1
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Lu HI, Chen KL, Yen CY, Chen CY, Chien TM, Shu CW, Chen YH, Jeng JH, Chen BH, Chang HW. Michelia compressa-Derived Santamarine Inhibits Oral Cancer Cell Proliferation via Oxidative Stress-Mediated Apoptosis and DNA Damage. Pharmaceuticals (Basel) 2024; 17:230. [PMID: 38399445 PMCID: PMC10892349 DOI: 10.3390/ph17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The anti-oral cancer effects of santamarine (SAMA), a Michelia compressa var. compressa-derived natural product, remain unclear. This study investigates the anticancer effects and acting mechanism of SAMA against oral cancer (OC-2 and HSC-3) in parallel with normal (Smulow-Glickman; S-G) cells. SAMA selectively inhibits oral cancer cell viability more than normal cells, reverted by the oxidative stress remover N-acetylcysteine (NAC). The evidence of oxidative stress generation, such as the induction of reactive oxygen species (ROS) and mitochondrial superoxide and the depletion of mitochondrial membrane potential and glutathione, further supports this ROS-dependent selective antiproliferation. SAMA arrests oral cancer cells at the G2/M phase. SAMA triggers apoptosis (annexin V) in oral cancer cells and activates caspases 3, 8, and 9. SAMA enhances two types of DNA damage in oral cancer cells, such as γH2AX and 8-hydroxy-2-deoxyguanosine. Moreover, all of these anticancer mechanisms of SAMA are more highly expressed in oral cancer cells than in normal cells in concentration and time course experiments. These above changes are attenuated by NAC, suggesting that SAMA exerts mechanisms of selective antiproliferation that depend on oxidative stress while maintaining minimal cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Hsin-I Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kuan-Liang Chen
- Department of Dentistry, Chi-Mei Medical Center, Tainan 71004, Taiwan; (K.-L.C.); (C.-Y.Y.)
| | - Ching-Yu Yen
- Department of Dentistry, Chi-Mei Medical Center, Tainan 71004, Taiwan; (K.-L.C.); (C.-Y.Y.)
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yu-Hsuan Chen
- Department of Biomedical Science and Environmental Biology, Bachelor Program of Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, Bachelor Program of Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Coveñas R, Rodríguez FD, Robinson P, Muñoz M. The Repurposing of Non-Peptide Neurokinin-1 Receptor Antagonists as Antitumor Drugs: An Urgent Challenge for Aprepitant. Int J Mol Sci 2023; 24:15936. [PMID: 37958914 PMCID: PMC10650658 DOI: 10.3390/ijms242115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.
Collapse
Affiliation(s)
- Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
| | - Francisco D. Rodríguez
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Miguel Muñoz
- Pediatric Intensive Care Unit, Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Seville, Spain;
| |
Collapse
|
4
|
Restaino AC, Walz A, Vermeer SJ, Barr J, Kovács A, Fettig RR, Vermeer DW, Reavis H, Williamson CS, Lucido CT, Eichwald T, Omran DK, Jung E, Schwartz LE, Bell M, Muirhead DM, Hooper JE, Spanos WC, Drapkin R, Talbot S, Vermeer PD. Functional neuronal circuits promote disease progression in cancer. SCIENCE ADVANCES 2023; 9:eade4443. [PMID: 37163587 PMCID: PMC10171812 DOI: 10.1126/sciadv.ade4443] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jeffrey Barr
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Attila Kovács
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Robin R. Fettig
- Basic Biomedical Sciences Program, University of South Dakota, Vermillion, SD, USA
| | - Daniel W. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Hunter Reavis
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Tuany Eichwald
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Dalia K. Omran
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Bell
- Sanford Gynecologic Oncology, Sanford Health, Sioux Falls, SD, USA
| | | | - Jody E. Hooper
- Legacy Gift Rapid Autopsy Program, Johns Hopkins University, Baltimore, MD, USA
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Sanford Ear, Nose and Throat Clinic, Sioux Falls, SD, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastien Talbot
- Karolinska Institutet, Department of Pharmacology and Physiology, Solna, Sweden
