1
|
Zhang Z, Gao Y, Qian Y, Wei B, Jiang K, Sun Z, Zhang F, Yang M, Baldi S, Yu X, Zuo Y, Ren S. The Lyn/RUVBL1 Complex Promotes Colorectal Cancer Liver Metastasis by Regulating Arachidonic Acid Metabolism Through Chromatin Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406562. [PMID: 39665272 DOI: 10.1002/advs.202406562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Liver metastasis is a common cause of death in colorectal cancer (CRC) patients, but epigenetic remodeling and metabolic reprogramming for CRC liver metastasis remain unclear. The study revealed that the Lyn/RUVBL1 complex is highly expressed in CRC and is closely correlated with liver metastasis. On the one hand, ATAC-seq and HiCut suggested that Lyn/RUVBL1 regulates the expression of TRIB3 through the POL II-mediated chromatin conformation of TRIB3 and thus the expression of β-catenin. This promotes the proliferation and migration of CRC through β-catenin-mediated upregulation of MMP9 and VEGF. On the other hand, metabolomics revealed that Lyn/RUVBL1 regulates the expression of PGE2 through the enzyme COX2, thereby promoting arachidonic acid (AA) metabolism. CUT-Tag showed that Lyn/RUVBL1 silencing reduces the H3K27ac level in the COX2 promoter. Then, it is found that COX2 is regulated by the transcription factor FOXA1. Lyn/RUVBL1 modulates AA metabolism by regulating the chromatin accessibility of FOXA1. AA metabolism promotes the metastasis of CRC by affecting β-catenin nuclear translocation and upregulating MMP9 and VEGF. These findings suggest that the Lyn/RUVBL1 complex mediates epigenetic remodeling to regulate the metabolic reprogramming of AA, highlighting its role in promoting the metastasis of CRC.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yina Gao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yuanyuan Qian
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Bowen Wei
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Kexin Jiang
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Zhiwei Sun
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Feifan Zhang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Mingming Yang
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Salem Baldi
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaoqi Yu
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laoratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shuangyi Ren
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
2
|
Chen CY, Ye YZ, Huang YH, Tzeng YM, Gurbanov R, Wang WL, Chang WW. Ovatodiolide inhibits endometrial cancer stemness via reactive oxygen species-mediated DNA damage and cell cycle arrest. Chem Biol Interact 2024; 403:111244. [PMID: 39276908 DOI: 10.1016/j.cbi.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide, often associated with a poor prognosis after recurrence or metastasis. Ovatodiolide (OVA) is a macrocyclic diterpenoid derived from Anisomeles indica that shows anticancer effects in various malignancies. This study aimed to evaluate the cytotoxic effects of OVA on EC cell proliferation and cancer stem cell (CSC) activity and explore its underlying molecular mechanisms. OVA treatment dose-dependently reduced the viability and colony formation of three EC cell lines (AN3CA, HEC-1A, and EMC6). It induced G2/M phase cell cycle arrest, associated with decreased cell division cycle 25C (CDC25C) expression and reduced activation of cyclin-dependent kinases 1 (CDK1) and 2 (CDK2). OVA also increased reactive oxygen species (ROS) production and DNA damage, activating the DNA damage-sensitive cell cycle checkpoint kinases 1 (CHK1) and 2 (CHK2) and upregulating the DNA damage marker γ-H2A.X variant histone (H2AX). It also suppressed the activation of mechanistic target of rapamycin kinase (mTOR) and nuclear factor kappa B (NF-κB) and downregulated glutathione peroxidase 1 (GPX1), an antioxidant enzyme counteracting oxidative stress. Moreover, OVA reduced the self-renewal capacity of CSCs, reducing the expression of key stemness proteins Nanog homeobox (NANOG) and octamer-binding transcription factor 4 (OCT4). The ROS inhibitor N-acetylcysteine attenuated the anti-proliferative and anti-CSC effects of OVA. Our findings suggest that OVA acts via ROS generation, leading to oxidative stress and DNA damage, culminating in cell cycle arrest and the suppression of CSC activity in EC. Therefore, OVA is a promising therapeutic agent for EC, either as a standalone treatment or an adjunct to existing therapies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435403, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan.
| | - Yu-Zhen Ye
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Yu-Hao Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Sec. 2, University Rd., Taitung, 95092, Taiwan.
| | - Ranal Gurbanov
- School of Medicine, Gazi University, Emniyet Mah., Bandırma Cad., No:6/1, 06560, Yenimahalle, Ankara, Turkey.
