1
|
Nham TT, Guiho R, Brion R, Amiaud J, Le Royer BB, Gomez-Brouchet A, Rédini F, Bertin H. Zoledronic acid enhances tumor growth and metastatic spread in a mouse model of jaw osteosarcoma. Oral Dis 2024; 30:4209-4219. [PMID: 38376129 DOI: 10.1111/odi.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Investigation of the therapeutic effect of zoledronic acid (ZA) in a preclinical model of jaw osteosarcoma (JO). MATERIALS AND METHODS The effect of 100 μg/kg ZA administered twice a week was assessed in a xenogenic mouse model of JO. The clinical (tumor growth, development of lung metastasis), radiological (bone microarchitecture by micro-CT analysis), and molecular and immunohistochemical (TRAP, RANK/RANKL, VEGF, and CD146) parameters were investigated. RESULTS Animals receiving ZA exhibited an increased tumor volume compared with nontreated animals (71.3 ± 14.3 mm3 vs. 51.9 ± 19.9 mm3 at D14, respectively; p = 0.06) as well as increased numbers of lung metastases (mean 4.88 ± 4.45 vs. 0.50 ± 1.07 metastases, respectively; p = 0.02). ZA protected mandibular bone against tumor osteolysis (mean bone volume of 12.81 ± 0.53 mm3 in the ZA group vs. 11.55 ± 1.18 mm3 in the control group; p = 0.01). ZA induced a nonsignificant decrease in mRNA expression of the osteoclastic marker TRAP and an increase in RANK/RANKL bone remodeling markers. CONCLUSION The use of bisphosphonates in the therapeutic strategy for JO should be further explored, as should the role of bone resorption in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Than-Thuy Nham
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Nantes, France
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Romain Guiho
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes, France
| | - Régis Brion
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Jérôme Amiaud
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | | | - Anne Gomez-Brouchet
- Cancer Biobank of Toulouse, IUCT Oncopole, Toulouse University Hospital, Toulouse Cedex 9, France
- Department of Pathology, IUCT Oncopole, Toulouse University Hospital, Toulouse Cedex 9, France
| | - Françoise Rédini
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Hélios Bertin
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Nantes, France
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
2
|
Chow T, Humble W, Lucarelli E, Onofrillo C, Choong PF, Di Bella C, Duchi S. Feasibility and barriers to rapid establishment of patient-derived primary osteosarcoma cell lines in clinical management. iScience 2024; 27:110251. [PMID: 39286504 PMCID: PMC11403063 DOI: 10.1016/j.isci.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive primary bone tumor that has seen little improvement in survival rates in the past three decades. Preclinical studies are conducted on a small pool of commercial cell lines which may not fully reflect the genetic heterogeneity of this complex cancer, potentially hindering translatability of in vitro results. Developing a single-site laboratory protocol to rapidly establish patient-derived primary cancer cell lines (PCCL) within a clinically actionable time frame of a few weeks will have significant scientific and clinical ramifications. These PCCL can widen the pool of available cell lines for study while patient-specific data could derive therapeutic correlation. This endeavor is exceedingly challenging considering the proposed time constraints. By proposing key definitions and a clear theoretical framework, this evaluation of osteosarcoma cell line establishment methodology over the past three decades assesses feasibility by identifying barriers and suggesting solutions, thereby facilitating systematic experimentation and optimization.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - William Humble
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carmine Onofrillo
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
3
|
Gomez-Mascard A, Van Acker N, Cases G, Mancini A, Galanou S, Frenois FX, Brousset P, Sales de Gauzy J, Valentin T, Castex MP, Vérité C, Lorthois S, Quintard M, Swider P, Faruch M, Assemat P. Intratumoral Heterogeneity Assessment of the Extracellular Bone Matrix and Immune Microenvironment in Osteosarcoma Using Digital Imaging to Predict Therapeutic Response. J Transl Med 2024; 104:102122. [PMID: 39098628 DOI: 10.1016/j.labinv.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
The assessment of chemotherapy response in osteosarcoma (OS) based on the average percentage of viable cells is limited, as it overlooks the spatial heterogeneity of tumor cell response (foci of resistant cells), immune microenvironment, and bone microarchitecture. Despite the resulting positive classification for response to chemotherapy, some patients experience early metastatic recurrence, demonstrating that our conventional tools for evaluating treatment response are insufficient. We studied the interactions between tumor cells, immune cells (lymphocytes, histiocytes, and osteoclasts), and bone extracellular matrix (ECM) in 18 surgical resection samples of OS using multiplex and conventional immunohistochemistry (IHC: CD8, CD163, CD68, and SATB2), combined with multiscale characterization approaches in territories of good and poor response (GRT/PRT) to treatment. GRT and PRT were defined as subregions with <10% and ≥10% of viable tumor cells, respectively. Local correlations between bone ECM porosity and density of immune cells were assessed in these territories. Immune cell density was then correlated to overall patient survival. Two patterns were identified for histiocytes and osteoclasts. In poor responder patients, CD68 osteoclast density exceeded that of CD163 histiocytes but was not related to bone ECM load. Conversely, in good responder patients, CD163 histiocytes were more numerous than CD68 osteoclasts. For both of them, a significant negative local correlation with bone ECM porosity was found (P < .01). Moreover, in PRT, multinucleated osteoclasts were rounded and intermingled with tumor cells, whereas in GRT, they were elongated and found in close contact with bone trabeculae. CD8 levels were always low in metastatic patients, and those initially considered good responders rapidly died from their disease. The specific recruitment of histiocytes and osteoclasts within the bone ECM, and the level of CD8 represent new features of OS response to treatment. The associated prognostic signatures should be integrated into the therapeutic stratification algorithm of patients after surgery.
