1
|
Zhu Y, Lu Y, Xu C, Huang Y, Yu Z, Wang T, Mao L, Liao X, Li S, Zhang W, Zhou F, Liu K, Zhang Y, Yang W, Min S, Deng Y, Wang Z, Fan X, Nie G, Xie X, Li Z. TMEM52B Isoforms P18 and P20 Differentially Promote the Oncogenesis and Metastasis of Nasopharyngeal Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402457. [PMID: 38940427 PMCID: PMC11434218 DOI: 10.1002/advs.202402457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.
Collapse
Affiliation(s)
- Yuqi Zhu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
| | - Yanxin Lu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Chunhua Xu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Yuqian Huang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Ziyi Yu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Tongyu Wang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Ximian Liao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Wanqing Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Feng Zhou
- Oncology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518060, China
| | - Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shasha Min
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Zaixing Wang
- Institute of Otorhinolaryngology and Shenzhen Key of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, China
| | - Xiaoqin Fan
- The Bio-bank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Guohui Nie
- The Bio-bank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Xina Xie
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637199, China
| |
Collapse
|
2
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
3
|
Belloni A, Pugnaloni A, Rippo MR, Di Valerio S, Giordani C, Procopio AD, Bronte G. The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review. Crit Rev Oncol Hematol 2024; 194:104246. [PMID: 38135018 DOI: 10.1016/j.critrevonc.2023.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
4
|
The Role of Proteomics and Phosphoproteomics in the Discovery of Therapeutic Targets and Biomarkers in Acquired EGFR-TKI-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24054827. [PMID: 36902280 PMCID: PMC10003401 DOI: 10.3390/ijms24054827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The discovery of potent EGFR-tyrosine kinase inhibitors (EGFR-TKIs) has revolutionized the treatment of EGFR-mutated lung cancer. Despite the fact that EGFR-TKIs have yielded several significant benefits for lung cancer patients, the emergence of resistance to EGFR-TKIs has been a substantial impediment to improving treatment outcomes. Understanding the molecular mechanisms underlying resistance is crucial for the development of new treatments and biomarkers for disease progression. Together with the advancement in proteome and phosphoproteome analysis, a diverse set of key signaling pathways have been successfully identified that provide insight for the discovery of possible therapeutically targeted proteins. In this review, we highlight the proteome and phosphoproteomic analyses of non-small cell lung cancer (NSCLC) as well as the proteome analysis of biofluid specimens that associate with acquired resistance in response to different generations of EGFR-TKI. Furthermore, we present an overview of the targeted proteins and potential drugs that have been tested in clinical studies and discuss the challenges of implementing this discovery in future NSCLC treatment.
Collapse
|
5
|
Wang T, Wang X, Zhuang Y, Wang G. A systematic evaluation of quenching and extraction procedures for quantitative metabolome profiling of HeLa carcinoma cell under 2D and 3D cell culture conditions. Biotechnol J 2023; 18:e2200444. [PMID: 36796787 DOI: 10.1002/biot.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Metabolic reprogramming has been coined as a hallmark of cancer, accompanied by which the alterations in metabolite levels have profound effects on gene expression, cellular differentiation, and the tumor environment. Yet a systematic evaluation of quenching and extraction procedures for quantitative metabolome profiling of tumor cells is currently lacking. To achieve this, this study is aimed at establishing an unbiased and leakage-free metabolome preparation protocol for HeLa carcinoma cell. We evaluated 12 combinations of quenching and extraction methods from three quenchers (liquid nitrogen, -40°C 50% methanol, 0.5°C normal saline) and four extractants (-80°C 80% methanol, 0.5°C methanol/chloroform/water [1:1:1 v/v/v], 0.5°C 50% acetonitrile, 75°C 70% ethanol) for global metabolite profiling of adherent HeLa carcinoma cells. Based on the isotope dilution mass spectrometry (IDMS) method, gas/liquid chromatography in tandem with mass spectrometry was used to quantitatively determine 43 metabolites including sugar phosphates, organic acids, amino acids (AAs), adenosine nucleotides, and coenzymes involved in central carbon metabolism. The results showed that the total amount of the intracellular metabolites in cell extracts obtained