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| |
Collapse
|
3
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
4
|
Wu MH, Hsieh YH, Lin CL, Ying TH, Hsia SM, Hsieh SC, Lee CH, Lin CL. Licochalcone A induces endoplasmic reticulum stress-mediated apoptosis of endometrial cancer cells via upregulation of GRP78 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:2961-2969. [PMID: 38308464 DOI: 10.1002/tox.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.
Collapse
Affiliation(s)
- Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Shu-Ching Hsieh
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Zhang TA, Zhang Q, Zhang J, Zhao R, Shi R, Wei S, Liu S, Zhang Q, Wang H. Identification of the role of endoplasmic reticulum stress genes in endometrial cancer and their association with tumor immunity. BMC Med Genomics 2023; 16:261. [PMID: 37880674 PMCID: PMC10599039 DOI: 10.1186/s12920-023-01679-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the worldwide gynecological malignancies. Endoplasmic reticulum (ER) stress is the cellular homeostasis disturbance that participates in cancer progression. However, the mechanisms of ER Stress on EC have not been fully elucidated. METHOD The ER Stress-related genes were obtained from Gene Set Enrichment Analysis (GSEA) and GeneCards, and the RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA). The risk signature was constructed by the Cox regression and the least absolute shrinkage and selection operator (LASSO) analysis. The significance of the risk signature and clinical factors were tested by time-dependent receiver operating characteristic (ROC) curves, and the selected were to build a nomogram. The immunity correlation was particularly analyzed, including the related immune cells, pathways, and immune checkpoints. Functional enrichment, potential chemotherapies, and in vitro validation were also conducted. RESULT An ER Stress-based risk signature, consisting of TRIB3, CREB3L3, XBP1, and PPP1R15A was established. Patients were randomly divided into training and testing groups with 1:1 ratio for subsequent calculation and validation. Based on risk scores, high- and low-risk subgroups were classified, and low-risk subgroup demonstrated better prognosis. The Area Under Curve (AUC) demonstrated a reliable predictive capability of the risk signature. The majority of significantly different immune cells and pathways were enriched more in low-risk subgroup. Similarly, several typical immune checkpoints, expressed higher in low-risk subgroup. Patients of the two subgroups responded differently to chemotherapies. CONCLUSION We established an ER Stress-based risk signature that could effectively predict EC patients' prognosis and their immune correlation.
Collapse
Affiliation(s)
- Tang Ansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuangge Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, Hubei, China.
| |
Collapse
|
6
|
Lu J, Zhang Q, Mo L, Chen W, Mao L. Comprehensive analysis of E47‑like factors and verification of ELF4 in clear cell renal cell carcinoma. Oncol Lett 2023; 26:395. [PMID: 37600328 PMCID: PMC10433703 DOI: 10.3892/ol.2023.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prominent subtype of renal cancer and E47-like factors (ELFs) are important in tumorigenesis; however, the specific role of key ELFs in ccRCC remains unclear. The present study comprehensively analyzed RNA sequencing and clinical data from multiple databases, and identified differentially expressed ELFs (ELF3-5) in ccRCC. The DNA promoter methylation, genetic variation and clinical significance of ELF3-5 in ccRCC were analyzed using the cBioPortal and UALCAN databases. The association between ELF3-5 and multiple immune cell infiltration was analyzed using Tumor Immune Estimation Resource. Subsequently, ELF4 was selected and its association with biological functions was assessed. Cell counting kit-8 (CCK-8), colony formation, Transwell, macrophage chemotaxis and polarization assays were conducted to validate the functions of ELF4. Notably, the mRNA expression levels of ELF4 were significantly upregulated in ccRCC, whereas ELF3 and ELF5 mRNA expression levels were significantly downregulated. Clinical significance analysis revealed that ELF4 showed a high clinical significance with tumor grade, clear cell type A and B subtypes, and incidence rates of amplification in genetic variation. Further analyses indicated that ELF4 may be involved in multiple immune cell differentiation. Additionally, cell experiments revealed that ELF4 inhibition downregulated 769-P and 786-O proliferation, migration and invasion. Knockdown of ELF4 in cancer cells also inhibited M2 macrophage polarization and chemotaxis towards 769-P and 786-O cells. Conclusively, the present findings indicated the clinical significance of ELF4 in ccRCC, and verified its key role in driving cell proliferation, migration and invasion, and promoting M2 macrophage polarization and chemotaxis in ccRCC.
