1
|
James C, Whitehead A, Plummer JT, Thompson R, Badal S. Failure to progress: breast and prostate cancer cell lines in developing targeted therapies. Cancer Metastasis Rev 2024; 43:1529-1548. [PMID: 39060878 DOI: 10.1007/s10555-024-10202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Developing anticancer drugs from preclinical to clinical takes approximately a decade in a cutting-edge biomedical lab and still 97% of most fail at clinical trials. Cell line usage is critical in expediting the advancement of anticancer therapies. Yet developing appropriate cell lines has been challenging and overcoming these obstacles whilst implementing a systematic approach of utilizing 3D models that recapitulate the tumour microenvironment is prudent. Using a robust and continuous supply of cell lines representing all ethnic groups from all locales is necessary to capture the evolving tumour landscape in culture. Next, the conversion of these models to systems on a chip that can by way of high throughput cytotoxic assays identify drug leads for clinical trials should fast-track drug development while markedly improving success rates. In this review, we describe the challenges that have hindered the progression of cell line models over seven decades and methods to overcome this. We outline the gaps in breast and prostate cancer cell line pathology and racial representation alongside their involvement in relevant drug development.
Collapse
Affiliation(s)
- Chelsi James
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica
| | - Akeem Whitehead
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica
| | | | - Rory Thompson
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica.
| |
Collapse
|
2
|
Yang Z, Qiao Y, Strøbech E, Morth JP, Walther G, Jørgensen TS, Lum KY, Peschel G, Rosenbaum MA, Previtali V, Clausen MH, Lukassen MV, Gotfredsen CH, Kurzai O, Weber T, Ding L. Alligamycin A, an antifungal β-lactone spiroketal macrolide from Streptomyces iranensis. Nat Commun 2024; 15:9259. [PMID: 39461983 PMCID: PMC11513958 DOI: 10.1038/s41467-024-53695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Fungal infections pose a great threat to public health and there are only four main types of antifungal drugs, which are often limited with toxicity, drug-drug interactions and antibiotic resistance. Streptomyces is an important source of antibiotics, represented by the clinical drug amphotericin B. Here we report the discovery of alligamycin A (1) as an antifungal compound from the rapamycin-producer Streptomyces iranensis through genome-mining, genetics and natural product chemistry approaches. Alligamycin A harbors a unique chemical scaffold with 13 chiral centers, featuring a β-lactone moiety, a [6,6]-spiroketal ring, and an unreported 7-oxo-octylmalonyl-CoA extender unit incorporated by a potential crotonyl-CoA carboxylase/reductase. It is biosynthesized by a type I polyketide synthase which is confirmed through CRISPR-based gene editing. Alligamycin A displayed potent antifungal effects against numerous clinically relevant filamentous fungi, including resistant Aspergillus and Talaromyces species. β-Lactone ring is essential for the antifungal activity since alligamycin B (2) with disruption in the ring abolished the antifungal effect. Proteomics analysis revealed alligamycin A potentially disrupts the integrity of fungal cell walls and induces the expression of stress-response proteins in Aspergillus niger. Discovery of the potent antifungal candidate alligamycin A expands the limited antifungal chemical space.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Grit Walther
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kah Yean Lum
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Viola Previtali
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Chen L, Xu YX, Wang YS, Ren YY, Chen YM, Zheng C, Xie T, Jia YJ, Zhou JL. Integrative Chinese-Western medicine strategy to overcome docetaxel resistance in prostate cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118265. [PMID: 38677579 DOI: 10.1016/j.jep.2024.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi-Min Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Department of Traditional Chinese Medicines, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ying-Jie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
4
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
5
|
Maleckis M, Wibowo M, Williams SE, Gotfredsen CH, Sigrist R, Souza LDO, Cowled MS, Charusanti P, Gren T, Saha S, Moreira JMA, Weber T, Ding L. Maramycin, a Cytotoxic Isoquinolinequinone Terpenoid Produced through Heterologous Expression of a Bifunctional Indole Prenyltransferase/Tryptophan Indole-Lyase in S. albidoflavus. ACS Chem Biol 2024; 19:1303-1310. [PMID: 38743035 DOI: 10.1021/acschembio.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.