Collapse
Affiliation(s)
- Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France.
| | - Nathalie Van Acker
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France; Department of Pathology, CHU, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
| | - Guillaume Cases
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - Anthony Mancini
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Sofia Galanou
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - François Xavier Frenois
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France; Department of Pathology, CHU, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
| | - Pierre Brousset
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France; Department of Pathology, CHU, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
| | | | - Thibaud Valentin
- Department of Medical Oncology, Sarcoma, IUCT-Oncopole, Toulouse, France
| | - Marie-Pierre Castex
- Department of Medical Oncology, Department of Pediatric Oncology, CHU Toulouse, France
| | - Cécile Vérité
- Department of Medical Oncology, Department of Pediatric Oncology, CHU Bordeaux, France
| | - Sylvie Lorthois
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Michel Quintard
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Pascal Swider
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Marie Faruch
- Department of Osteoarticular Diagnostic and Interventional Imaging, CHU, Purpan, Toulouse, France
| | - Pauline Assemat
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| |
Collapse
|
4
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
5
|
Bastard P, Cozic N, Brion R, Gaspar N, Piperno-Neumann S, Cordero C, Leculée-Thébaud E, Gomez-Mascard A, Rédini F, Marchais A, Ikonomova R, Cleirec M, Laurence V, Rigaud C, Abbas R, Verrecchia F, Brugières L, Minard-Colin V. Prognostic value of hemogram parameters in osteosarcoma: The French OS2006 experience. Pediatr Blood Cancer 2024; 71:e31029. [PMID: 38679845 DOI: 10.1002/pbc.31029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Previous studies have shown that neutrophil-to-lymphocyte (NLR) ratio at diagnosis and early lymphocytes recovery on doxorubicin-based chemotherapy, may impact the outcome in patients with osteosarcoma (OST). This study aimed to evaluate the prognostic value of hemogram parameters in patients with OST treated with high-dose methotrexate and etoposide/ifosfamide (M-EI) chemotherapy. MATERIALS AND METHODS We retrospectively analyzed the prognostic value of various hemogram parameters at diagnosis and during therapy in a large consecutive cohort of patients with OST included in the French OS2006 trial and treated with M-EI chemotherapy. RESULTS A total of 164 patients were analyzed. The median age was 14.7 years (interquartile range [IQR]: 11.7-17). Median follow-up was 5.6 years (IQR: 3.3-7.7 years). Three-year event-free survival (EFS) and overall survival (OS) were 71.5% (95% confidence interval [CI]: 64%-78%) and 86.4% (95% CI: 80%-91%), respectively. In univariate analysis, blood count parameters at diagnosis and early lymphocyte recovery at Day 14 were not found prognostic of survival outcomes. By contrast, an increase of NLR ratio at Day 1 of the first EI chemotherapy (NLR-W4) was associated with reduced OS in univariate (p = .0044) and multivariate analysis (hazards ratio [HR] = 1.3, 95% CI: 1.1-1.5; p = .002), although not with EFS. After adjustment on histological response and metastatic status, an increase of the ratio NLR-W4 of 1 was associated with an increased risk of death of 30%. CONCLUSIONS We identified NLR-W4 as a potential early biomarker for survival in patients with OST treated with M-EI chemotherapy. Further studies are required to confirm the prognostic value of NLR and better identify immune mechanisms involved in disease surveillance.