Collapse
Affiliation(s)
- Jun Lu
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 310000, P.R. China
| | - Qianqian Zhang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 310000, P.R. China
- Department of Urology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang 310000, P.R. China
| | - Licai Mo
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 310000, P.R. China
| | - Weiying Chen
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 310000, P.R. China
- Department of Urology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang 310000, P.R. China
| | - Linghong Mao
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 310000, P.R. China
- Department of Urology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang 310000, P.R. China
| |
Collapse
|
7
|
Velasco G, Link W. Pseudokinases, Tribbles Proteins and Cancer. Cancers (Basel) 2023; 15:3547. [PMID: 37509210 PMCID: PMC10376989 DOI: 10.3390/cancers15143547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The human kinome comprises 518 protein kinases, of which approximately 10% lack one or more of the conserved amino acids necessary for catalytic activity [...].
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
8
|
Sun R, Zhou X, Wang T, Liu Y, Wei L, Qiu Z, Qiu C, Jiang J. Novel insights into tumorigenesis and prognosis of endometrial cancer through systematic investigation and validation on mitophagy-related signature. Hum Cell 2023:10.1007/s13577-023-00920-8. [PMID: 37266867 DOI: 10.1007/s13577-023-00920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
In-depth studies on the pathogenesis of endometrial cancer (EC) are critical because of the increasing global incidence of EC. Mitophagy, a mitochondrial quality control process, plays an important role in carcinogenesis and tumor progression. This study aimed to develop a novel mitophagy-based signature to predict the tumorigenesis and prognosis of EC. Data was downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and 29 mitophagy-related genes were downloaded from the Pathway Unification Database. EC patients were classified into two risk groups based on the two-key- gene signature, TOMM40 and MFN1, which were constructed using Cox regression analysis. A better prognosis was noted in the low-risk group. The model was validated for four aspects: clinical features, mutation status, clinical therapeutic response, and immune cell infiltration status. Moreover, according to the contribution to the risk model, TOMM40 was selected for further in vitro experiments. The silencing of TOMM40 inhibited mitochondrial degradation; suppressed cell proliferation; induced cell apoptosis and G1 phase cell cycle arrest; inhibited migration, invasion, and epithelial-mesenchymal transition; and suppressed cell stemness. In conclusion, the mitophagy-related risk score provides a novel perspective for survival and drug selection during the individual treatment of EC patients. TOMM40 serves as an oncogene in EC and promotes tumor progression via a mitophagy-related pathway. Thus, TOMM40 is a potential therapeutic target in EC.
