1
|
Yao K, Zhan XY, Feng M, Yang KF, Zhou MS, Jia H. Furin, ADAM, and γ-secretase: Core regulatory targets in the Notch pathway and the therapeutic potential for breast cancer. Neoplasia 2024; 57:101041. [PMID: 39208688 PMCID: PMC11399603 DOI: 10.1016/j.neo.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The activation of the Notch pathway promotes the occurrence and progression of breast cancer. The Notch signal plays different roles in different molecular subtypes of breast cancer. In estrogen receptor-positive (ER+) breast cancer, the Notch pathway regulates the activity of estrogen receptors. In human epidermal growth factor receptor 2-positive (HER2+) breast cancer, crosstalk between Notch and HER2 enhances HER2 signal expression. In triple-negative breast cancer (TNBC), Notch pathway activation is closely linked to tumor invasion and drug resistance. This article offers a comprehensive review of the structural domains, biological functions, and key targets of Notch with a specific focus on the roles of Furin protease, ADAM metalloprotease, and γ-secretase in breast cancer and their potential as therapeutic targets. We discuss the functions and mutual regulatory mechanisms of these proteinases in the Notch pathway as well as other potential targets in the Notch pathway, such as the glycosylation process and key transcription factors. This article also introduces new approaches in the treatment of breast cancer, with a special focus on the molecular characteristics and treatment response differences of different subtypes. We propose that the core regulatory molecules of the Notch pathway may become key targets for development of personalized treatment, which may significantly improve treatment outcomes and prognosis for patients with breast cancer.
Collapse
Affiliation(s)
- Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiang-Yi Zhan
- School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; Science and Experimental Research Center of Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Hui Jia
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| |
Collapse
|
2
|
Smitha T, Thomas A. Is diabetes a real susceptibility for SARS-CoV-2 oral manifestation? J Oral Maxillofac Pathol 2023; 27:715-719. [PMID: 38304492 PMCID: PMC10829469 DOI: 10.4103/jomfp.jomfp_208_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 02/03/2024] Open
Abstract
Background Furin, a polybasic cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndromes like diabetes. Its cleavage action is an essential activation step for the SARS-CoV-2 attachment site at the junction of S1 and S2, the two subunits of the spike. This allows effective cleavage by furin and has a role in determining viral infectivity and host range. The increased expression of the furin enzyme in the saliva is remarkable enough to be noted as a susceptibility factor for diabetic patients. Aim of the Study The present study focuses on the qualitative assessment of the furin enzyme through an immunological ELISA test. Materials and Methods Used The study consisted of three groups, each of whom was a COVID-19 recovered patient (n = 20), a diabetic patient (n = 20), and a healthy patient (n = 20). Result The study assessed significantly increased levels of the furin enzyme generally in diabetic patients and COVID-19 recovered patients as compared to the healthy control group. Conclusion The estimation of furin in saliva still holds the possibility of being a prognostic marker in many COVID-19 infected patients. Further evidence-based studies are required to establish the same.
Collapse
Affiliation(s)
- T. Smitha
- Department of Oral and Maxillofacial Pathology, V.S Dental College and hospital, Bangalore
| | - Anela Thomas
- Department of Oral and Maxillofacial Pathology, V.S Dental College and hospital, Bangalore
| |
Collapse
|
3
|
Kane JF, Johnson RW. Re-Evaluating the Role of PTHrP in Breast Cancer. Cancers (Basel) 2023; 15:2670. [PMID: 37345007 PMCID: PMC10216606 DOI: 10.3390/cancers15102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Parathyroid-hormone-related protein (PTHrP) is a protein with a long history of association with bone metastatic cancers. The paracrine signaling of PTHrP through the parathyroid hormone receptor (PTHR1) facilitates tumor-induced bone destruction, and PTHrP is known as the primary driver of humoral hypercalcemia of malignancy. In addition to paracrine signaling, PTHrP is capable of intracrine signaling independent of PTHR1 binding, which is essential for cytokine-like functions in normal physiological conditions in a variety of tissue types. Pre-clinical and clinical studies evaluating the role of PTHrP in breast cancer have yielded contradictory conclusions, in some cases indicating the protein is tumor suppressive, and in other studies, pro-growth. This review discusses the possible molecular basis for the disharmonious prognostic indications of these studies and highlights the implications of the paracrine, intracrine, and nuclear functions of the protein. This review also examines the current understanding of the functional domains of PTHrP and re-evaluates their role in the unique context of the breast cancer environment. This review will expand on the current understanding of PTHrP by attempting to reconcile the functional domains of the protein with its intracrine signaling in cancer.
Collapse
Affiliation(s)
- Jeremy F. Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Sanchez-Collado J, Nieto-Felipe J, Jardin I, Bhardwaj R, Berna-Erro A, Salido GM, Smani T, Hediger MA, Lopez JJ, Rosado JA. Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation. Cancers (Basel) 2022; 15:cancers15010203. [PMID: 36612199 PMCID: PMC9818078 DOI: 10.3390/cancers15010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Gines M. Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
- Correspondence: Correspondence: (J.J.L.); (J.A.R.)
| |
Collapse
|
5
|
Pernot S, Evrard S, Khatib AM. The Give-and-Take Interaction Between the Tumor Microenvironment and Immune Cells Regulating Tumor Progression and Repression. Front Immunol 2022; 13:850856. [PMID: 35493456 PMCID: PMC9043524 DOI: 10.3389/fimmu.2022.850856] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
A fundamental concern of the majority of cancer scientists is related to the identification of mechanisms involved in the evolution of neoplastic cells at the cellular and molecular level and how these processes are able to control cancer cells appearance and death. In addition to the genome contribution, such mechanisms involve reciprocal interactions between tumor cells and stromal cells within the tumor microenvironment (TME). Indeed, tumor cells survival and growth rely on dynamic properties controlling pro and anti-tumorigenic processes. The anti-tumorigenic function of the TME is mainly regulated by immune cells such as dendritic cells, natural killer cells, cytotoxic T cells and macrophages and normal fibroblasts. The pro-tumorigenic function is also mediated by other immune cells such as myeloid-derived suppressor cells, M2-tumor-associated macrophages (TAMs) and regulatory T (Treg) cells, as well as carcinoma-associated fibroblasts (CAFs), adipocytes (CAA) and endothelial cells. Several of these cells can show both, pro- and antitumorigenic activity. Here we highlight the importance of the reciprocal interactions between tumor cells and stromal cells in the self-centered behavior of cancer cells and how these complex cellular interactions control tumor progression and repression.