Collapse
Affiliation(s)
- Paul Bastard
- Department of Oncology for Child and Adolescents, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Régis Brion
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), INSERM UMR 1307, CNRS UMR 6075, Université de NantesCHU de Nantes, Nantes, France
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescents, University Paris-Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Camille Cordero
- Pediatric Oncology Department, CHU-Hôpital de la Mère et de l'Enfant, Nantes, France
| | | | - Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - Françoise Rédini
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), INSERM UMR 1307, CNRS UMR 6075, Université de NantesCHU de Nantes, Nantes, France
| | - Antonin Marchais
- Department of Oncology for Child and Adolescents, University Paris-Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Morgane Cleirec
- Pediatric Oncology Department, CHU-Hôpital de la Mère et de l'Enfant, Nantes, France
| | | | - Charlotte Rigaud
- Department of Oncology for Child and Adolescents, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Rachid Abbas
- Biostatistics Unit, Gustave Roussy, Villejuif, France
| | - Franck Verrecchia
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), INSERM UMR 1307, CNRS UMR 6075, Université de NantesCHU de Nantes, Nantes, France
| | - Laurence Brugières
- Department of Oncology for Child and Adolescents, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Véronique Minard-Colin
- Department of Oncology for Child and Adolescents, University Paris-Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, University Paris-Saclay, Gustave Roussy, Villejuif, France
| |
Collapse
|
6
|
Mohr A, Marques Da Costa ME, Fromigue O, Audinot B, Balde T, Droit R, Abbou S, Khneisser P, Berlanga P, Perez E, Marchais A, Gaspar N. From biology to personalized medicine: Recent knowledge in osteosarcoma. Eur J Med Genet 2024; 69:104941. [PMID: 38677541 DOI: 10.1016/j.ejmg.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.
Collapse
Affiliation(s)
- Audrey Mohr
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | | | - Olivia Fromigue
- National Institute for Health and Medical Research (INSERM) U981, Gustave Roussy Institute, Villejuif, France
| | - Baptiste Audinot
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Thierno Balde
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Robin Droit
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Samuel Abbou
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Pierre Khneisser
- Department of medical Biology and Pathology, Gustave Roussy Institute, Villejuif, France
| | - Pablo Berlanga
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Esperanza Perez
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Antonin Marchais
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
7
|
Richert I, Berchard P, Abbes L, Novikov A, Chettab K, Vandermoeten A, Dumontet C, Karanian M, Kerzerho J, Caroff M, Blay JY, Dutour A. A TLR4 Agonist Induces Osteosarcoma Regression by Inducing an Antitumor Immune Response and Reprogramming M2 Macrophages to M1 Macrophages. Cancers (Basel) 2023; 15:4635. [PMID: 37760603 PMCID: PMC10526955 DOI: 10.3390/cancers15184635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteosarcoma (OsA) has limited treatment options and stagnant 5-year survival rates. Its immune microenvironment is characterized by a predominance of tumor-associated macrophages (TAMs), whose role in OsA progression remain unclear. Nevertheless, immunotherapies aiming to modulate macrophages activation and polarization could be of interest for OsA treatment. In this study, the antitumor effect of a liposome-encapsulated chemically detoxified lipopolysaccharide (Lipo-MP-LPS) was evaluated as a therapeutic approach for OsA. Lipo-MP-LPS is a toll-like receptor 4 (TLR4) agonist sufficiently safe and soluble to be IV administered at effective doses. Lipo-MP-LPS exhibited a significant antitumor response, with tumor regression in 50% of treated animals and delayed tumor progression in the remaining 50%. The agent inhibited tumor growth by 75%, surpassing the efficacy of other immunotherapies tested in OsA. Lipo-MP-LPS modulated OsA's immune microenvironment by favoring the transition of M2 macrophages to M1 phenotype, creating a proinflammatory milieu and facilitating T-cell recruitment and antitumor immune response. Overall, the study demonstrates the potent antitumor effect of Lipo-MP-LPS as monotherapy in an OsA immunocompetent model. Reprogramming macrophages and altering the immune microenvironment likely contribute to the observed tumor control. These findings support the concept of immunomodulatory approaches for the treatment of highly resistant tumors like OsA.
Collapse
Affiliation(s)
- Iseulys Richert
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| | - Paul Berchard
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| | - Lhorra Abbes
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, 21 rue Jean Rostand, 91400 Orsay, France; (A.N.); (J.K.); (M.C.)
| | - Kamel Chettab
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France; (K.C.); (C.D.)