Collapse
Affiliation(s)
- Rui Sun
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaoyu Zhou
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Tong Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lina Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ziyi Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunping Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Jie Jiang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Chen X, Chen J, Feng W, Huang W, Wang G, Sun M, Luo X, Wang Y, Nie Y, Fan D, Wu K, Xia L. FGF19-mediated ELF4 overexpression promotes colorectal cancer metastasis through transactivating FGFR4 and SRC. Theranostics 2023; 13:1401-1418. [PMID: 36923538 PMCID: PMC10008733 DOI: 10.7150/thno.82269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Metastasis accounts for the high lethality of colorectal cancer (CRC) patients. Unfortunately, the molecular mechanism manipulating metastasis in CRC is still elusive. Here, we investigated the function of E74-like factor 4 (ELF4), an ETS family member, in facilitating CRC progression. Methods: The expression of ELF4 in human CRC samples and CRC cell lines was determined by quantitative real-time PCR, immunohistochemistry and immunoblotting. The migratory and invasive phenotypes of CRC cells were evaluated by in vitro transwell assays and in vivo metastatic models. The RNA sequencing was used to explore the downstream targets of ELF4. The luciferase reporter assays and chromatin immunoprecipitation assays were used to ascertain the transcriptional regulation related to ELF4. Results: We found elevated ELF4 was positively correlated with distant metastasis, advanced AJCC stages, and dismal outcomes in CRC patients. ELF4 expression was also an independent predictor of poor prognosis. Overexpression of ELF4 boosted CRC metastasis via transactivating its downstream target genes, fibroblast growth factor receptor 4 (FGFR4) and SRC proto-oncogene, non-receptor tyrosine kinase, SRC. Fibroblast growth factor 19 (FGF19) upregulated ELF4 expression through the ERK1/2/SP1 axis. Clinically, ELF4 expression had a positive correlation with FGF19, FGFR4 and SRC, and CRC patients who positively coexpressed FGF19/ELF4, ELF4/FGFR4, or ELF4/SRC exhibited the worst clinical outcomes. Furthermore, the combination of the FGFR4 inhibitor BLU-554 and the SRC inhibitor KX2-391 dramatically suppressed ELF4-mediated CRC metastasis. Conclusions: We demonstrated the essentiality of ELF4 in the metastatic process of CRC, and targeting the ELF4-relevant positive feedback circuit might represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Xilang Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Guodong Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- ✉ Corresponding authors: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; Dr. Kaichun Wu, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Dr. Daiming Fan, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China;
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- ✉ Corresponding authors: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; Dr. Kaichun Wu, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Dr. Daiming Fan, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China;
| | - Limin Xia
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- ✉ Corresponding authors: Dr. Limin Xia, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Phone: 86 27 6937 8507; Fax: 86 27 8366 2832; Dr. Kaichun Wu, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China; Dr. Daiming Fan, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China;
| |
Collapse
|
10
|
Wang WL, Chen SM, Lee YC, Chang WW. Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Ni YL, Chien PJ, Hsieh HC, Shen HT, Lee HT, Chen SM, Chang WW. Disulfiram/Copper Suppresses Cancer Stem Cell Activity in Differentiated Thyroid Cancer Cells by Inhibiting BMI1 Expression. Int J Mol Sci 2022; 23:13276. [PMID: 36362068 PMCID: PMC9654490 DOI: 10.3390/ijms232113276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated thyroid carcinomas (DTCs), which have papillary and follicular types, are common endocrine malignancies worldwide. Cancer stem cells (CSCs) are a particular type of cancer cells within bulk tumors involved in cancer initiation, drug resistance, and metastasis. Cells with high intracellular aldehyde hydrogenase (ALDH) activity are a population of CSCs in DTCs. Disulfiram (DSF), an ALDH inhibitor used for the treatment of alcoholism, reportedly targets CSCs in various cancers when combined with copper. This study reported for the first time that DSF/copper can inhibit the proliferation of papillary and follicular DTC lines. DSF/copper suppressed thyrosphere formation, indicating the inhibition of CSC activity. Molecular mechanisms of DSF/copper involved downregulating the expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and cell cycle-related proteins, including cyclin B2, cyclin-dependent kinase (CDK) 2, and CDK4, in a dose-dependent manner. BMI1 overexpression diminished the inhibitory effect of DSF/copper in the thyrosphere formation of DTC cells. BMI1 knockdown by RNA interference in DTC cells also suppressed the self-renewal capability. DSF/copper could inhibit the nuclear localization and transcriptional activity of c-Myc and the binding of E2F1 to the BMI1 promoter. Overexpression of c-Myc or E2F1 further abolished the inhibitory effect of DSF/copper on BMI1 expression, suggesting that the suppression of c-Myc and E2F1 by DSF/copper was involved in the downregulation of BMI1 expression. In conclusion, DSF/copper targets CSCs in DTCs by inhibiting c-Myc- or E2F1-mediated BMI1 expression. Therefore, DSF is a potential therapeutic agent for future therapy in DTCs.
