1
|
Tamura T, Kanemasa Y, Nakamura S, Okuya T, Yagi Y, Matsuda S, Murata M, Endo K, Hara K, Okinaga H, Horiguchi SI, Seyama Y, Cho H, Shimoyama T. Management of HER2-positive and microsatellite instability-high advanced gastric cancer: a case report. Int Cancer Conf J 2024; 13:342-347. [PMID: 39398918 PMCID: PMC11464906 DOI: 10.1007/s13691-024-00707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 10/15/2024] Open
Abstract
Chemotherapy for advanced gastric cancer has progressed significantly in the past few decades. Biomarker-specific drugs, including anti-human epidermal growth factor receptor 2 (HER2) drugs for HER2-positive patients and immune checkpoint inhibitors for those with microsatellite instability-high (MSI-H), have become common. However, patients who are positive for HER2 and have MSI-H are extremely rare, and there are no established treatments for these patients. We present the case of a 75-year-old, male patient with gastric cancer with lymph node metastases and liver infiltration. Biomarker analysis revealed HER2 3 + , loss of MLH1, and MSI-H. After three cycles of S-1, oxaliplatin, and trastuzumab, the primary tumor and metastases shrank markedly. He subsequently underwent gastrectomy and hepatectomy as conversion surgery, achieving a pathologically complete response. He has been recurrence-free for seven months postoperatively. The present case demonstrated the efficacy of trastuzumab-containing chemotherapy followed by conversion surgery in a patient with HER2-positive, MSI-H, advanced gastric cancer.
Collapse
Affiliation(s)
- Taichi Tamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| | - Yusuke Kanemasa
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| | - Shohei Nakamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| | - Toshihiro Okuya
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| | - Yu Yagi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| | - Shinichiro Matsuda
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| | - Mitsutaka Murata
- Department of Gastric Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuya Endo
- Department of Gastric Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kentaro Hara
- Department of Gastric Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Shin-ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yasuji Seyama
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Haruhiko Cho
- Department of Gastric Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tatsu Shimoyama
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677 Japan
| |
Collapse
|
2
|
Lordick F, Rha SY, Muro K, Yong WP, Lordick Obermannová R. Systemic Therapy of Gastric Cancer-State of the Art and Future Perspectives. Cancers (Basel) 2024; 16:3337. [PMID: 39409957 PMCID: PMC11475804 DOI: 10.3390/cancers16193337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The prognosis of patients diagnosed with locally advanced and metastatic gastric and esophago-gastric junction cancer is critical. The optimal choice of systemic therapy is essential to optimize survival outcomes. Methods: A comprehensive literature review via PubMed and analysis of major oncology congresses (European Society for Medical Oncology and American Society of Clinical Oncology websites) were conducted to ascertain the current status and latest developments in the systemic treatment of patients with localized or advanced gastric and esophago-gastric junction adenocarcinoma. Results: While neoadjuvant and perioperative chemotherapy for localized tumor stages is the preferred approach in the Western Hemisphere, adjuvant chemotherapy remains the preferred course of action in East Asia. The administration of chemotherapy, typically in the form of combinations comprising platinum and fluoropyrimidine compounds in combination with docetaxel, represents a standard of care. Investigations are underway into the potential of immunotherapy and other biologically targeted agents in the perioperative setting. To select the most appropriate therapy for advanced gastric cancer, including adenocarcinoma of the esophago-gastric junction, it is essential to determine biomarkers such as HER2 expression, PD-L1 combined positive score (CPS) (combined positive score), Claudin 18.2, and microsatellite instability (MSI). In the present clinical context, the standard first-line therapy is a combination of fluoropyrimidine and a platinum derivative. The selection of chemotherapy in combination with antibodies is contingent upon the specific biomarker under consideration. Conclusions: This article reviews the current state of the art based on recent clinical trial results and provides an outlook on the future of systemic therapy.