using different sample preparation procedures with the IDMS method ranged from 21.51 to 295.33 nmol per million cells. Among 12 combinations, cells that washed twice with phosphate buffered saline (PBS), quenched with liquid nitrogen, and then extracted with 50% acetonitrile were found to be the most optimal method to acquire intracellular metabolites with high efficiency of metabolic arrest and minimal loss during sample preparation. In addition, the same conclusion was drawn as these 12 combinations were applied to obtain quantitative metabolome data from three-dimensional (3D) tumor spheroids. Furthermore, a case study was carried out to evaluate the effect of doxorubicin (DOX) on both adherent cells and 3D tumor spheroids using quantitative metabolite profiling. Pathway enrichment analysis using targeted metabolomics data showed that DOX exposure would significantly affect AA metabolism-related pathways, which might be related to the mitigation of redox stress. Strikingly, our data suggested that compared to two-dimensional (2D) cells the increased intracellular glutamine level in 3D cells benefited replenishing the tricarboxylic acid (TCA) cycle when the glycolysis was limited after dosing with DOX. Taken together, this study provides a well-established quenching and extraction protocol for quantitative metabolome profiling of HeLa carcinoma cell under 2D and 3D cell culture conditions. Based on this, quantitative time-resolved metabolite data can serve to the generation of hypotheses on metabolic reprogramming to reveal its important role in tumor development and treatment.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China.,Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China.,Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Vad-Nielsen J, Staunstrup NH, Kjeldsen ML, Dybdal N, Flandin G, De Stradis C, Daugaard TF, Vilsbøll-Larsen T, Maansson CT, Doktor TK, Sorensen BS, Nielsen AL. Genome-wide epigenetic and mRNA-expression profiling followed by CRISPR/Cas9-mediated gene-disruptions corroborate the MIR141/MIR200C-ZEB1/ZEB2-FGFR1 axis in acquired EMT-associated EGFR TKI-resistance in NSCLC cells. Transl Lung Cancer Res 2023; 12:42-65. [PMID: 36762066 PMCID: PMC9903082 DOI: 10.21037/tlcr-22-507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/12/2022] [Indexed: 01/16/2023]
Abstract
Background Epithelial-mesenchymal-transition (EMT) is an epigenetic-based mechanism contributing to the acquired treatment resistance against receptor tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor (EGFR)-mutations. Delineating the exact epigenetic and gene-expression alterations in EMT-associated EGFR TKI-resistance (EMT-E-TKI-R) is vital for improved diagnosis and treatment of NSCLC patients. Methods We characterized genome-wide changes in mRNA-expression, DNA-methylation and the histone-modification H3K36me3 in EGFR-mutated NSCLC HCC827 cells in result of acquired EMT-E-TKI-R. CRISPR/Cas9 was used to functional examine key findings from the omics analyses. Results Acquired EMT-E-TKI-R was analyzed with three omics approaches. RNA-sequencing identified 2,233 and 1,972 up- and down-regulated genes, respectively, and among these were established EMT-markers. DNA-methylation EPIC array analyses identified 14,163 and 7,999 hyper- and hypo-methylated, respectively, differential methylated positions of which several were present in EMT-markers. Finally, H3K36me3 chromatin immunoprecipitation (ChIP)-sequencing detected 2,873 and 3,836 genes with enrichment and depletion, respectively, and among these were established EMT-markers. Correlation analyses showed that EMT-E-TKI-R mRNA-expression changes correlated better with H3K36me3 changes than with DNA-methylation changes. Moreover, the omics data supported the involvement of the MIR141/MIR200C-ZEB1/ZEB2-FGFR1 signaling axis for acquired EMT-E-TKI-R. CRISPR/Cas9-mediated analyses corroborated the importance of ZEB1 in acquired EMT-E-TKI-R, MIR200C and MIR141 to be in an EMT-E-TKI-R-associated auto-regulatory loop with ZEB1, and FGFR1 to mediate cell survival in EMT-E-TKI-R. Conclusions The current study describes the synchronous genome-wide changes in mRNA-expression, DNA-methylation, and H3K36me3 in NSCLC EMT-E-TKI-R. The omics approaches revealed potential novel diagnostic markers and treatment targets. Besides, the study consolidates the functional impact of the MIR141/MIR200C-ZEB1/ZEB2-FGFR1-signaling axis in NSCLC EMT-E-TKI-R.
Collapse
Affiliation(s)
| | | | | | - Nina Dybdal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | | | - Christoffer Trier Maansson
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark;,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark;,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
7
|
Ten Years of CRISPRing Cancers In Vitro. Cancers (Basel) 2022; 14:cancers14235746. [PMID: 36497228 PMCID: PMC9738354 DOI: 10.3390/cancers14235746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.