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| |
Collapse
|
5
|
González-Moles MÁ, Keim-del Pino C, Ramos-García P. Hallmarks of Cancer Expression in Oral Lichen Planus: A Scoping Review of Systematic Reviews and Meta-Analyses. Int J Mol Sci 2022; 23:13099. [PMID: 36361889 PMCID: PMC9658487 DOI: 10.3390/ijms232113099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/05/2023] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease of unknown etiology and likely autoimmune nature that is currently considered an oral potentially malignant disorder, implying that patients suffering from this process are at risk of developing oral cancer in their lifetime. The molecular alterations that develop in OLP and that make the affected oral epithelium predisposed to malignancy are unknown, although, as in other autoimmune diseases (ulcerative colitis, primary biliary cirrhosis, etc.), they may be linked to oncogenesis-promoting effects mediated by the inflammatory infiltrate. So far there is no in-depth knowledge on how these hallmarks of cancer are established in the cells of the oral epithelium affected by OLP. In this scoping review of systematic reviews and meta-analyses the state of evidence based knowledge in this field is presented, to point out gaps of evidence and to indicate future lines of research. MEDLINE, Embase, Cochrane Library and Dare were searched for secondary-level studies published before October 2022. The results identified 20 systematic reviews and meta-analyses critically appraising the hallmarks tumor-promoting inflammation (n = 17, 85%), sustaining proliferative signaling (n = 2, 10%), and evading growth suppressors (n = 1, 5%). No evidence was found for the other hallmarks of cancer in OLP. In conclusion, OLP malignization hypothetically derives from the aggressions of the inflammatory infiltrate and a particular type of epithelial response based on increased epithelial proliferation, evasion of growth-suppressive signals and lack of apoptosis. Future evidence-based research is required to support this hypothesis.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Carmen Keim-del Pino
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
6
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
7
|
Coveñas R, Muñoz M. Involvement of the Substance P/Neurokinin-1 Receptor System in Cancer. Cancers (Basel) 2022; 14:3539. [PMID: 35884599 PMCID: PMC9317685 DOI: 10.3390/cancers14143539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
New, promising molecular targets to block tumor development and new compounds capable of specifically destroying cancer cells must be urgently investigated [...].
Collapse
Affiliation(s)
- Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Muñoz
- Pediatric Intensive Care Unit, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| |
Collapse
|
8
|
Esteban F, Ramos-García P, Muñoz M, González-Moles MÁ. Substance P and Neurokinin 1 Receptor in Chronic Inflammation and Cancer of the Head and Neck: A Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010375. [PMID: 35010633 PMCID: PMC8751191 DOI: 10.3390/ijerph19010375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
Head and neck cancer is a growing worldwide public health problem, accounting for approximately 1,500,000 new cases and 500,000 deaths annually. Substance P (SP) is a peptide of the tachykinin family, which has roles related to a large number of physiological mechanisms in humans. The implications of SP in carcinogenesis have recently been reported through the stimulation of the neurokinin 1 receptor (NK1R), or directly, through the effects derived from the constitutive activation of NK1R. Consequently, SP/NK1R seems to play relevant roles in cancer, upregulating cell proliferation, cell migration and chronic inflammation, among other oncogenic actions. Furthermore, there is growing evidence pointing to a central role for SP in tumour progression, singularly so in laryngeal and oral squamous cell carcinomas. The current narrative review of the literature focuses on the relationship between the SP/NK1R system and chronic inflammation and cancer in the head-and-neck region. We described a role for SP/NK1R in the transition from chronic inflammation of the head and neck mucosa, to preneoplastic and neoplastic transformation and progression.