Collapse
Affiliation(s)
- Florian Lordick
- Department of Medicine (Oncology, Gastroenterology, Hepatology, Pulmonology), University of Leipzig Medical Center, Cancer Center Central Germany, 04103 Leipzig, Germany
| | - Sun Young Rha
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119074, Singapore
| | - Radka Lordick Obermannová
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| |
Collapse
|
3
|
Yao N, Li W, Duan N, Xu G, Yu G, Qu J. Exploring the landscape of drug resistance in gastrointestinal cancer immunotherapy: A review. Medicine (Baltimore) 2024; 103:e36957. [PMID: 38215151 PMCID: PMC10783409 DOI: 10.1097/md.0000000000036957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
Gastrointestinal (GI) cancers pose a significant challenge due to high prevalence and mortality. While advancements in detection and conventional treatments have been made, prognosis often remains poor, particularly for advanced-stage cancers. Immunotherapy has emerged as a transformative approach, leveraging the body immune system against cancer, including immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer. These modalities have shown promise, achieving sustained responses and improved survival in some patients. However, their efficacy in GI cancers is less pronounced, hindered by drug resistance mechanisms that are either intrinsic or acquired over time. This review examines the latest understanding of immunotherapy in GI cancers, focusing on ICIs, cancer vaccines, and adoptive cell transfer, along with their associated outcomes and limitations. It delves into the mechanisms behind drug resistance, including alterations in immune checkpoints, the immunosuppressive tumor microenvironment, and genetic/epigenetic changes. The role of the gut microbiome is also considered as an emerging factor in resistance. To combat drug resistance, strategies such as enhancing immune response, targeting the tumor microenvironment, and modulating resistance mechanisms are explored. The review underscores the potential of ferroptosis induction as a novel approach. Looking forward, it highlights the need for personalized immunotherapies, understanding the influence of the gut microbiome, and further exploration of ferroptosis in overcoming resistance. While challenges persist, the continuous evolution in GI cancer immunotherapy research promises innovative treatments that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Nan Yao
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Ning Duan
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoyong Yu
- Department of Nephrology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang J, Hu C, Zhang R, Xu J, Zhang Y, Yuan L, Zhang S, Pan S, Cao M, Qin J, Cheng X, Xu Z. The role of macrophages in gastric cancer. Front Immunol 2023; 14:1282176. [PMID: 38143746 PMCID: PMC10746385 DOI: 10.3389/fimmu.2023.1282176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
As one of the deadliest cancers of the gastrointestinal tract, there has been limited improvement in long-term survival rates for gastric cancer (GC) in recent decades. The poor prognosis is attributed to difficulties in early detection, minimal opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are among the most abundant infiltrating immune cells in the GC stroma. These cells engage in crosstalk with cancer cells, adipocytes and other stromal cells to regulate metabolic, inflammatory and immune status, generating an immunosuppressive tumour microenvironment (TME) and ultimately promoting tumour initiation and progression. In this review, we summarise recent advances in our understanding of the origin of macrophages and their types and polarisation in cancer and provide an overview of the role of macrophages in GC carcinogenesis and development and their interaction with the GC immune microenvironment and flora. In addition, we explore the role of macrophages in preclinical and clinical trials on drug resistance and in treatment of GC to assess their potential therapeutic value in this disease.
