1
|
Huang J, Michaud E, Shinde-Jadhav S, Fehric S, Marcq G, Mansure JJ, Cury F, Brimo F, Piccirillo CA, Kassouf W. Effects of combined radiotherapy with immune checkpoint blockade on immunological memory in luminal-like subtype murine bladder cancer model. Cancer Biol Ther 2024; 25:2365452. [PMID: 38860746 PMCID: PMC11174127 DOI: 10.1080/15384047.2024.2365452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
MIBC is a highly lethal disease, and the patient survival rate has not improved significantly over the last decades. UPPL is a cell line that can be used to recapitulate the luminal-like molecular subtype of bladder cancer and to discover effective treatments to be translated in patients. Here, we investigate the effects of combinational treatments of radiotherapy and immunotherapy in this recently characterized UPPL tumor-bearing mice. We first characterized the baseline tumor microenvironment and the effect of radiation, anti-PD-L1, and combinatorial treatments. Then, the mice were re-challenged with a second tumor (rechallenged tumor) in the contralateral flank of the first tumor to assess the immunological memory. Radiation slowed down the tumor growth. All treatments also decreased the neutrophil population and increased the T cell population. Anti-PD-L1 therapy was not able to synergize with radiation to further delay tumor growth. Furthermore, none of the treatments were able to generate immune memory. The treatments were not sufficient to induce a significant and lasting pool of memory cells. We show here that anti-PD-L1 treatment added to radiotherapy was not enough to achieve T cell-mediated memory in UPPL tumors. Stronger T cell activation signals may be required to enhance radiation efficacy in luminal-like bladder cancer.
Collapse
Affiliation(s)
- JiaMin Huang
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Eva Michaud
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Surashri Shinde-Jadhav
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Sabina Fehric
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Gautier Marcq
- Division of Urology, Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | - Jose Joao Mansure
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Fabio Cury
- Department of Radiation Oncology, McGill University Health Center, Montréal, QC, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Wassim Kassouf
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| |
Collapse
|
2
|
Li Y, Zhang Y, Feng N, Yu F, Liu B. Three-in-One Nanozyme for Radiosensitization of Bladder Cancer. Int J Nanomedicine 2024; 19:10873-10883. [PMID: 39479176 PMCID: PMC11523926 DOI: 10.2147/ijn.s463242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/03/2024] [Indexed: 11/02/2024] Open
Abstract
Purpose Bladder cancer is a common malignancy of the urinary system and the development of noninvasive therapeutic methods is imperative to avoid radical cystectomy, which results in a poor quality of life for patients. Methods In this study, ultrasmall copper-palladium nanozymes decorated with cysteamine (CPC) nanoparticles (NPs) were synthesized to enhance the efficacy of radiotherapy (RT) in treating bladder cancer. CPC NPs react with intracellular overexpressed H2O2 in the tumor microenvironment to produce large quantities of reactive oxygen species (ROS) and induce tumor cell apoptosis. Furthermore, the CPC nanozymes can generate ample oxygen within tumors by utilizing H2O2, addressing hypoxia conditions, and mitigating radioresistance. Additionally, CPC facilitates the oxidation of glutathione (GSH) into oxidized glutathione disulfide (GSSG), blocking the self-repair mechanisms of tumor cells post-treatment. Simultaneously, CPC enhances the ionization energy deposition effect on tumor cells. Results The results demonstrate an increased level of ROS and an elevation in oxygen content at the tumor site. Importantly, tumor growth was restrained without apparent systemic toxicity during the combined treatment. Conclusion In summary, this study highlights the potential of CPC nanozyme-mediated radiotherapy as a promising avenue for the effective treatment of bladder cancer and demonstrates its potential for future clinical applications in the synergistic therapy of bladder cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Yuhan Zhang
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Bin Liu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
3
|
Rodriguez-Berriguete G, Ranzani M, Prevo R, Puliyadi R, Machado N, Bolland HR, Millar V, Ebner D, Boursier M, Cerutti A, Cicconi A, Galbiati A, Grande D, Grinkevich V, Majithiya JB, Piscitello D, Rajendra E, Stockley ML, Boulton SJ, Hammond EM, Heald RA, Smith GC, Robinson HM, Higgins GS. Small-Molecule Polθ Inhibitors Provide Safe and Effective Tumor Radiosensitization in Preclinical Models. Clin Cancer Res 2023; 29:1631-1642. [PMID: 36689546 PMCID: PMC10102842 DOI: 10.1158/1078-0432.ccr-22-2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