- Hospices Civils de Lyon, 69007 Lyon, France
| | - Alexandra Vandermoeten
- SCAR, Rockefeller Medecine School, Université Claude Bernard Lyon 1, 69367 Lyon, France;
| | - Charles Dumontet
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France; (K.C.); (C.D.)
- Hospices Civils de Lyon, 69007 Lyon, France
| | - Marie Karanian
- Department of Biopathology, Léon Bérard Center, Unicancer, 69008 Lyon, France;
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, 21 rue Jean Rostand, 91400 Orsay, France; (A.N.); (J.K.); (M.C.)
| | - Martine Caroff
- HEPHAISTOS-Pharma, 21 rue Jean Rostand, 91400 Orsay, France; (A.N.); (J.K.); (M.C.)
| | - Jean-Yves Blay
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
- Department of Medicine, Léon Bérard Center, Unicancer, 69008 Lyon, France
- Department of Medical Oncology, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Aurélie Dutour
- Cell Death and Pediatric Cancers Team INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, 69373 Lyon, France (P.B.); (L.A.); (J.-Y.B.)
| |
Collapse
|
8
|
Lee RY, Ng CW, Rajapakse MP, Ang N, Yeong JPS, Lau MC. The promise and challenge of spatial omics in dissecting tumour microenvironment and the role of AI. Front Oncol 2023; 13:1172314. [PMID: 37197415 PMCID: PMC10183599 DOI: 10.3389/fonc.2023.1172314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Growing evidence supports the critical role of tumour microenvironment (TME) in tumour progression, metastases, and treatment response. However, the in-situ interplay among various TME components, particularly between immune and tumour cells, are largely unknown, hindering our understanding of how tumour progresses and responds to treatment. While mainstream single-cell omics techniques allow deep, single-cell phenotyping, they lack crucial spatial information for in-situ cell-cell interaction analysis. On the other hand, tissue-based approaches such as hematoxylin and eosin and chromogenic immunohistochemistry staining can preserve the spatial information of TME components but are limited by their low-content staining. High-content spatial profiling technologies, termed spatial omics, have greatly advanced in the past decades to overcome these limitations. These technologies continue to emerge to include more molecular features (RNAs and/or proteins) and to enhance spatial resolution, opening new opportunities for discovering novel biological knowledge, biomarkers, and therapeutic targets. These advancements also spur the need for novel computational methods to mine useful TME insights from the increasing data complexity confounded by high molecular features and spatial resolution. In this review, we present state-of-the-art spatial omics technologies, their applications, major strengths, and limitations as well as the role of artificial intelligence (AI) in TME studies.
Collapse
Affiliation(s)
- Ren Yuan Lee
- Singapore Thong Chai Medical Institution, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan Way Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
9
|
Characterization of the Tumor Microenvironment in Jaw Osteosarcomas, towards Prognostic Markers and New Therapeutic Targets. Cancers (Basel) 2023; 15:cancers15041004. [PMID: 36831348 PMCID: PMC9954580 DOI: 10.3390/cancers15041004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Background-The purpose of this study was to investigate the bone resorption, as well as the vascular and immune microenvironment, of jaw osteosarcomas (JO) and to correlate these features with patient clinical outcomes. Methods-We studied 50 JO biopsy samples by immunohistochemical analysis of tissue microarrays (TMAs). We investigated the bone remodeling markers RANK/RANKL/OPG, the endothelial glycoprotein CD146, and biomarkers of the immune environment (CD163 and CD68 of macrophages, CD4+ and CD8+ of tumor-infiltrating lymphocytes (TILs), and an immune checkpoint PD-1/PD-L1). The biomarkers were analyzed for their influence on progression (recurrence and metastasis), overall survival (OS), and disease-free survival (DFS). Results-A strong and significant correlation has been found between CD163 staining and lower OS and DFS. The level of CD4+ and CD8+ staining was low and non-significantly associated with survival outcomes. High levels of RANK and RANKL were found in the tumor samples and correlated with lower DFS. Conclusion-Our findings suggest that CD163+ TAMs represent markers of poor prognosis in JO. Targeting TAMs could represent a valuable therapeutic strategy in JO.
