (n = 4), CHEK2 (n = 5), PALB2 (n = 2), RAD51C (n = 1), and RAD51D (n = 3). Moreover, the segregation analysis of PVs and LPVs into first-degree relatives allowed the detection of CHEK2 variant carriers diagnosed with in situ melanoma and clear cell renal cell carcinoma (ccRCC), respectively. Extended testing beyond BRCA1/2 identified PVs and LPVs in a further 2.9% of BC patients. In conclusion, panel testing yields more accurate genetic information for appropriate counselling, risk management, and preventive options than assessing BRCA1/2 alone.
Collapse
Affiliation(s)
- Antonella Turchiano
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Marilidia Piglionica
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Stefania Martino
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Rosanna Bagnulo
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Antonella Garganese
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Annunziata De Luisi
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Stefania Chirulli
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Matteo Iacoviello
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Michele Stasi
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Ornella Tabaku
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Eleonora Meneleo
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Martina Capurso
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Silvia Crocetta
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Simone Lattarulo
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Yevheniia Krylovska
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Patrizia Lastella
- Rare Disease Center, Internal Medicine Unit “C. Frugoni”, AOU Policlinico di Bari, 70124 Bari, Italy;
| | - Cinzia Forleo
- Cardiology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Alessandro Stella
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Nenad Bukvic
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Cristiano Simone
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
- Medical Genetics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nicoletta Resta
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| |
Collapse
|
5
|
Valenzuela-Palomo A, Sanoguera-Miralles L, Bueno-Martínez E, Esteban-Sánchez A, Llinares-Burguet I, García-Álvarez A, Pérez-Segura P, Gómez-Barrero S, de la Hoya M, Velasco-Sampedro EA. Splicing Analysis of 16 PALB2 ClinVar Variants by Minigene Assays: Identification of Six Likely Pathogenic Variants. Cancers (Basel) 2022; 14:cancers14184541. [PMID: 36139699 PMCID: PMC9496955 DOI: 10.3390/cancers14184541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
PALB2 loss-of-function variants are associated with significant increased risk of breast cancer as well as other types of tumors. Likewise, splicing disruptions are a common mechanism of disease susceptibility. Indeed, we previously showed, by minigene assays, that 35 out of 42 PALB2 variants impaired splicing. Taking advantage of one of these constructs (mgPALB2_ex1-3), we proceeded to analyze other variants at exons 1 to 3 reported at the ClinVar database. Thirty-one variants were bioinformatically analyzed with MaxEntScan and SpliceAI. Then, 16 variants were selected for subsequent RNA assays. We identified a total of 12 spliceogenic variants, 11 of which did not produce any trace of the expected minigene full-length transcript. Interestingly, variant c.49-1G > A mimicked previous outcomes in patient RNA (transcript ∆(E2p6)), supporting the reproducibility of the minigene approach. A total of eight variant-induced transcripts were characterized, three of which (∆(E1q17), ∆(E3p11), and ∆(E3)) were predicted to introduce a premature termination codon and to undergo nonsense-mediated decay, and five (▼(E1q9), ∆(E2p6), ∆(E2), ▼(E3q48)-a, and ▼(E3q48)-b) maintained the reading frame. According to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, which integrates mgPALB2 data, six PALB2 variants were classified as pathogenic/likely pathogenic, five as VUS, and five as likely benign. Furthermore, five ±1,2 variants were catalogued as VUS because they produced significant proportions of in-frame transcripts of unknown impact on protein function.
