1
|
Talebi E, Ghoraeian P, Shams Z, Rahimi H. Molecular insights into the hedgehog signaling pathway correlated non-coding RNAs in acute lymphoblastic leukemia, a bioinformatics study. Ann Hematol 2024:10.1007/s00277-024-05763-3. [PMID: 39223285 DOI: 10.1007/s00277-024-05763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a common hematologic cancer with unique incidence and prognosis patterns in people of all ages. Recent molecular biology advances have illuminated ALL's complex molecular pathways, notably the Hedgehog (Hh) signaling system and non-coding RNAs (ncRNAs). This work aimed to unravel the molecular complexities of the link between Hh signaling and ALL by concentrating on long non-coding RNAs (lncRNAs) and their interactions with significant Hh pathway genes. METHODS To analyze differentially expressed lncRNAs and genes in ALL, microarray data from the Gene Expression Omnibus (GEO) was reanalyzed using a systems biology approach. Hh signaling pathway-related genes were identified and their relationship with differentially expressed long non-coding RNAs (DElncRNAs) was analyzed using Pearson's correlation analysis. A regulatory network was built by identifying miRNAs that target Hh signaling pathway-related mRNAs. RESULTS 193 DEGs and 226 DElncRNAs were found between ALL and normal bone marrow samples. Notably, DEGs associated with the Hh signaling pathway were correlated to 26 DElncRNAs. Later studies showed interesting links between DElncRNAs and biological processes and pathways, including drug resistance, immune system control, and carcinogenic characteristics. DEGs associated with the Hh signaling pathway have miRNAs in common with miRNAs already known to be involved in ALL, including miR-155-5p, and miR-211, highlighting the complexity of the regulatory landscape in this disease. CONCLUSION The complex connections between Hh signaling, lncRNAs, and miRNAs in ALL have been unveiled in this study, indicating that DElncRNAs linked to Hh signaling pathway genes could potentially serve as therapeutic targets and diagnostic biomarkers for ALL.
Collapse
Affiliation(s)
- Elham Talebi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Lobo-Alves SC, Oliveira LAD, Kretzschmar GC, Valengo AE, Rosati R. Long noncoding RNA expression in acute lymphoblastic leukemia: A systematic review. Crit Rev Oncol Hematol 2024; 196:104290. [PMID: 38341118 DOI: 10.1016/j.critrevonc.2024.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as gene expression modulators, are potential players in Acute Lymphoblastic Leukemia (ALL) pathogenesis. We systematically explored current literature on lncRNA expression in ALL to identify lncRNAs consistently reported as differentially expressed (DE) either in ALL versus controls or between ALL subtypes. By comparing articles that provided global expression data for DE lncRNAs in the ETV6::RUNX1-positive ALL subtype, we identified four DE lncRNAs in three independent studies (two versus other subtypes and one versus controls), showing concordant expression of LINC01013, CRNDE and lnc-KLF7-1. Additionally, LINC01503 was consistently downregulated on ALL versus controls. Within RT-qPCR studies, twelve lncRNA were DE in more than one source. Thus, several lncRNAs were supported as DE in ALL by multiple sources, highlighting their potential role as candidate biomarkers or therapeutic targets. Finally, as lncRNA annotation is rapidly expanding, standardization of reporting and nomenclature is urgently needed to improve data verifiability and compilation.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Liana Alves de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Gabriela Canalli Kretzschmar
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Andressa Eloisa Valengo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
3
|
Ramos EI, Veerapandian R, Das K, Chacon JA, Gadad SS, Dhandayuthapani S. Pathogenic mycoplasmas of humans regulate the long noncoding RNAs in epithelial cells. Noncoding RNA Res 2023; 8:282-293. [PMID: 36970372 PMCID: PMC10031284 DOI: 10.1016/j.ncrna.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A. Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
| |
Collapse
|
4
|
N6-methyladenosine-related lncRNAs identified as potential biomarkers for predicting the overall survival of Asian gastric cancer patients. BMC Cancer 2022; 22:721. [PMID: 35778697 PMCID: PMC9248105 DOI: 10.1186/s12885-022-09801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Gastric cancer (GC) is one of the most prevalent malignant tumors in Asian countries. Studies have proposed that lncRNAs can be used as diagnostic and prognostic indicators of GC due to the high specificity of lncRNAs expression involvement in GC. Recently, N6-methyladenosine (m6A) has also emerged as an important modulator of the expression of lncRNAs in GC. This study aimed at establishing a novel m6A-related lncRNAs prognostic signature that can be used to construct accurate models for predicting the prognosis of GC in the Asian population. Methods First, the levels of m6A modification and m6A methyltransferases expression in GC samples were determined using dot blot and western blot analyses. Next, we evaluated the lncRNAs expression profiles and the corresponding clinical data of 88 Asian GC patients retrieved from The Cancer Genome Atlas (TCGA) database. Differential expression of m6A-related lncRNAs between GC and normal tissues was investigated. The relationship between these target lncRNAs and potential immunotherapeutic signatures was also analyzed. Gene set enrichment analysis (GSEA) was performed to identify the malignancy-associated