Collapse
|
10
|
Supra R, Agrawal DK. Immunotherapeutic Strategies in the Management of Osteosarcoma. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2023; 5:32-40. [PMID: 36937115 PMCID: PMC10018813 DOI: 10.26502/josm.511500076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone cancer with a high tendency for metastasis. Although treatment strategies involving surgery and chemotherapy have improved outcomes for patients with OS, the prognosis of recurrent OS is quite unsatisfactory. Primary reasons leading to mortality in OS patients are resistance to currently used therapies and the subsequent lung metastasis. Immunotherapy, however, has been shown to be a promising therapeutic strategy against OS. As research progresses, immunotherapy is gradually becoming irreplaceable. This article provides a critical evaluation of several therapeutic strategies for OS including immunomodulation, vaccine therapy, and immunologic checkpoint blockade.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA
| |
Collapse
|
11
|
Pierrevelcin M, Flacher V, Mueller CG, Vauchelles R, Guerin E, Lhermitte B, Pencreach E, Reisch A, Muller Q, Doumard L, Boufenghour W, Klymchenko AS, Foppolo S, Nazon C, Weingertner N, Martin S, Briandet C, Laithier V, Di Marco A, Bund L, Obrecht A, Villa P, Dontenwill M, Entz-Werlé N. Engineering Novel 3D Models to Recreate High-Grade Osteosarcoma and its Immune and Extracellular Matrix Microenvironment. Adv Healthc Mater 2022; 11:e2200195. [PMID: 36057996 DOI: 10.1002/adhm.202200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.
Collapse
Affiliation(s)
- Marina Pierrevelcin
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Vincent Flacher
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Christopher G Mueller
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Romain Vauchelles
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Eric Guerin
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Benoît Lhermitte
- Pathology department, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Erwan Pencreach
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Andreas Reisch
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Quentin Muller
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Layal Doumard
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Wacym Boufenghour
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Andrey S Klymchenko
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Sophie Foppolo
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Charlotte Nazon
- Pediatric Onco-hematology unit, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Noelle Weingertner
- Pathology department, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Claire Briandet
- Pediatric Onco-hematology unit, Hospital of "Le Bocage"- University Hospital of Dijon, 1 bd Jeanne d'Arc, Dijon, 21079, France
| | - Véronique Laithier
- Pediatric Onco-hematology unit, University Hospital of Besançon, 3, boulevard A. Fleming, Besançon, 25030, France
| | - Antonio Di Marco
- Department of Orthopedic Surgery and Traumatology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Laurent Bund
- Department of Pediatric Surgery, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Adeline Obrecht
- PCBIS Plate-forme de chimie biologique intégrative de Strasbourg, UMS 3286 CNRS, University of Strasbourg, Labex Medalis, 300 Bld Sébastien Brant, Illkirch, 67412, France
| | - Pascal Villa
- PCBIS Plate-forme de chimie biologique intégrative de Strasbourg, UMS 3286 CNRS, University of Strasbourg, Labex Medalis, 300 Bld Sébastien Brant, Illkirch, 67412, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Natacha Entz-Werlé
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France.,Pediatric Onco-hematology unit, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| |
Collapse
|
12
|
Barnes DJ, Dutton P, Bruland Ø, Gelderblom H, Faleti A, Bühnemann C, van Maldegem A, Johnson H, Poulton L, Love S, Tiemeier G, van Beelen E, Herbschleb K, Haddon C, Billingham L, Bradley K, Ferrari S, Palmerini E, Picci P, Dirksen U, Strauss SJ, Hogendoorn PCW, Buddingh E, Blay JY, Cleton-Jansen AM, Hassan AB. Outcomes from a mechanistic biomarker multi-arm and randomised study of liposomal MTP-PE (Mifamurtide) in metastatic and/or recurrent osteosarcoma (EuroSarc-Memos trial). BMC Cancer 2022; 22:629. [PMID: 35672690 PMCID: PMC9175372 DOI: 10.1186/s12885-022-09697-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
The phase III clinical study of adjuvant liposomal muramyl tripeptide (MTP-PE) in resected high-grade osteosarcoma (OS) documented positive results that have been translated into regulatory approval, supporting initial promise for innate immune therapies in OS. There remains, however, no new approved treatment such as MTP-PE for either metastatic or recurrent OS. Whilst the addition of different agents, including liposomal MTP-PE, to surgery for metastatic or recurrent high-grade osteosarcoma has tried to improve response rates, a mechanistic hiatus exists in terms of a detailed understanding the therapeutic strategies required in advanced disease. Here we report a Bayesian designed multi-arm, multi-centre, open-label phase II study with randomisation in patients with metastatic and/or recurrent OS, designed to investigate how patients with OS might respond to liposomal MTP-PE, either given alone or in combination with ifosfamide. Despite the trial closing because of poor recruitment within the allocated funding period, with no objective responses in eight patients, we report the design and feasibility outcomes for patients registered into the trial. We demonstrate the feasibility of the Bayesian design, European collaboration, tissue collection with genomic analysis and serum cytokine characterisation. Further mechanistic investigation of liposomal MTP-PE alone and in combination with other agents remains warranted in metastatic OS.