Collapse
Affiliation(s)
- Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Ada Esteban-Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Susana Gómez-Barrero
- Facultad de Ciencias de la Salud, Universidad Alfonso X “El Sabio”, Avda. de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Eladio A. Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
- Correspondence:
| |
Collapse
|
6
|
Bueno‐Martínez E, Sanoguera‐Miralles L, Valenzuela‐Palomo A, Esteban‐Sánchez A, Lorca V, Llinares‐Burguet I, Allen J, García‐Álvarez A, Pérez‐Segura P, Durán M, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco‐Sampedro EA. Minigene-based splicing analysis and ACMG/AMP-based tentative classification of 56 ATM variants. J Pathol 2022; 258:83-101. [PMID: 35716007 PMCID: PMC9541484 DOI: 10.1002/path.5979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) protein is a major coordinator of the DNA damage response pathway. ATM loss-of-function variants are associated with 2-fold increased breast cancer risk. We aimed at identifying and classifying spliceogenic ATM variants detected in subjects of the large-scale sequencing project BRIDGES. A total of 381 variants at the intron-exon boundaries were identified, 128 of which were predicted to be spliceogenic. After further filtering, we ended up selecting 56 variants for splicing analysis. Four functional minigenes (mgATM) spanning exons 4-9, 11-17, 25-29, and 49-52 were constructed in the splicing plasmid pSAD. Selected variants were genetically engineered into the four constructs and assayed in MCF-7/HeLa cells. Forty-eight variants (85.7%) impaired splicing, 32 of which did not show any trace of the full-length (FL) transcript. A total of 43 transcripts were identified where the most prevalent event was exon/multi-exon skipping. Twenty-seven transcripts were predicted to truncate the ATM protein. A tentative ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme that integrates mgATM data allowed us to classify 29 ATM variants as pathogenic/likely pathogenic and seven variants as likely benign. Interestingly, the likely pathogenic variant c.1898+2T>G generated 13% of the minigene FL-transcript due to the use of a noncanonical GG-5'-splice-site (0.014% of human donor sites). Circumstantial evidence in three ATM variants (leakiness uncovered by our mgATM analysis together with clinical data) provides some support for a dosage-sensitive expression model in which variants producing ≥30% of FL-transcripts would be predicted benign, while variants producing ≤13% of FL-transcripts might be pathogenic. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Inés Llinares‐Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Mercedes Durán
- Cancer Genetics, Instituto de Biología y Genética MolecularValladolidSpain
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco‐Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
7
|
Minigene Splicing Assays Identify 20 Spliceogenic Variants of the Breast/Ovarian Cancer Susceptibility Gene RAD51C. Cancers (Basel) 2022; 14:cancers14122960. [PMID: 35740625 PMCID: PMC9221245 DOI: 10.3390/cancers14122960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
RAD51C loss-of-function variants are associated with an increased risk of breast and ovarian cancers. Likewise, splicing disruptions are a frequent mechanism of gene inactivation. Taking advantage of a previous splicing-reporter minigene with exons 2-8 (mgR51C_ex2-8), we proceeded to check its impact on the splicing of candidate ClinVar variants. A total of 141 RAD51C variants at the intron/exon boundaries were analyzed with MaxEntScan. Twenty variants were selected and genetically engineered into the wild-type minigene. All the variants disrupted splicing, and 18 induced major splicing anomalies without any trace or minimal amounts (<2.4%) of the minigene full-length (FL) transcript. Twenty-seven transcripts (including the wild-type and r.904A FL transcripts) were identified by fluorescent fragment electrophoresis; of these, 14 were predicted to truncate the RAD51C protein, 3 kept the reading frame, and 8 minor isoforms (1.1−4.7% of the overall expression) could not be characterized. Finally, we performed a tentative interpretation of the variants according to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, classifying 16 variants as likely pathogenic. Minigene assays have been proven as valuable tools for the initial characterization of potential spliceogenic variants. Hence, minigene mgR51C_ex2-8 provided useful splicing data for 40 RAD51C variants.
Collapse
|
8
|
The Genetic and Molecular Analyses of RAD51C and RAD51D Identifies Rare Variants Implicated in Hereditary Ovarian Cancer from a Genetically Unique Population. Cancers (Basel) 2022; 14:cancers14092251. [PMID: 35565380 PMCID: PMC9104874 DOI: 10.3390/cancers14092251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
To identify candidate variants in RAD51C and RAD51D ovarian cancer (OC) predisposing genes by investigating French Canadians (FC) exhibiting unique genetic architecture. Candidates were identified by whole exome sequencing analysis of 17 OC families and 53 early-onset OC cases. Carrier frequencies were determined by the genetic analysis of 100 OC or HBOC families, 438 sporadic OC cases and 1025 controls. Variants of unknown function were assayed for their biological impact and/or cellular sensitivity to olaparib. RAD51C c.414G>C;p.Leu138Phe and c.705G>T;p.Lys235Asn and RAD51D c.137C>G;p.Ser46Cys, c.620C>T;p.Ser207Leu and c.694C>T;p.Arg232Ter were identified in 17.6% of families and 11.3% of early-onset cases. The highest carrier frequency was observed in OC families (1/44, 2.3%) and sporadic cases (15/438, 3.4%) harbouring RAD51D c.620C>T versus controls (1/1025, 0.1%). Carriers of c.620C>T (n = 7), c.705G>T (n = 2) and c.137C>G (n = 1) were identified in another 538 FC OC cases. RAD51C c.705G>T affected splicing by skipping exon four, while RAD51D p.Ser46Cys affected protein stability and conferred olaparib sensitivity. Genetic and functional assays implicate RAD51C c.705G>T and RAD51D c.137C>G as likely pathogenic variants in OC. The high carrier frequency of RAD51D c.620C>T in FC OC cases validates previous findings. Our findings further support the role of RAD51C and RAD51D in hereditary OC.