| | - Marco Ranzani
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Hannah R. Bolland
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Boursier
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Aurora Cerutti
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Diego Grande
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Eeson Rajendra
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Simon J. Boulton
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ester M. Hammond
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert A. Heald
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Selective inhibition of HDAC6 promotes bladder cancer radiosensitization and mitigates the radiation-induced CXCL1 signalling. Br J Cancer 2023; 128:1753-1764. [PMID: 36810912 PMCID: PMC10133394 DOI: 10.1038/s41416-023-02195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Although trimodality therapy resecting tumours followed by chemoradiotherapy is emerged for muscle-invasive bladder cancer (MIBC), chemotherapy produces toxicities. Histone deacetylase inhibitors have been identified as an effective strategy to enhance cancer radiotherapy (RT). METHODS We examined the role of HDAC6 and specific inhibition of HDAC6 on BC radiosensitivity by performing transcriptomic analysis and mechanism study. RESULTS HDAC6 knockdown or HDAC6 inhibitor (HDAC6i) tubacin exerted a radiosensitizing effect, including decreased clonogenic survival, increased H3K9ac and α-tubulin acetylation, and accumulated γH2AX, which are similar to the effect of panobinostat, a pan-HDACi, on irradiated BC cells. Transcriptomics of shHDAC6-transduced T24 under irradiation showed that shHDAC6 counteracted RT-induced mRNA expression of CXCL1, SERPINE1, SDC1 and SDC2, which are linked to cell migration, angiogenesis and metastasis. Moreover, tubacin significantly suppressed RT-induced CXCL1 and radiation-enhanced invasion/migration, whereas panobinostat elevated RT-induced CXCL1 expression and invasion/migration abilities. This phenotype was significantly abrogated by anti-CXCL1 antibody, indicating the key regulator of CXCL1 contributing to BC malignancy. Immunohistochemical evaluation of tumours from urothelial carcinoma patients supported the correlation between high CXCL1 expression and reduced survival. CONCLUSION Unlike pan-HDACi, the selective HDAC6i can enhance BC radiosensitization and effectively inhibit RT-induced oncogenic CXCL1-Snail-signalling, thus further advancing its therapeutic potential with RT.
Collapse
|
5
|
Chen R, Zhan X, Jiang H, Liu Y, Jiang Z, Jiang M, Deng W, Liu X, Chen G, Fu B. Risk and prognosis of secondary malignant neoplasms after radiation therapy for bladder cancer: A large population-based cohort study. Front Oncol 2022; 12:953615. [DOI: 10.3389/fonc.2022.953615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
ObjectiveTo investigate the association between radiotherapy and the risk of second malignant neoplasm (SMN) development among patients with bladder cancer (BC). Overall survival (OS) is compared among patients developing SMN and without.MethodWe identified patients diagnosed with BC from the Surveillance, Epidemiology, and End Results (SEER) database. The development of an SMN is defined as any SMN occurring more than 5 years after the diagnosis of BC. The Fine-Gray competing risk regression is used to estimate the probability of SMN. The radiotherapy-associated risk (RR) for SMNs is assessed by Poisson regression. The Kaplan–Meier method was used to evaluate the OS of patients with SMNs. Propensity score matching (PSM) is performed.ResultsA total of 76575 BC patients are enrolled in our study. The probability of SMNs in the radiotherapy cohort is statistically higher than in the non-radiotherapy cohort. In competing risk regression analysis, radiotherapy is proven to be associated with a higher risk of SMN (Hazard ratio: 1.23; 95% CI: 1.102–1.368). The radiotherapy-associated risks significantly increase in the radiotherapy cohort (RR: 1.28; 95% CI: 1.14–1.43). In site-specific analysis, statistically significant results are observed in lung and bronchus (LAB) cancer and hematological malignancies. The OS rate in patients developing SMN is significantly lower than that among matched patients with primary BC.ConclusionRadiotherapy for BC is associated with SMN. Radiotherapy increases the risk of secondary low-dose area cancer development, including LAB cancer or hematological malignancies. Notably, this effect is not observed in the high-dose area involving pelvic tumors. Patients developing SMN showed poorer OS.