Collapse
Affiliation(s)
- Yung-Lun Ni
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 427213, Taiwan
| | - Peng-Ju Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Hung-Chia Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 427213, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy & Cell Biology, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Shih-Ming Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, Providence University, Taichung City 433303, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402306, Taiwan
| |
Collapse
|
12
|
Takao T, Masuda H, Kajitani T, Miki F, Miyazaki K, Yoshimasa Y, Katakura S, Tomisato S, Uchida S, Uchida H, Tanaka M, Maruyama T. Sorafenib targets and inhibits the oncogenic properties of endometrial cancer stem cells via the RAF/ERK pathway. Stem Cell Res Ther 2022; 13:225. [PMID: 35659728 PMCID: PMC9166406 DOI: 10.1186/s13287-022-02888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Distinct subsets of cancer stem cells (CSCs) drive the initiation and progression of malignant tumors via enhanced self-renewal and development of treatment/apoptosis resistance. Endometrial CSC-selective drugs have not been successfully developed because most endometrial cell lines do not contain a sufficient proportion of stable CSCs. Here, we aimed to identify endometrial CSC-containing cell lines and to search for endometrial CSC-selective drugs.
Methods We first assessed the presence of CSCs by identifying side populations (SPs) in several endometrial cancer cell lines. We then characterized cell viability, colony-formation, transwell invasion and xenotransplantion capability using the isolated SP cells. We also conducted real-time RT-PCR, immunoblot and immunofluorescence analyses of the cells’ expression of CSC-associated markers. Focusing on 14 putative CSC-selective drugs, we characterized their effects on the proliferation and apoptosis of endometrial cancer cell lines, examining cell viability and annexin V staining. We further examined the inhibitory effects of the selected drugs, focusing on proliferation, invasion, expression of CSC-associated markers and tumor formation. Results We focused on HHUA cells, an endometrial cancer cell line derived from a well-differentiated endometrial adenocarcinoma. HHUA cells contained a sufficient proportion of stable CSCs with an SP phenotype (HHUA-SP). HHUA-SP showed greater proliferation, colony-formation, and invasive capabilities compared with the main population of HHUA cells (HHUA-MP). HHUA-SP generated larger tumors with higher expression of proliferation-related markers, Ki67, c-MYC and phosphorylated ERK compared with HHUA-MP when transplanted into immunodeficient mice. Among the 14 candidate drugs, sorafenib, an inhibitor of RAF pathways and multiple kinase receptors, inhibited cell proliferation and invasion in both HHUA-SP and -MP, but more profoundly in HHUA-SP. In vivo treatment with sorafenib for 4 weeks reduced the weights of HHUA-SP-derived tumors and decreased the expression of Ki67, ZEB1, and RAF1. Conclusions Our results suggest that HHUA is a useful cell line for discovery and identification of endometrial CSC-selective drugs, and that sorafenib may be an effective anti-endometrial cancer drug targeting endometrial CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02888-y.
Collapse
Affiliation(s)
- Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takashi Kajitani
- Sakura No Seibo Junior College, 3-6, Hanazonocho, Fukushima, 960-8585, Japan
| | - Fumie Miki
- Sho Hospital, 1-41-14, Itabashi, Tokyo, 173-0004, Japan
| | - Kaoru Miyazaki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shoko Tomisato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Sayaka Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hiroshi Uchida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Ye M, Wang J, Pan S, Zheng L, Wang ZW, Zhu X. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers. Mol Ther Oncolytics 2022; 24:101-113. [PMID: 35024437 PMCID: PMC8718571 DOI: 10.1016/j.omto.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Zhi-Wei Wang, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Xueqiong Zhu, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|