Collapse
Affiliation(s)
- Francisco Esteban
- Department of Otolaryngology, Hospital Universitario Virgen del Rocío, University of Sevilla, 41004 Sevilla, Spain;
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Correspondence:
| | - Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla, Spain;
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
| |
Collapse
|
9
|
Prognostic Gene Signature for Squamous Cell Carcinoma with a Higher Risk for Treatment Failure and Accelerated MEK-ERK Pathway Activity. Cancers (Basel) 2021; 13:cancers13205182. [PMID: 34680330 PMCID: PMC8534038 DOI: 10.3390/cancers13205182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Squamous cell carcinoma (SCC) is the most prevalent type of human cancer worldwide and represents the majority of head and neck tumors. As SCC from aerodigestive or genitourinary tracts share not only common etiology and histological features but also molecular patterns, the major objectives of this study were the establishment of a pan-SCC-related prognostic gene signature by an integrative analysis of multi-omics data and the elucidation of underlying oncogenic pathway activities as potential vulnerabilities for a more efficient and less toxic therapy. Our approach delivers a reliable molecular classifier to identify HNSCC and other SCC patients at higher risk for treatment failure with tumors characterized by a more prominent MAPK activity, who might benefit from a targeted treatment with MEK inhibitors. Abstract Squamous cell carcinoma (SCC) is the most prevalent histological type of human cancer, including head and neck squamous cell carcinoma (HNSCC). However, reliable prognostic gene signatures for SCC and underlying genetic and/or epigenetic principles are still unclear. We identified 37 prognostic candidate genes by best cutoff computation based on survival in a pan-SCC cohort (n = 1334) of The Cancer Genome Atlas (TCGA), whose expression stratified not only the pan-SCC cohort but also independent HNSCC validation cohorts into three distinct prognostic subgroups. The most relevant prognostic genes were prioritized by a Least Absolute Shrinkage and Selection Operator Cox regression model and were used to identify subgroups with high or low risks for unfavorable survival. An integrative analysis of multi-omics data identified FN1, SEMA3A, CDH2, FBN1, COL5A1, and ADAM12 as key nodes in a regulatory network related to the prognostic phenotype. An in-silico drug screen predicted two MEK inhibitors (Trametinib and Selumetinib) as effective compounds for high-risk SCC based on the Cancer Cell Line Encyclopedia, which is supported by a higher p-MEK1/2 immunohistochemical staining of high-risk HNSCC. In conclusion, our data identified a molecular classifier for high-risk HNSCC as well as other SCC patients, who might benefit from treatment with MEK inhibitors.
Collapse
|
10
|
Substance P Antagonism as a Novel Therapeutic Option to Enhance Efficacy of Cisplatin in Triple Negative Breast Cancer and Protect PC12 Cells against Cisplatin-Induced Oxidative Stress and Apoptosis. Cancers (Basel) 2021; 13:cancers13153871. [PMID: 34359773 PMCID: PMC8345440 DOI: 10.3390/cancers13153871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022] Open
Abstract
Although cisplatin is very effective as a treatment strategy in triple-negative breast cancer (TNBC), it has unwarranted outcomes owing to recurrence, chemoresistance and neurotoxicity. There is critically important to find new, effective and safe therapeutics for TNBC. We determined if SP-receptor antagonism in combination with cisplatin may serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC. We used a neuronal cell line (PC12) and two TNBC cell lines (Sum 185 and Sum 159) for these studies. We determined that the levels of cells expressing the high-affinity SP-receptor (neurokinin 1 receptor (NK1R)), as determined by flow-cytometry was significantly elevated in response to cisplatin in all three cells. We determined that treatment with aprepitant, an SP-receptor antagonist decreased cisplatin-induced, loss of viability (studied by MTT assay), production of reactive oxygen species (by DCFDA assay) and apoptosis (by flow-cytometry) in PC12 cells while it was increased in the two TNBC cells. Furthermore, we demonstrated that important genes associated with metastases, inflammation, chemoresistance and cell cycle progression are attenuated by SP-receptor antagonism in the TNBC cell line, Sum 185. These studies implicate that SP-receptor antagonism in combination with cisplatin may possibly serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC.
Collapse
|