Collapse
|
6
|
Silina L, Dufour F, Rapinat A, Reyes C, Gentien D, Maksut F, Radvanyi F, Verrelle P, Bernard-Pierrot I, Mégnin-Chanet F. Tyro3 Targeting as a Radiosensitizing Strategy in Bladder Cancer through Cell Cycle Dysregulation. Int J Mol Sci 2022; 23:ijms23158671. [PMID: 35955805 PMCID: PMC9368768 DOI: 10.3390/ijms23158671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Bladder cancer is a common cancer; it is the tenth most common cancer in the world. Around one fourth of all diagnosed patients have muscle-invasive bladder cancer (MIBC), characterized by advanced tumors and which remains a lethal disease. The standard treatment for MIBC is the bladder removal by surgery. However, bladder-preserving alternatives are emerging by combining chemotherapy, radiotherapy and minimal surgery, aiming to increase the patient’s quality of life. The aim of the study was to improve these treatments by investigating a novel approach where in addition to radiotherapy, a receptor, TYRO3, a member of TAM receptor tyrosine kinase family known to be highly expressed on the bladder cancer cells and involved in the control of cell survival is targeted. For this, we evaluated the influence of TYRO3 expression levels on a colony or cell survival assays, DNA damage, γH2AX foci formation, gene expression profiling and cell cycle regulation, after radiation on different bladder cell models. We found that TYRO3 expression impacts the radiation response via the cell cycle dysregulation with noeffets on the DNA repair. Therefore, targeting TYRO3 is a promising sensitization marker that could be clinically employed in future treatments.
Collapse
Affiliation(s)
- Linda Silina
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, 75005 Paris, France
- INSERM U 1196/CNRS UMR 9187, Paris-Saclay Research University, 91405 Orsay, France
- Institut Curie, Bat. 112, Rue H. Becquerel, 91405 Orsay, France
| | - Florent Dufour
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, 75005 Paris, France
| | - Audrey Rapinat
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Cécile Reyes
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - David Gentien
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Fatlinda Maksut
- INSERM U 1196/CNRS UMR 9187, Paris-Saclay Research University, 91405 Orsay, France
- Institut Curie, Bat. 112, Rue H. Becquerel, 91405 Orsay, France
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, 75005 Paris, France
| | - Pierre Verrelle
- INSERM U 1196/CNRS UMR 9187, Paris-Saclay Research University, 91405 Orsay, France
- Institut Curie, Bat. 112, Rue H. Becquerel, 91405 Orsay, France
- Institut Curie-Hospital, Radiation Oncology Department, 75005 Paris, France
- Department of Radiation Oncology, Faculty of Medicine, Clermont Auvergne University, 63000 Clermont-Ferrand, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, 75005 Paris, France
| | - Frédérique Mégnin-Chanet
- INSERM U 1196/CNRS UMR 9187, Paris-Saclay Research University, 91405 Orsay, France
- Institut Curie, Bat. 112, Rue H. Becquerel, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
7
|
Mao J, Yang C, Xin S, Cui K, Liu Z, Wang T, Hu Z, Wang S, Liu J, Song X, Song W. Case report: Bladder preserving after maximal transurethral resection of the bladder tumor combined with chemotherapy and immunotherapy in recurrent muscle-invasive bladder cancer patients: A report of two cases. Front Med (Lausanne) 2022; 9:949567. [PMID: 35979208 PMCID: PMC9377517 DOI: 10.3389/fmed.2022.949567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cisplatin-based neoadjuvant chemotherapy combined with radical cystectomy (RC) plus pelvic lymph node dissection (PLND) is the preferred treatment option for muscle-invasive bladder cancer (MIBC). However, some patients are unable to tolerate RC or may have postoperative complications after RC. And most patients have a strong desire for bladder-preserving treatment. There are no reports on the efficacy of maximal transurethral resection of the bladder tumor (TURBT) in combination with chemotherapy plus tislelizumab for bladder-preserving in recurrent MIBC patients. Case presentation We report two cases diagnosed with recurrent MIBC who achieved pathological complete response (pCR) and bladder-preserving after maximal TURBT combined with chemotherapy plus tislelizumab. Conclusion Postoperative immunotherapy should be considered for all patients with recurrent MIBC who are eligible for immunotherapy. In addition, high programmed death ligand-1 (PD-L1) expression, high tumor mutation burden (TMB), and TP53 mutation level can be combined to predict tislelizumab efficacy.