Collapse
|
8
|
Wang T, Leu Y, Chen C, Li H, Yang S, Huang K, Chen C. Psorachromene induces apoptosis and suppresses tumor growth in
NSCLC
cells harboring
EGFR L858R
/
T790M
/
C797S. Phytother Res 2022; 36:2116-2126. [DOI: 10.1002/ptr.7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tong‐Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology Chang Gung University of Science and Technology Taoyuan Taiwan
- Tissue Bank Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| | - Yann‐Lii Leu
- Tissue Bank Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
- Graduate Institute of Natural Products Chang Gung University Taoyuan Taiwan
| | - Chin‐Chuan Chen
- Tissue Bank Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
- Graduate Institute of Natural Products Chang Gung University Taoyuan Taiwan
| | - Hsin‐Jung Li
- Institute of Cellular and Organismic Biology Academia Sinica Taipei Taiwan
| | | | - Kuo‐Yen Huang
- Department and Graduate Institute of Microbiology and Immunology National Defense Medical Center Taipei Taiwan
- National Taiwan University YongLin Institute of Health National Taiwan University Taipei Taiwan
| | - Chi‐Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology Chang Gung University of Science and Technology Taoyuan Taiwan
- Tissue Bank Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| |
Collapse
|
9
|
Dolgalev G, Poverennaya E. Applications of CRISPR-Cas Technologies to Proteomics. Genes (Basel) 2021; 12:1790. [PMID: 34828396 PMCID: PMC8625504 DOI: 10.3390/genes12111790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored. In this review, we intend to provide an introduction to the CRISPR-Cas technologies and demonstrate how they can be applied to solving proteome-centric questions. To achieve this goal, we begin with the description of the modern suite of CRISPR-Cas-based tools, focusing on the more mature CRISPR-Cas9 system. In the second part of this review, we highlight both established and potential applications of the CRISPR-Cas technologies to proteomics.
Collapse
|
10
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
11
|
Huang KY, Wang TH, Chen CC, Leu YL, Li HJ, Jhong CL, Chen CY. Growth Suppression in Lung Cancer Cells Harboring EGFR-C797S Mutation by Quercetin. Biomolecules 2021; 11:1271. [PMID: 34572484 PMCID: PMC8470952 DOI: 10.3390/biom11091271] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved treatments for non-small-cell lung cancer (NSCLC) patients harboring activating EGFR mutations. The EGFR C797S mutation is one of the known acquired-resistance mutations to the latest third-generation TKIs. At present, there are no clear options for treating patients who acquire resistance to third-generation TKIs. The acquisition of the EGFR C797S mutation was shown to upregulate the expression of AXL, a receptor tyrosine kinase of the TAM (TYRO3-AXL-MER) family, and the suppression of AXL is effective in reducing the growth of NSCLC cells harboring EGFR C797S. As quercetin was recently shown to inhibit AXL, quercetin may be effective in treating NSCLC cells harboring the EGFR C797S mutation. In this work, the cytotoxic effects of quercetin and its ability to inhibit tumor growth were examined in TKI-resistant NSCLC cells harboring the EGFR C797S mutation. We demonstrated that quercetin exhibited potent cytotoxic effects on NSCLC cells harboring the EGFR C797S mutation by inhibiting AXL and inducing apoptosis. Quercetin inhibited the tumor growth of xenografted NSCLC cells harboring the EGFR C797S mutation and appeared to act synergistically with brigatinib to inhibit of tumor growth in vivo. In summary, herein, we revealed that quercetin is an effective inhibitor for the treatment of non-small-cell lung cancer harboring the EGFR C797S mutation.
Collapse
Affiliation(s)
- Kuo-Yen Huang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (T.-H.W.); (C.-L.J.)
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-C.C.); (Y.-L.L.)
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-C.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-C.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan;
| | - Cai-Ling Jhong
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (T.-H.W.); (C.-L.J.)
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (T.-H.W.); (C.-L.J.)
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-C.C.); (Y.-L.L.)
| |
Collapse
|
12
|
Icard P, Damotte D, Alifano M. New Therapeutic Strategies for Lung Cancer. Cancers (Basel) 2021; 13:cancers13081937. [PMID: 33923765 PMCID: PMC8072685 DOI: 10.3390/cancers13081937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 27% of all cancer-related deaths worldwide, thus representing a major health problem [...].
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery, Cochin Hospital, AP-HP Centre-University of Paris, 75014 Paris, France;
- Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandy University, 14000 Caen, France
| | - Diane Damotte
- Pathology Department, Cochin Hospital, AP-HP Centre-University of Paris, 75014 Paris, France;
- Team Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS 1138, 75006 Paris, France
| | - Marco Alifano
- Thoracic Surgery, Cochin Hospital, AP-HP Centre-University of Paris, 75014 Paris, France;
- Team Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS 1138, 75006 Paris, France
- Correspondence:
| |
Collapse
|