Collapse
Affiliation(s)
- Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siwei Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengxuan Cao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Yamamoto G, Ito T, Suzuki O, Kamae N, Kakuta M, Takahashi A, Iuchi K, Arai T, Ishida H, Akagi K. Concordance between microsatellite instability testing and immunohistochemistry for mismatch repair proteins and efficient screening of mismatch repair deficient gastric cancer. Oncol Lett 2023; 26:494. [PMID: 37854865 PMCID: PMC10579988 DOI: 10.3892/ol.2023.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
Microsatellite instability (MSI) testing, an established technique that has gained prominence in recent years for its predictive potential regarding the efficacy of immune checkpoint inhibitors, is used to evaluate DNA mismatch repair (MMR) deficiency (dMMR). As with other methods, the immunohistochemistry (IHC) of MMR proteins is also widely adopted. Although both techniques have been validated, their concordance rate remains unknown, particularly regarding non-colorectal cancer. Therefore, the aim of the present study was to explore and elucidate their concordance in the context of gastric cancer (GC). A total of 489 surgically resected primary GC tissues were analyzed to compare the results yielded by the MSI test and those from IHC. Of 488 GC cases, 56 (11.5%) exhibited a loss of MMR proteins, whereas 52 (10.7%) were classified as high-frequency MSI (MSI-H). The concordance rate between these two categories was 99.2%. The microsatellite markers BAT26 and MONO27 demonstrated 100% sensitivity and 99.5% specificity in detecting dMMR GC. In addition, histopathological analysis revealed that MSI-H was more prevalent in GCs exhibiting coexisting Tub2 and Por1 subtypes. However, four discordant cases were observed. All four cases were microsatellite-stable cases but exhibited loss of MLH1 protein expression with hypermethylation of the MLH1 promoter. The results of the present study highlight that while there is a strong concordance between MSI and IHC testing results for determining dMMR status, IHC testing may offer superior efficacy in detecting dMMR.
Collapse
Affiliation(s)
- Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Tetsuya Ito
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Nao Kamae
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Miho Kakuta
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Akemi Takahashi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Katsuya Iuchi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama 362-0806, Japan
| |
Collapse
|
6
|
Lu M, Wu Y, Zhang Y, Yu Y, Wang S, Su X. Immunotherapeutic strategy in the management of gastric cancer: molecular profiles, current practice, and ongoing trials. J Egypt Natl Canc Inst 2023; 35:32. [PMID: 37779128 DOI: 10.1186/s43046-023-00192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
Gastric cancer (GC) is the one of the most commonly solid cancer worldwide. Although under the aggressive treatment, the poor clinical outcomes of patients with GCs have not been improved. Current studies emphasized that targeting therapies or immune response-based therapeutic strategy may be a potential approach to improve the clinical outcomes. Moreover, accumulative evidence has reported the increasing expression of PD-L1 expression in GC cells and highlighted its role in the tumor progression. Currently, great development has been established in the immune checkpoint inhibitors (ICIs) and further changed the clinical practice of GC treatment and prognosis. In addition, the combination therapies with targeting therapy or traditional therapies are expected to push the development of immunotherapies. In our present review, we predominantly focus on the biomarkers and molecular profiles for immunotherapies in GCs and highlight the role and administration of ICIs-based immunotherapeutic strategies against the GCs.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Yingjie Wu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yixin Zhang
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yu Yu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | | | - Xiaobao Su
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Pihlak R, Fong C, Starling N. Targeted Therapies and Developing Precision Medicine in Gastric Cancer. Cancers (Basel) 2023; 15:3248. [PMID: 37370858 PMCID: PMC10296575 DOI: 10.3390/cancers15123248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Gastric cancer is an aggressive disease with survival remaining poor in the advanced setting. More than a decade after the first targeted treatment was approved, still only HER2, MSI and PDL-1 status have reached everyday practice in terms of guiding treatment options for these patients. However, various new targets and novel treatments have recently been investigated and have shown promise in improving survival outcomes. In this review, we will summarise previous and currently ongoing studies on predictive biomarkers, possible new targeted treatments, potential reasons for conflicting trial results and hope for the future of precision medicine in gastric cancer.