Collapse
Affiliation(s)
- Jiaquan Mao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaodong Song
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wen Song
| |
Collapse
|
8
|
Zhang X, Ma X, Wang Q, Kong Z. EZH2 targeting to improve the sensitivity of acquired radio-resistance bladder cancer cells. Transl Oncol 2022; 16:101316. [PMID: 34952334 PMCID: PMC8695351 DOI: 10.1016/j.tranon.2021.101316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
Among the many treatments for Bladder cancer (BCa) patients, radiotherapy is an effective way to preserve the bladder. However, as the frequency of irradiation increases, the tumor cells appear "acquired radio-resistance" (ARR) and loss the sensitivity to radiotherapy. To explore the molecular mechanism of ARR, two BCa cell lines, 5637 and T24, were enrolled here and their ARR counterparts, 5637R and T24R, were obtained by exposure to γ-ray of 2 Gy for 30 times. Compared to parental cells, ARR cells have significantly enhanced stem cell-like phenotype, robust DNA damage repair capabilities and elevated expression of zeste homolog 2 (EZH2). Decreasing EZH2 expression, both parental and ARR cells exhibited reduced abilities of forming microsphere and repairing DNA damage, but enhanced cells radio-sensitivity and intracellular autophagy compared to untreated cells. Down-regulation the expression of EZH2 induced an increasing of both LC3 and P62 in parental cells, while in ARR cells, only LC3 increased upon EZH2 reduction. On the other hand, UNC1999 treatment caused the increasing of LC3B and P62 in all cells, suggested that siEZH2 and UNC1999 affect ARR cells autophagy through different mechanisms. In vivo study showed that pre-treated with UNC1999 greatly enhanced T24R cells sensitivity to IR, and knocking down the expression of EZH2 significantly suppressed the tumor growth. Combined with bioinformatics data analysis, we speculate that EZH2 is an important biomolecule linking the diagnosis, radiotherapy and prognosis of BCa. EZH2 targeted therapy may be an effective way to overcome ARR of BCa, and is worthy of in-depth study.
Collapse
Affiliation(s)
- Xiangyan Zhang
- The Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, P.R. China
| | - Xiangli Ma
- The Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, P.R. China
| | - Quanxin Wang
- The Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, P.R. China
| | - Zhaolu Kong
- The Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, P.R. China.
| |
Collapse
|
9
|
Urological Cancer Panorama in the Second Year of the COVID-19 Pandemic. Cancers (Basel) 2022; 14:cancers14030493. [PMID: 35158761 PMCID: PMC8833682 DOI: 10.3390/cancers14030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
|
10
|
Cao XX, Liu SL, Lu JS, Zhang ZW, Wang G, Chen Q, Lin N. Chitosan coated biocompatible zeolitic imidazolate framework ZIF-90 for targeted delivery of anticancer drug methotrexate. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|