Collapse
Affiliation(s)
- David J Barnes
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, and Oxford University Hospital NHS Trust, Oxford, OX1 3RE, UK
| | - Peter Dutton
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and Centre for Statistics in Medicine (CSM), University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Øyvind Bruland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Department of Oncology-Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Hans Gelderblom
- Leiden University Medical Center, P.O. Box 9600, Postzone K1-P, 2300RC, Leiden, The Netherlands
| | - Ade Faleti
- Department of Oncology Early Phase trials unit and Oncology Clinical Trials Office (OCTO), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Claudia Bühnemann
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, and Oxford University Hospital NHS Trust, Oxford, OX1 3RE, UK
| | - Annemiek van Maldegem
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, and Oxford University Hospital NHS Trust, Oxford, OX1 3RE, UK
- Leiden University Medical Center, P.O. Box 9600, Postzone K1-P, 2300RC, Leiden, The Netherlands
| | - Hannah Johnson
- Department of Oncology Early Phase trials unit and Oncology Clinical Trials Office (OCTO), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Lisa Poulton
- Department of Oncology Early Phase trials unit and Oncology Clinical Trials Office (OCTO), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sharon Love
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and Centre for Statistics in Medicine (CSM), University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Gesa Tiemeier
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, and Oxford University Hospital NHS Trust, Oxford, OX1 3RE, UK
- Leiden University Medical Center, P.O. Box 9600, Postzone K1-P, 2300RC, Leiden, The Netherlands
| | - Els van Beelen
- Leiden University Medical Center, P.O. Box 9600, Postzone K1-P, 2300RC, Leiden, The Netherlands
| | - Karin Herbschleb
- Department of Oncology Early Phase trials unit and Oncology Clinical Trials Office (OCTO), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Caroline Haddon
- Department of Oncology Early Phase trials unit and Oncology Clinical Trials Office (OCTO), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Lucinda Billingham
- Cancer Research Clinical Trials Unit (Cancer Sciences), Institute of Cancer and Genomic Sciences, Robert Aitken Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kevin Bradley
- Department of Radiology, Churchill Hospital, Oxford University Hospitals Foundation Trust, Oxford, OX3 7LJ, UK
| | - Stefano Ferrari
- Istituti Ortopedici Rizzoli, Via C. Pupilli 1, 40136, Bologna, Italy
| | | | - Piero Picci
- Istituti Ortopedici Rizzoli, Via C. Pupilli 1, 40136, Bologna, Italy
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre Network Essen-Muenster, University Hospital Essen, Hufelanstr 55, Essen, 45147, Germany
| | - Sandra J Strauss
- Department of Oncology, UCLH NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK
| | - Pancras C W Hogendoorn
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and Centre for Statistics in Medicine (CSM), University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
- Leiden University Medical Center, P.O. Box 9600, Postzone K1-P, 2300RC, Leiden, The Netherlands
| | - Emmeline Buddingh
- Leiden University Medical Center, P.O. Box 9600, Postzone K1-P, 2300RC, Leiden, The Netherlands
| | | | | | - Andrew Bassim Hassan
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, and Oxford University Hospital NHS Trust, Oxford, OX1 3RE, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and Centre for Statistics in Medicine (CSM), University of Oxford, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
13
|
Holterhus M, Altvater B, Kailayangiri S, Rossig C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers (Basel) 2022; 14:cancers14092177. [PMID: 35565307 PMCID: PMC9105669 DOI: 10.3390/cancers14092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Common pediatric solid cancers fail to respond to standard immuno-oncology agents relying on preexisting adaptive antitumor immune responses. The adoptive transfer of tumor-antigen specific T cells, such as CAR-gene modified T cells, is an attractive strategy, but its efficacy has been limited. Evidence is accumulating that local barriers in the tumor microenvironment prevent the infiltration of T cells and impede therapeutic immune responses. A thorough understanding of the components of the functional compartment of the tumor microenvironment and their interaction could inform effective combination therapies and novel engineered therapeutics, driving immunotherapy towards its full potential in pediatric patients. This review summarizes current knowledge on the cellular composition and significance of the tumor microenvironment in common extracranial solid cancers of childhood and adolescence, such as embryonal tumors and bone and soft tissue sarcomas, with a focus on myeloid cell populations that are often present in abundance in these tumors. Strategies to (co)target immunosuppressive myeloid cell populations with pharmacological anticancer agents and with selective antagonists are presented, as well as novel concepts aiming to employ myeloid cells to cooperate with antitumor T cell responses.