Collapse
Affiliation(s)
- Matiss Maleckis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Sam E Williams
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs. Lyngby, Denmark
| | - Renata Sigrist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Luciano D O Souza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Sino-Danish Center for Education and Research (SDC), Aarhus University, Dalgas Avenue 4, Building 3410, 8000 Aarhus C, Denmark
| | - Michael S Cowled
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Subhasish Saha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - José M A Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
7
|
Mohamed MMM, Abboud MM, Maleckis M, Souza LDO, Moreira JMA, Gotfredsen CH, Weber T, Ding L. Pepticinnamins N, O, and P, Nonribosomal Peptides from the Soil-Derived Streptomyces mirabilis P8-A2. JOURNAL OF NATURAL PRODUCTS 2024; 87:1075-1083. [PMID: 38591246 DOI: 10.1021/acs.jnatprod.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cinnamoyl moiety containing nonribosomal peptides represented by pepticinnamin E are a growing family of natural products isolated from different Streptomyces species and possess diverse bioactivities. The soil bacterium Streptomyces mirabilis P8-A2 harbors a cryptic pepticinnamin biosynthetic gene cluster, producing azodyrecins as major products. Inactivation of the azodyrecin biosynthetic gene cluster by CRISPR-BEST base editing led to the activation and production of pepticinnamin E (1) and its analogues, pepticinnamins N, O, and P (2-4), the structures of which were determined by detailed NMR spectroscopy, HRMS data, and Marfey's reactions. These new compounds did not show a growth inhibitory effect against the LNCaP and C4-2B prostate cancer lines, respectively.
Collapse
Affiliation(s)
- Manar Magdy Mahmoud Mohamed
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Maria Mahmoud Abboud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Matiss Maleckis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Luciano D O Souza
- Sino-Danish Center for Education and Research, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - José M A Moreira
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
van der Putten E, Wosikowski K, Beijnen JH, Imre G, Freund CR. Ritonavir reverses resistance to docetaxel and cabazitaxel in prostate cancer cells with acquired resistance to docetaxel. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:3. [PMID: 38318527 PMCID: PMC10838382 DOI: 10.20517/cdr.2023.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Aim: Docetaxel is a microtubule-stabilizing drug used for the treatment of several cancers, including prostate cancer. Resistance to docetaxel can either occur through intrinsic resistance or develop under therapeutic pressure, i.e., acquired resistance. A possible explanation for the occurrence of acquired resistance to docetaxel is increased drug efflux via P-glycoprotein (P-gp) drug transporters. Methods: We have generated docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8 by exposing parental cell lines DU-145DOC and 22Rv1 to increasing levels of docetaxel. Gene expression levels between DU-145DOC10 and 22Rv1DOC8 were compared with those of their respective originator cell lines. Both parental and resistant cell lines were treated with the taxane drugs docetaxel and cabazitaxel in combination with the P-gp/CYP3A4 inhibitor ritonavir and the P-gp inhibitor elacridar. Results: In the docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8, the ABCB1 (P-gp) gene was highly up-regulated. Expression of the P-gp protein was also significantly increased in the docetaxel-resistant cell lines in a Western blotting assay. The addition of ritonavir to docetaxel resulted in a return of the sensitivity to docetaxel in the DU-145DOC10 and 22Rv1DOC8 to a level similar to the sensitivity in the originator cells. We found that these docetaxel-resistant cell lines could also be re-sensitized to cabazitaxel in a similar manner. In a Caco-2 P-gp transporter assay, functional inhibition of P-gp-mediated transport of docetaxel with ritonavir was demonstrated. Conclusion: Our results demonstrate that ritonavir restores sensitivity to both docetaxel and cabazitaxel in docetaxel-resistant cell lines, most likely by inhibiting P-gp-mediated drug efflux.