Collapse
|
9
|
Valenzuela‐Palomo A, Bueno‐Martínez E, Sanoguera‐Miralles L, Lorca V, Fraile‐Bethencourt E, Esteban‐Sánchez A, Gómez‐Barrero S, Carvalho S, Allen J, García‐Álvarez A, Pérez‐Segura P, Dorling L, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Splicing predictions, minigene analyses, and ACMG-AMP clinical classification of 42 germline PALB2 splice-site variants. J Pathol 2022; 256:321-334. [PMID: 34846068 PMCID: PMC9306493 DOI: 10.1002/path.5839] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
PALB2 loss-of-function variants confer high risk of developing breast cancer. Here we present a systematic functional analysis of PALB2 splice-site variants detected in approximately 113,000 women in the large-scale sequencing project Breast Cancer After Diagnostic Gene Sequencing (BRIDGES; https://bridges-research.eu/). Eighty-two PALB2 variants at the intron-exon boundaries were analyzed with MaxEntScan. Forty-two variants were selected for the subsequent splicing functional assays. For this purpose, three splicing reporter minigenes comprising exons 1-12 were constructed. The 42 potential spliceogenic variants were introduced into the minigenes by site-directed mutagenesis and assayed in MCF-7/MDA-MB-231 cells. Splicing anomalies were observed in 35 variants, 23 of which showed no traces or minimal amounts of the expected full-length transcripts of each minigene. More than 30 different variant-induced transcripts were characterized, 23 of which were predicted to truncate the PALB2 protein. The pathogenicity of all variants was interpreted according to an in-house adaptation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) variant classification scheme. Up to 23 variants were classified as pathogenic/likely pathogenic. Remarkably, three ±1,2 variants (c.49-2A>T, c.108+2T>C, and c.211+1G>A) were classified as variants of unknown significance, as they produced significant amounts of either in-frame transcripts of unknown impact on the PALB2 protein function or the minigene full-length transcripts. In conclusion, we have significantly contributed to the ongoing effort of identifying spliceogenic variants in the clinically relevant PALB2 cancer susceptibility gene. Moreover, we suggest some approaches to classify the findings in accordance with the ACMG-AMP rationale. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eugenia Fraile‐Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
- Knight Cancer Research BuildingPortlandORUSA
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | | | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
10
|
Orhan E, Velazquez C, Tabet I, Sardet C, Theillet C. Regulation of RAD51 at the Transcriptional and Functional Levels: What Prospects for Cancer Therapy? Cancers (Basel) 2021; 13:2930. [PMID: 34208195 PMCID: PMC8230762 DOI: 10.3390/cancers13122930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
The RAD51 recombinase is a critical effector of Homologous Recombination (HR), which is an essential DNA repair mechanism for double-strand breaks. The RAD51 protein is recruited onto the DNA break by BRCA2 and forms homopolymeric filaments that invade the homologous chromatid and use it as a template for repair. RAD51 filaments are detectable by immunofluorescence as distinct foci in the cell nucleus, and their presence is a read out of HR proficiency. RAD51 is an essential gene, protecting cells from genetic instability. Its expression is low and tightly regulated in normal cells and, contrastingly, elevated in a large fraction of cancers, where its level of expression and activity have been linked with sensitivity to genotoxic treatment. In particular, BRCA-deficient tumors show reduced or obliterated RAD51 foci formation and increased sensitivity to platinum salt or PARP inhibitors. However, resistance to treatment sets in rapidly and is frequently based on a complete or partial restoration of RAD51 foci formation. Consequently, RAD51 could be a highly valuable therapeutic target. Here, we review the multiple levels of regulation that impact the transcription of the RAD51 gene, as well as the post-translational modifications that determine its expression level, recruitment on DNA damage sites and the efficient formation of homofilaments. Some of these regulation levels may be targeted and their impact on cancer cell survival discussed.
Collapse
Affiliation(s)
- Esin Orhan
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | | | - Imene Tabet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
- ICM, Institut du Cancer de Montpellier, 34090 Montpellier, France;
| |
Collapse
|
11
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|