Collapse
|
14
|
Lu Y, Zhang J, Chen Y, Kang Y, Liao Z, He Y, Zhang C. Novel Immunotherapies for Osteosarcoma. Front Oncol 2022; 12:830546. [PMID: 35433427 PMCID: PMC9012135 DOI: 10.3389/fonc.2022.830546] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone sarcoma mainly affecting adolescents and young adults, which often progresses to pulmonary metastasis and leads to the death of OS patients. OS is characterized as a highly heterogeneous cancer type and the underlying pathologic mechanisms triggering tumor progress and metastasis are incompletely recognized. Surgery combined with neoadjuvant and postoperative chemotherapy has elevated 5-year survival to over 70% for patients with localized OS tumors, as opposed to only 20% of patients with recurrence and/or metastasis. Therefore, novel therapeutic strategies are needed to overcome the drawbacks of conventional treatments. Immunotherapy is gaining momentum for the treatment of OS with an increasing number of FDA-approved therapies for malignancies resistant to conventional therapies. Here, we review the OS tumor microenvironment and appraise the promising immunotherapies available in the management of OS.
Collapse
Affiliation(s)
- Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahe Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yutong Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhipeng Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuanqi He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Cangyu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Cangyu Zhang,
| |
Collapse
|
15
|
Nazon C, Pierrevelcin M, Willaume T, Lhermitte B, Weingertner N, Marco AD, Bund L, Vincent F, Bierry G, Gomez-Brouchet A, Redini F, Gaspar N, Dontenwill M, Entz-Werle N. Together Intra-Tumor Hypoxia and Macrophagic Immunity Are Driven Worst Outcome in Pediatric High-Grade Osteosarcomas. Cancers (Basel) 2022; 14:cancers14061482. [PMID: 35326631 PMCID: PMC8945994 DOI: 10.3390/cancers14061482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Radiological and immunohistochemical data were correlated with the outcome in a retrospective monocentric cohort of 30 pediatric osteosarcomas (OTS). A necrotic volume of more than 50 cm3 at diagnosis was significantly linked to a worse overall survival (OS). Regarding immunohistochemical analyses, an overexpression of hypoxic markers, such as HIF-1α and anhydrase carbonic IX (CAIX), was significantly linked to a worse OS, while pS6-RP hyperexpression was correlated with a better survival. We also featured that CD68 positive cells, representative of macrophagic M1 polarization, were mostly associated with HIF-1α and CAIX hyperexpressions and that M2-like polarization, mostly related to CD163 positivity, was correlated to mTor activation. These findings, involving clinical, radiological and biology data, allowed us to hypothesize a dual signature association ready to use routinely in future protocols. Abstract Background: Osteosarcomas (OTS) represent the most common primary bone cancer diagnosed in adolescents and young adults. Despite remarkable advances, there are no objective molecular or imaging markers able to predict an OTS outcome at diagnosis. Focusing on biomarkers contributing broadly to treatment resistance, we examine the interplay between the tumor-associated macrophages and intra-tumor hypoxia. Methods: Radiological and immunohistochemical (IHC) data were correlated with the outcome in a retrospective and monocentric cohort of 30 pediatric OTS. We studied hypoxic (pS6, phospho-mTor, HIF-1α and carbonic anhydrase IX (CAIX)) and macrophagic (CD68 and CD163) biomarkers. Results: The imaging analyses were based on MRI manual volumetric measures on axial post-contrast T1 weighted images, where, for each tumor, we determined the necrotic volume and its ratio to the entire tumor volume. When they were above 50 cm3 and 20%, respectively, they correlated with a worse overall survival (p = 0.0072 and p = 0.0136, respectively) and event-free survival (p = 0.0059 and p = 0.0143, respectively). IHC assessments enable a significant statistical link between HIF-1α/CAIX hyper-expressions, CD68+ cells and a worse outcome, whereas activation of mTor pathway was linked to a better survival rate and CD163+ cells. Conclusions: This study evidenced the links between hypoxia and immunity in OTS, as their poor outcome may be related to a larger necrotic volume on diagnostic MRI and, in biopsies, to a specific IHC profile.