Collapse
Affiliation(s)
| | | | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam 1066 CX, the Netherlands
| | - Gábor Imre
- SOLVO Biotechnology, Budapest H-1117, Hungary
| | - Colin R. Freund
- Modra Pharmaceuticals B.V., Amsterdam 1083 HN, the Netherlands
| |
Collapse
|
9
|
Tu KJ, Roy SK, Keepers Z, Gartia MR, Shukla HD, Biswal NC. Docetaxel radiosensitizes castration-resistant prostate cancer by downregulating CAV-1. Int J Radiat Biol 2024; 100:256-267. [PMID: 37747697 DOI: 10.1080/09553002.2023.2263553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro. MATERIALS AND METHODS We used live/dead assays to determine the IC50 of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC50 DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively. RESULTS Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, p < .0001), DU-145 (1.64-fold, p < .05), and TRAMP-C1 (1.13-fold, p < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients. CONCLUSIONS Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Sanjit K Roy
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachery Keepers
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Manas R Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Hem D Shukla
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nrusingh C Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Thilakan AT, Nandakumar N, Balakrishnan AR, Pooleri GK, Nair SV, Sathy BN. Development and characterisation of suitably bioengineered microfibrillar matrix-based 3D prostate cancer model for in vitrodrug testing. Biomed Mater 2023; 18:065016. [PMID: 37738986 DOI: 10.1088/1748-605x/acfc8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Bioengineered 3D models that can mimic patient-specific pathologiesin vitroare valuable tools for developing and validating anticancer therapeutics. In this study, microfibrillar matrices with unique structural and functional properties were fabricated as 3D spherical and disc-shaped scaffolds with highly interconnected pores and the potential of the newly developed scaffolds for developing prostate cancer model has been investigated. The newly developed scaffolds showed improved cell retention upon seeding with cancer cells compared to conventional electrospun scaffolds. They facilitated rapid growth and deposition of cancer-specific extracellular matrix through-the-thickness of the scaffold. Compared to the prostate cancer cells grown in 2D culture, the newly developed prostate cancer model showed increased resistance to the chemodrug Docetaxel regardless of the drug concentration or the treatment frequency. A significant reduction in the cell number was observed within one week after the drug treatment in the 2D culture for both PC3 and patient-derived cells. Interestingly, almost 20%-30% of the cancer cells in the newly developed 3D model survived the drug treatment, and the patient-derived cells were more resistant than the tested cell line PC3. The results from this study indicate the potential of the newly developed prostate cancer model forin vitrodrug testing.
Collapse
Affiliation(s)
- Akhil T Thilakan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Niji Nandakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Arvind R Balakrishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ginil K Pooleri
- Department of Urology and Renal Transplantation, Amrita Institute of Medical Sciences and Research, Kochi, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Binulal N Sathy
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
11
|
Omoboyede V, Ibrahim O, Umar HI, Oke GA, Onile OS, Chukwuemeka PO. Computer-aided analysis of quercetin mechanism of overcoming docetaxel resistance in docetaxel-resistant prostate cancer. J Genet Eng Biotechnol 2023; 21:47. [PMID: 37099169 PMCID: PMC10133427 DOI: 10.1186/s43141-023-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Prostate cancer (PC) is a silent but potent killer among men. In 2018, PC accounted for more than 350, 000 death cases while more than 1.2 million cases were diagnosed. Docetaxel, a chemotherapeutic drug belonging to the taxane family of drugs, is one of the most potent drugs in combating advanced PC. However, PC cells often evolve resistance against the regimen. Hence, necessitating the search for complementary and alternative therapies. Quercetin, a ubiquitous phytocompound with numerous pharmacological properties, has been reported to reverse docetaxel resistance (DR) in docetaxel-resistant prostate cancer (DRPC). Therefore, this study aimed to explore the mechanism via which quercetin reverses DR in DRPC using an integrative functional network and exploratory cancer genomic data analyses. RESULTS The putative targets of quercetin were retrieved from relevant databases, while the differentially expressed genes (DEGs) in docetaxel-resistant prostate cancer (DRPC) were identified by analysing microarray data retrieved from the Gene Expression Omnibus (GEO) database. Subsequently, the protein-protein interaction (PPI) network of the overlapping genes between the DEGs and quercetin targets was retrieved from STRING, while the hub genes, which represent the key interacting genes of the network, were identified using the CytoHubba plug-in of Cytoscape. The hub genes were further subjected to a comprehensive analysis aimed at identifying their contribution to the immune microenvironment and overall survival (OS) of PC patients, while their alterations in PC patients were also revealed. The biological roles played by the hub genes in chemotherapeutic resistance include the positive regulation of developmental process, positive regulation of gene expression, negative regulation of cell death, and epithelial cell differentiation among others. CONCLUSION Further analysis revealed epidermal growth factor receptor (EGFR) as the most pertinent target of quercetin in reversing DR in DRPC, while molecular docking simulation revealed an effective interaction between quercetin and EGFR. Ultimately, this study provides a scientific rationale for the further exploration of quercetin as a combinational therapy with docetaxel.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria.