pathways. Univariate Cox regression, LASSO regression, and multivariate Cox regression analyses were performed to establish a novel prognostic m6A-related lncRNAs prognostic signature. Moreover, we constructed a predictive nomogram and determined the expression levels of nine m6A-related lncRNAs in 12 pairs of clinical samples. Results We found that m6A methylation levels were significantly increased in GC tumor samples compared to adjacent normal tissues, and the increase was positively correlated with tumor stage. Patients were then divided into two clusters (cluster 1 and cluster 2) based on the differential expression of the m6A-related lncRNAs. Results showed that there was a significant difference in survival probability between the two clusters (p = 0.018). Notably, the low survival rate in cluster 2 may be associated with high expression of immune cells (resting memory CD4+ T cells, p = 0.027; regulatory T cells, p = 0.0018; monocytes, p = 0.00095; and resting dendritic cells, p = 0.015), and low expression of immune cells (resting NK cells, p = 0.033; and macrophages M1, p = 0.045). Enrichment analysis indicated that malignancy-associated biological processes were more common in the cluster 2 subgroup. Finally, the risk model comprising of six m6A-related lncRNAs was identified as an independent predictor of prognoses, which could divide patients into high- or low-risk groups. Time-dependent ROC analysis suggested that the risk score could accurately predict the prognosis of GC patients. Patients in the high-risk group had worse outcomes compared to patients in the low-risk group, and the risk score showed a positive correlation with immune cells (resting memory CD4+ T cells, R = 0.31, P = 0.038; regulatory T cells, R = 0.42, P = 0.0042; monocytes, R = 0.42, P = 0.0043). However, M1 macrophages (R = -0.37, P = 0.012) and resting NK cells (R = -0.31, P = 0.043) had a negative correlation with risk scores. Furthermore, analysis of clinical samples validated the weak positive correlation between the risk score and tumor stage. Conclusions The risk model described here, based on the six m6A-related lncRNAs signature, and may predict the clinical prognoses and immunotherapeutic response in Asian GC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09801-z.
Collapse
|
5
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
6
|
Illarregi U, Telleria J, Bilbao‑Aldaiturriaga N, Lopez‑Lopez E, Ballesteros J, Martin‑Guerrero I, Gutierrez‑Camino A. lncRNA deregulation in childhood acute lymphoblastic leukemia: A systematic review. Int J Oncol 2022; 60:59. [DOI: 10.3892/ijo.2022.5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/03/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jaione Telleria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Bilbao‑Aldaiturriaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Elixabet Lopez‑Lopez
- Department of Biochemistry and Molecular Biology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Ballesteros
- Department of Neuroscience, University of The Basque Country (UPV/EHU) and CIBERSAM, Medical School, 48940 Leioa, Spain
| | - Idoia Martin‑Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Angela Gutierrez‑Camino
- Division of Hematology‑Oncology, CHU Sainte‑Justine Research Center, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
7
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhou J, Wu H, Guo C, Li B, Zhou LL, Liang AB, Fu JF. A comprehensive genome-wide analysis of long non-coding RNA and mRNA expression profiles of JAK2V617F-positive classical myeloproliferative neoplasms. Bioengineered 2021; 12:10564-10586. [PMID: 34738870 PMCID: PMC8810098 DOI: 10.1080/21655979.2021.2000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the progression of myeloid neoplasms, but the role of lncRNAs in the JAK2V617F-positive subtype of classical myeloproliferative neoplasms (cMPNs) remains unclear. This study was conducted to clarify the expression and regulation patterns of lncRNAs in JAK2V617F-positive cMPNs, and to explore new potential carcinogenic factors of cMPNs. Bioinformatics analysis of microarray detection and wet testing verification were performed to study the expression and regulation signature of differentially expressed lncRNAs (DELs) and related genes (DEGs) in cMPNs. The expression of lncRNAs and mRNAs were observed to significantly dysregulated in JAK2V617F-positive cMPN patients compared with the normal controls. Co-expression analysis indicated that there were significant differences of the co-expression pattern of lncRNAs and mRNAs in JAK2V617F-positive cMPN patients compared to normal controls. GO and KEGG pathway analysis of DEGs and DELs showed the involvement of several pathways previously reported to regulate the pathogenesis of leukemia and cMPNs. Cis- and trans-regulation analysis of lncRNAs showed that ZNF141, DHX29, NOC2L, MAS1L, AFAP1L1, and CPN2 were significantly cis-regulated by lncRNA ENST00000356347, ENST00000456816, hsa-mir-449c, NR_026874, TCONS_00012136, uc003lqp.2, and ENST00000456816, respectively, and DELs were mostly correlated with transcription factors including CTBP2, SUZ12, REST, STAT2, and GATA4 to jointly regulate multiple target genes. In summary, expression profiles of lncRNAs and mRNAs were significantly altered in JAK2V617F-positive cMPNs, the relative signaling pathway, co-expression, cis- and trans-regulation were regulated by dysregulation of lncRNAs and several important genes, such as ITGB3, which may act as a promising carcinogenic factor, warrant further investigation.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| |
Collapse
|