Collapse
Affiliation(s)
- Charlotte Nazon
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (C.N.); (F.V.)
| | - Marina Pierrevelcin
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
| | - Thibault Willaume
- Radiology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (T.W.); (G.B.)
| | - Benoît Lhermitte
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
- Pathology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Noelle Weingertner
- Pathology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Antonio Di Marco
- Department of Orthopedic Surgery and Traumatology, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Laurent Bund
- Department of Pediatric Surgery, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France;
| | - Florence Vincent
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (C.N.); (F.V.)
| | - Guillaume Bierry
- Radiology Department, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (T.W.); (G.B.)
| | - Anne Gomez-Brouchet
- Department of Pathology, University Hospital of Toulouse, 1 Avenue Irène Joliot Curie, 31100 Toulouse, France;
| | - Françoise Redini
- INSERM UMR1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Nantes University, 44000 Nantes, France;
| | - Nathalie Gaspar
- Department of Oncology for Children and Adolescents, Gustave Roussy, 94805 Villejuif, France;
- INSERM U1015, Gustave Roussy, University of Paris-Saclay, 94805 Villejuif, France
- University of Paris-Saclay, 91400 Orsay, France
| | - Monique Dontenwill
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
| | - Natacha Entz-Werle
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 1 Avenue Molière, CEDEX, 67098 Strasbourg, France; (C.N.); (F.V.)
- CNRS UMR 7021, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, 74 Route du Rhin, 67401 Illkirch, France; (M.P.); (B.L.); (M.D.)
- Correspondence: ; Tel.: +33-3-88-12-83-96; Fax: +33-3-88-12-80-92
| |
Collapse
|
16
|
van Oost S, Meijer DM, Kuijjer ML, Bovée JVMG, de Miranda NFCC. Linking Immunity with Genomics in Sarcomas: Is Genomic Complexity an Immunogenic Trigger? Biomedicines 2021; 9:1048. [PMID: 34440251 PMCID: PMC8391750 DOI: 10.3390/biomedicines9081048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Debora M. Meijer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Marieke L. Kuijjer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
- Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Noel F. C. C. de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| |
Collapse
|
17
|
Khabipov A, Freund E, Liedtke KR, Käding A, Riese J, van der Linde J, Kersting S, Partecke LI, Bekeschus S. Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells. Cancers (Basel) 2021; 13:2525. [PMID: 34064000 PMCID: PMC8196763 DOI: 10.3390/cancers13112525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Eric Freund
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kim Rouven Liedtke
- Department of Trauma and Orthopedic Surgery, Schleswig-Holstein University Medical Center, Arnold-Heller-Straße 3, 24105 Kiel, Germany;
| | - Andre Käding
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Janik Riese
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Julia van der Linde
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Stephan Kersting
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- Department of General, Visceral and Thoracic Surgery, Schleswig Helios Medical Center, St. Jürgener Str. 1-3, 24837 Schleswig, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
18
|
Gambera S, Patiño-Garcia A, Alfranca A, Garcia-Castro J. RGB-Marking to Identify Patterns of Selection and Neutral Evolution in Human Osteosarcoma Models. Cancers (Basel) 2021; 13:2003. [PMID: 33919355 PMCID: PMC8122697 DOI: 10.3390/cancers13092003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS) is a highly aggressive tumor characterized by malignant cells producing pathologic bone; the disease presents a natural tendency to metastasize. Genetic studies indicate that the OS genome is extremely complex, presenting signs of macro-evolution, and linear and branched patterns of clonal development. However, those studies were based on the phylogenetic reconstruction of next-generation sequencing (NGS) data, which present important limitations. Thus, testing clonal evolution in experimental models could be useful for validating this hypothesis. In the present study, lentiviral LeGO-vectors were employed to generate colorimetric red, green, blue (RGB)-marking in murine, canine, and human OS. With this strategy, we studied tumor heterogeneity and the clonal dynamics occurring in vivo in immunodeficient NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ (NSG) mice. Based on colorimetric label, tumor clonal composition was analyzed by confocal microscopy, flow cytometry, and different types of supervised and unsupervised clonal analyses. With this approach, we observed a consistent reduction in the clonal composition of RGB-marked tumors and identified evident clonal selection at the first passage in immunodeficient mice. Furthermore, we also demonstrated that OS could follow a neutral model of growth, where the disease is defined by the coexistence of different tumor sub-clones. Our study demonstrates the importance of rigorous testing of the selective forces in commonly used experimental models.
Collapse
Affiliation(s)
- Stefano Gambera
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.G.); (A.A.)
| | - Ana Patiño-Garcia
- Department of Pediatrics, Laboratory of Advanced Therapies for Pediatric Solid Tumors, Solid Tumor Area, CIMA and Instituto de Investigación Sanitaria de Navarra, University Clinic of Navarra, IdiSNA, 31008 Pamplona, Spain;
| | - Arantzazu Alfranca
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.G.); (A.A.)
- Immunology Department, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.G.); (A.A.)
| |
Collapse
|