- Computer-Aided Therapeutics Laboratory (CATL), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria.
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria.
| | - Ochapa Ibrahim
- Computer-Aided Therapeutics Laboratory (CATL), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology (SAAT), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| | - Grace Ayomide Oke
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology (SAAT), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| | - Olugbenga Samson Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Prosper Obed Chukwuemeka
- Computer-Aided Therapeutics Laboratory (CATL), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Computer Aided Therapeutics Discovery and Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, P.M.B 704, Nigeria
| |
Collapse
|
12
|
Rocha SM, Nascimento D, Coelho RS, Cardoso AM, Passarinha LA, Socorro S, Maia CJ. STEAP1 Knockdown Decreases the Sensitivity of Prostate Cancer Cells to Paclitaxel, Docetaxel and Cabazitaxel. Int J Mol Sci 2023; 24:ijms24076643. [PMID: 37047621 PMCID: PMC10095014 DOI: 10.3390/ijms24076643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Daniel Nascimento
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Rafaella S. Coelho
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Margarida Cardoso
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| |
Collapse
|
13
|
Robinson H, Roberts MJ, Gardiner RA, Hill MM. Extracellular vesicles for precision medicine in prostate cancer - Is it ready for clinical translation? Semin Cancer Biol 2023; 89:18-29. [PMID: 36681206 DOI: 10.1016/j.semcancer.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Biofluid-based biomarker tests hold great promise for precision medicine in prostate cancer (PCa) clinical practice. Extracellular vesicles (EV) are established as intercellular messengers in cancer development with EV cargos, including protein and nucleic acids, having the potential to serve as biofluid-based biomarkers. Recent clinical studies have begun to evaluate EV-based biomarkers for PCa diagnosis, prognosis, and disease/therapy resistance monitoring. Promising results have led to PCa EV biomarker validation studies which are currently underway with the next challenge being translation to robust clinical assays. However, EV research studies generally use low throughput EV isolation methods and costly molecular profiling technologies that are not suitable for clinical assays. Here, we consider the technical hurdles in translating EV biomarker research findings into precise and cost-effective clinical biomarker assays. Novel microfluidic devices coupling EV extraction with sensitive antibody-based biomarker detection are already being explored for point-of-care applications for rapid provision in personalised medicine approaches.
Collapse
Affiliation(s)
- Harley Robinson
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia.
| | - Matthew J Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Robert A Gardiner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Davies CR, Guo T, Burke E, Stankiewicz E, Xu L, Mao X, Scandura G, Rajan P, Tipples K, Alifrangis C, Wimalasingham AG, Galazi M, Crusz S, Powles T, Grey A, Oliver T, Kudahetti S, Shaw G, Berney D, Shamash J, Lu YJ. The potential of using circulating tumour cells and their gene expression to predict docetaxel response in metastatic prostate cancer. Front Oncol 2023; 12:1060864. [PMID: 36727071 PMCID: PMC9885040 DOI: 10.3389/fonc.2022.1060864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Docetaxel improves overall survival (OS) in castration-resistant prostate cancer (PCa) (CRPC) and metastatic hormone-sensitive PCa (mHSPC). However, not all patients respond due to inherent and/or acquired resistance. There remains an unmet clinical need for a robust predictive test to stratify patients for treatment. Liquid biopsy of circulating tumour cell (CTCs) is minimally invasive, can provide real-time information of the heterogeneous tumour and therefore may be a potentially ideal docetaxel response prediction biomarker. Objective In this study we investigate the potential of using CTCs and their gene expression to predict post-docetaxel tumour response, OS and progression free survival (PFS). Methods Peripheral blood was sampled from 18 mCRPC and 43 mHSPC patients, pre-docetaxel treatment, for CTC investigation. CTCs were isolated using the epitope independent Parsortix® system and gene expression was determined by multiplex RT-qPCR. We evaluated CTC measurements for post-docetaxel outcome prediction using receiver operating characteristics and Kaplan Meier analysis. Results Detection of CTCs pre-docetaxel was associated with poor patient outcome post-docetaxel treatment. Combining total-CTC number with PSA and ALP predicted lack of partial response (PR) with an AUC of 0.90, p= 0.037 in mCRPC. A significantly shorter median OS was seen in mCRPC patients with positive CTC-score (12.80 vs. 37.33 months, HR= 5.08, p= 