Collapse
Affiliation(s)
| | | | - Naureen Starling
- Gastrointestinal/Lymphoma Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (R.P.); (C.F.)
| |
Collapse
|
8
|
Shimozaki K, Nakayama I, Hirota T, Yamaguchi K. Current Strategy to Treat Immunogenic Gastrointestinal Cancers: Perspectives for a New Era. Cells 2023; 12:1049. [PMID: 37048122 PMCID: PMC10093684 DOI: 10.3390/cells12071049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Since pembrolizumab, an anti-programmed death-1 (PD-1) antibody, showed a dramatic response to immunogenic cancers with microsatellite instability-high (MSI-H) and/or deficient mismatch repair (dMMR) in the pilot clinical trial KEYNOTE-016, subsequent studies have confirmed durable responses of anti-PD-1 inhibitors for MSI-H/dMMR solid tumors. As immunotherapy is described as a "game changer," the therapeutic landscape for MSI-H/dMMR solid tumors including gastrointestinal cancers has changed considerably in the last decade. An MSI/MMR status has been established as the predictive biomarker for immune checkpoint blockades, playing an indispensable role in the clinical practice of patients with MSI-H/dMMR tumors. Immunotherapy is also now investigated for locally advanced MSI-H/dMMR gastrointestinal cancers. Despite this great success, a few populations with MSI-H/dMMR gastrointestinal cancers do not respond to immunotherapy, possibly due to the existence of intrinsic or acquired resistance mechanisms. Clarifying the underlying mechanisms of resistance remains a future task, whereas attempts to overcome resistance and improve the efficacy of immunotherapy are currently ongoing. Herein, we review recent clinical trials with special attention to MSI-H/dMMR gastrointestinal cancers together with basic/translational findings, which provide their rationale, and discuss perspectives for the further therapeutic development of treatment in this field.
Collapse
Affiliation(s)
- Keitaro Shimozaki
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Izuma Nakayama
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Toru Hirota
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| |
Collapse
|
9
|
Yoshinami Y, Shoji H. Recent advances in immunotherapy and molecular targeted therapy for gastric cancer. Future Sci OA 2023; 9:FSO842. [PMID: 37009054 PMCID: PMC10061264 DOI: 10.2144/fsoa-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Our increasing understanding of the molecular biological characteristics of cancer and of cancer genomics is facilitating the development of immunotherapy and molecular targeted drugs for gastric cancer. After the approval of immune checkpoint inhibitors (ICIs) for melanoma in 2010, many different cancers have been shown to respond to such treatments. Thus, the anti-PD-1 antibody nivolumab was reported to prolong survival in 2017, and ICIs have become the mainstay of treatment development. Many clinical trials of combination therapies with cytotoxic agents and molecular-targeted agents, as well as combinations of immunotherapeutic agents acting via different mechanisms, are currently underway for each treatment line. As a result, further improvements in therapeutic outcomes for gastric cancer are anticipated in the near future.
Collapse
Affiliation(s)
- Yuri Yoshinami
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
10
|
You W, Ouyang J, Cai Z, Chen Y, Wu X. Comprehensive Analyses of Immune Subtypes of Stomach Adenocarcinoma for mRNA Vaccination. Front Immunol 2022; 13:827506. [PMID: 35874675 PMCID: PMC9300892 DOI: 10.3389/fimmu.2022.827506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Although messenger RNA (mRNA) vaccines have unique advantages against multiple tumors, mRNA vaccine targets in stomach adenocarcinoma (STAD) remain unknown. The potential effectiveness of mRNA vaccines is closely associated with the tumor immune infiltration microenvironment. The present study aimed to identify tumor antigens of STAD as mRNA vaccine targets and systematically determine immune subtypes (ISs) of STAD that might be suitable for immunotherapy. Methods Gene expression profiles and clinical data of patients with gastric cancer were downloaded from The Cancer Genome Atlas (TCGA; n = 409) and the Gene Expression Omnibus (GEO; n = 433), and genomic data were extracted from cBioPortal. Differential gene expression was analyzed using the limma package, genetic alterations were visualized using maftools, and prognosis was analyzed using ToPP. Correlations between gene expression and immune infiltration were calculated using TIMER software, and potential ISs were identified using ConsensusClusterPlus. Functional enrichment was analyzed in clusterProfiler, and r co-expression networks were analyzed using the weighted gene co-expression network analysis (WGCNA) package in R. Results Overexpression of the prognostic and highly mutated antigens ADAMTS18, COL10A1, PPEF1, and STRA6 was associated with infiltration by antigen-presenting cells in STAD. Five ISs (IS1–IS5) in STAD with distinct prognoses were developed and validated in TCGA and GEO databases. The tumor mutational burden and molecular and clinical characteristics significantly differed among IS1–IS5. Both IS1 and IS2 were associated with a high mutational burden, massive infiltration by immune cells, especially antigen-presenting cells, and better survival compared with the other subtypes. Both IS4 and IS5 were associated with cold immune infiltration and correlated with advanced pathological stages. We analyzed the immune microenvironments of five subtypes of immune modulators and biomarkers to select suitable populations for mRNA vaccination and established four co-expressed key modules to validate the characteristics of the ISs. Finally, the correlation of these four mRNA vaccine targets with the transcription factors of DC cells, including BATF3, IRF4, IRF8, ZEB2, ID2, KLF4, E2-2, and IKZF1, were explored to reveal the underlying mechanisms. Conclusions ADAMTS18, COL10A1, PPEF1, and STRA6 are potential mRNA vaccine candidates for STAD. Patients with IS1 and IS2 are suitable populations for mRNA vaccination immunotherapy.