0.0005), ≥3 total-CTCs/7.5mL (12.80 vs. 37.33 months, HR= 3.84, p= 0.0053), ≥1 epithelial-CTCs/7.5mL (14.30 vs. 37.33 months, HR= 3.89, p= 0.0041) or epithelial to mesenchymal transitioning (EMTing)-CTCs/7.5mL (11.32 vs. 32.37 months, HR= 6.73, p= 0.0001). Significantly shorter PFS was observed in patients with ≥2 epithelial-CTCs/7.5mL (7.52 vs. 18.83 months, HR= 3.93, p= 0.0058). mHSPC patients with ≥5 CTCs/7.5mL had significantly shorter median OS (24.57 vs undefined months, HR= 4.14, p= 0.0097). In mHSPC patients, expression of KLK2, KLK4, ADAMTS1, ZEB1 and SNAI1 was significantly associated with shorter OS and/or PFS. Importantly, combining CTC measurements with clinical biomarkers increased sensitivity and specificity for prediction of patient outcome. Conclusion While it is clear that CTC numbers and gene expression were prognostic for PCa post-docetaxel treatment, and CTC subtype analysis may have additional value, their potential predictive value for docetaxel chemotherapy response needs to be further investigated in large patient cohorts.
Collapse
Affiliation(s)
- Caitlin R. Davies
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tianyu Guo
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Cell Biology and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Edwina Burke
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Central Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lei Xu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Glenda Scandura
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Karen Tipples
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom
| | - Constantine Alifrangis
- University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom,Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | | | - Myria Galazi
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Shanthini Crusz
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Thomas Powles
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alistair Grey
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tim Oliver
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sakunthala Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Greg Shaw
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Daniel Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,*Correspondence: Yong-Jie Lu,
| |
Collapse
|
15
|
Linke D, Donix L, Peitzsch C, Erb HHH, Dubrovska A, Pfeifer M, Thomas C, Fuessel S, Erdmann K. Comprehensive Evaluation of Multiple Approaches Targeting ABCB1 to Resensitize Docetaxel-Resistant Prostate Cancer Cell Lines. Int J Mol Sci 2022; 24:ijms24010666. [PMID: 36614114 PMCID: PMC9820728 DOI: 10.3390/ijms24010666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Docetaxel (DTX) is a mainstay in the treatment of metastatic prostate cancer. Failure of DTX therapy is often associated with multidrug resistance caused by overexpression of efflux membrane transporters of the ABC family such as the glycoprotein ABCB1. This study investigated multiple approaches targeting ABCB1 to resensitize DTX-resistant (DTXR) prostate cancer cell lines. In DU145 DTXR and PC-3 DTXR cells as well as age-matched parental controls, the expression of selected ABC transporters was analyzed by quantitative PCR, Western blot, flow cytometry and immunofluorescence. ABCB1 effluxing activity was studied using the fluorescent ABCB1 substrate rhodamine 123. The influence of ABCB1 inhibitors (elacridar, tariquidar), ABCB1-specific siRNA and inhibition of post-translational glycosylation on DTX tolerance was assessed by cell viability and colony formation assays. In DTXR cells, only ABCB1 was highly upregulated, which was accompanied by a strong effluxing activity and additional post-translational glycosylation of ABCB1. Pharmacological inhibition and siRNA-mediated knockdown of ABCB1 completely resensitized DTXR cells to DTX. Inhibition of glycosylation with tunicamycin affected DTX resistance partially in DU145 DTXR cells, which was accompanied by a slight intracellular accumulation and decreased effluxing activity of ABCB1. In conclusion, DTX resistance can be reversed by various strategies with small molecule inhibitors representing the most promising and feasible approach.
Collapse
Affiliation(s)
- Dinah Linke
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lukas Donix
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), 01307 Dresden, Germany
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Manuel Pfeifer
- Institute of Legal Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-14544
| | - Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
16
|
Special Issue: "New Diagnostic and Therapeutic Tools against Multidrug-Resistant Tumors (STRATAGEM Special Issue, EU-COST CA17104)". Cancers (Basel) 2022; 14:cancers14225491. [PMID: 36428584 PMCID: PMC9688366 DOI: 10.3390/cancers14225491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer drug resistance, either intrinsic or acquired, often causes treatment failure and increased mortality [...].
Collapse
|
17
|
Current and emerging therapies for neuroendocrine prostate cancer. Pharmacol Ther 2022; 238:108255. [DOI: 10.1016/j.pharmthera.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
|
18
|
Findakly D, Duong T, Shimon T, Wang J. Treatment-Refractory, Castration-Resistant Prostate Cancer With Liver Metastasis: A Promising Modality of Therapy. Cureus 2022; 14:e26881. [PMID: 35978760 PMCID: PMC9375954 DOI: 10.7759/cureus.26881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Although significant advances in the treatment of prostate cancer (PC) have recently been made, the treatment of metastatic liver disease remains challenging. Recent advances have led to multiple novel therapies and multi-treatment approaches combining systemic and locoregional modalities, such as thermal ablation, representing a promising strategy that has received attention in recent years. Nevertheless, no standard locoregional treatment regimens exist for the management of liver metastases of PC. In addition, regional therapy alone is unlikely to provide durable cancer control. Here, we report for the first time a successful treatment of hepatic metastases of PC using stereotactic image-guided percutaneous microwave ablation and the poly (ADP-ribose) polymerase-1 inhibitor, olaparib.
Collapse
|
19
|
Lima TS, Souza LO, Iglesias-Gato D, Elversang J, Jørgensen FS, Kallunki T, Røder MA, Brasso K, Moreira JM. Itraconazole Reverts ABCB1-Mediated Docetaxel Resistance in Prostate Cancer. Front Pharmacol 2022; 13:869461. [PMID: 35721223 PMCID: PMC9203833 DOI: 10.3389/fphar.2022.869461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Docetaxel (DTX) was the first chemotherapeutic agent to demonstrate significant efficacy in the treatment of men with metastatic castration-resistant prostate cancer. However, response to DTX is generally short-lived, and relapse eventually occurs due to emergence of drug-resistance. We previously established two DTX-resistant prostate cancer cell lines, LNCaPR and C4-2BR, derived from the androgen‐dependent LNCaP cell line, and from the LNCaP lineage-derived androgen-independent C4-2B sub-line, respectively. Using an unbiased drug screen, we identify itraconazole (ITZ), an oral antifungal drug, as a compound that can efficiently re-sensitize drug-resistant LNCaPR and C4-2BR prostate cancer cells to DTX treatment. ITZ can re-sensitize multiple DTX-resistant cell models, not only in prostate cancer derived cells, such as PC-3 and DU145, but also in docetaxel-resistant breast cancer cells. This effect is dependent on expression of ATP-binding cassette (ABC) transporter protein ABCB1, also known as P-glycoprotein (P-gp). Molecular modeling of ITZ bound to ABCB1, indicates that ITZ binds tightly to the inward-facing form of ABCB1 thereby inhibiting the transport of DTX. Our results suggest that ITZ may provide a feasible approach to re-sensitization of DTX resistant cells, which would add to the life-prolonging effects of DTX in men with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Thiago S. Lima
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Luciano O. Souza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Sino-Danish Center for Education and Research, Aarhus University, Aarhus, Denmark
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanna Elversang
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuula Kallunki
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cancer Invasion and Resistance, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Martin A. Røder
- Department of Urology, Copenhagen Prostate Cancer Center, Center for Cancer and Organ Disease—Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Brasso
- Department of Urology, Copenhagen Prostate Cancer Center, Center for Cancer and Organ Disease—Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - José M.A. Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: José M.A. Moreira,
| |
Collapse
|
20
|
Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022; 14:pharmaceutics14040718. [PMID: 35456552 PMCID: PMC9030829 DOI: 10.3390/pharmaceutics14040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Nicola Pavan
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Carlo Trombetta
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, I-34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
- Correspondence: ; Tel.: +39-040-399-3227
| |
Collapse
|
21
|
Schlafens: Emerging Proteins in Cancer Cell Biology. Cells 2021; 10:cells10092238. [PMID: 34571887 PMCID: PMC8465726 DOI: 10.3390/cells10092238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.
Collapse
|