Collapse
Affiliation(s)
- Weiqiang You
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Ouyang
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zerong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaojian Wu,
| |
Collapse
|
11
|
Sano A, Sohda M, Nakazawa N, Ubukata Y, Kuriyama K, Kimura A, Kogure N, Hosaka H, Naganuma A, Sekiguchi M, Saito K, Ogata K, Sakai M, Ogawa H, Shirabe K, Saeki H. Clinical features as potential prognostic factors in patients treated with nivolumab for highly pretreated metastatic gastric cancer: a multicenter retrospective study. BMC Cancer 2022; 22:22. [PMID: 34980017 PMCID: PMC8721909 DOI: 10.1186/s12885-021-09118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although nivolumab (anti-programmed cell death-1 antibody) is a promising approach for advanced gastric cancer (AGC), the response rate remains limited. The aim of this multicenter retrospective study was to determine if clinical features could serve as prognostic factors of the efficacy of nivolumab in patients with AGC. METHODS Fifty-eight patients with AGC who were treated with nivolumab as a third or later line from October 2017 to December 2018 at any of five clinical sites were enrolled in the study. The correlation between the best overall response and clinical features was investigated. Overall survival and progression-free survival after initiation of nivolumab were calculated and clinical features that could be predictors of the prognosis were sought. RESULTS The disease control rate (DCR) for nivolumab was 36.2% and was significantly correlated with performance status (p = 0.021), metastasis to one organ (p = 0.006), and grade 2 or higher immune-related adverse events (p = 0.027). There was also a significant association between response to nivolumab and ability to receive subsequent chemotherapy (p = 0.022). In the analysis of overall survival, the following variables were identified as being significantly associated with a poor outcome: Eastern Cooperative Oncology Group performance status ≥1, prior treatment with trastuzumab, no immune-related adverse events, lack of a response to nivolumab, and inability to receive subsequent chemotherapy. CONCLUSION The findings of this study suggest that nivolumab may be ineffective for AGC in patients with poor performance status and those with a history of treatment with trastuzumab.
Collapse
Affiliation(s)
- Akihiko Sano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yasunari Ubukata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kengo Kuriyama
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akiharu Kimura
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norimichi Kogure
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hisashi Hosaka
- Department of Gastroenterology, Gunma Prefectural Cancer Center, 617-1 Takabayashi nishi-machi, Ohta, Gunma, 373-8550, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, 36 Takamatsu-machi, Takasaki, Gunma, 370-0829, Japan
| | - Masanori Sekiguchi
- Department of Gastroenterology, Isesaki Municipal Hospital, 12-1 Tsunatori hon-machi, Isesaki, Gunma, 372-0817, Japan
| | - Kana Saito
- Department of Surgery, Japan Community Healthcare Organization Gunma Central Hospital, 1-7-13 Kouuncho, Maebashi, Gunma, 371-0025, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|