Collapse
Affiliation(s)
- Simon Pernot
- Reprograming Tumor Activity and Associated Microenvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-Unité Mixte de Recherche (UMR) 1312 Inserm, Pessac, France
| | | | - Abdel-Majid Khatib
- Reprograming Tumor Activity and Associated Microenvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-Unité Mixte de Recherche (UMR) 1312 Inserm, Pessac, France.,Institut Bergonié, Bordeaux, France
| |
Collapse
|
6
|
Descarpentrie J, Araúzo-Bravo MJ, He Z, François A, González Á, Garcia-Gallastegi P, Badiola I, Evrard S, Pernot S, Creemers JWM, Khatib AM. Role of Furin in Colon Cancer Stem Cells Malignant Phenotype and Expression of LGR5 and NANOG in KRAS and BRAF-Mutated Colon Tumors. Cancers (Basel) 2022; 14:1195. [PMID: 35267511 PMCID: PMC8909039 DOI: 10.3390/cancers14051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Proprotein convertases or PCs are known to regulate the malignant phenotype of colon cancer cells by different mechanisms, but their effects on cancer stem cells (CSCs) have been less widely investigated. Here, we report that PCs expression is altered in colon CSCs, and the inhibition of their activity reduced colon CSCs growth, survival, and invasion in three-dimensional spheroid cultures. In vivo, repression of PCs activity by the general PC inhibitors α1-PDX, Spn4A, or decanoyl-RVKR-chloromethylketone (CMK) significantly reduced tumor expression levels of the stem cell markers LGR5 and NANOG that are associated with reduced tumor xenografts. Further analysis revealed that reduced tumor growth mediated by specific silencing of the convertase Furin in KRAS or BRAF mutated-induced colon tumors was associated with reduced expression of LGR5 and NANOG compared to wild-type KRAS and BRAF tumors. Analysis of various calcium regulator molecules revealed that while the calcium-transporting ATPase 4 (ATP2B4) is downregulated in all the Furin-silenced colon cancer cells, the Ca2+-mobilizing P2Y receptors, was specifically repressed in BRAF mutated cells and ORAI1 and CACNA1H in KRAS mutated cells. Taken together, our findings indicate that PCs play an important role in the malignant phenotype of colon CSCs and stem cell markers' expression and highlight PCs repression, particularly of Furin, to target colon tumors with KRAS or BRAF mutation.
Collapse
Affiliation(s)
- Jean Descarpentrie
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastian, Spain;
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing 400042, China;
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Alexia François
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Álvaro González
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Patricia Garcia-Gallastegi
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Serge Evrard
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| | | | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| |
Collapse
|
7
|
SARAF and EFHB Modulate Store-Operated Ca 2+ Entry and Are Required for Cell Proliferation, Migration and Viability in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13164160. [PMID: 34439314 PMCID: PMC8393677 DOI: 10.3390/cancers13164160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is among the most common malignancies in women. From the molecular point of view, breast cancer can be grouped into different categories, including the luminal (estrogen receptor positive (ER+)) and triple negative subtypes, which show distinctive features and, thus, are sensitive to different therapies. Breast cancer cells are strongly dependent on Ca2+ influx. Store-operated Ca2+ entry (SOCE) has been found to support a variety of cancer hallmarks including cell viability, proliferation, migration, and metastasis. The Ca2+ channels of the Orai family and the endoplasmic reticulum Ca2+ sensor STIM1 are the essential components of SOCE, but the extent of Ca2+ influx is fine-tuned by several regulatory proteins, such as the STIM1 modulators SARAF and EFHB. Here, we show that the expression and/or function of SARAF and EFHB is altered in breast cancer cells and both proteins are required for cell proliferation, migration, and viability. EFHB expression is upregulated in luminal and triple negative breast cancer (TNBC) cells and is essential for full SOCE in these cells. SARAF expression was found to be similar in breast cancer and pre-neoplastic breast epithelial cells, and SARAF knockdown was found to result in enhanced SOCE in pre-neoplastic and TNBC cells. Interestingly, silencing SARAF expression in ER+ MCF7 cells led to attenuation of SOCE, thus suggesting a distinctive role for SARAF in this cell type. Finally, we used a combination of approaches to show that molecular knockdown of SARAF and EFHB significantly attenuates the ability of breast cancer cells to proliferate and migrate, as well as cell viability. In aggregate, SARAF and EFHB are required for the fine modulation of SOCE in breast cancer cells and play an important role in the maintenance of proliferation, migration, and viability in these cells.
Collapse
|
8
|
Liet B, Nys N, Siegfried G. Elabela/toddler: New peptide with a promising future in cancer diagnostic and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119065. [PMID: 34090960 DOI: 10.1016/j.bbamcr.2021.119065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Elabela/toddler is the second endogenous ligand recently identified after Apelin, that binds to the G protein-coupled receptor APJ. Elabela is a 54-amino acid peptide initially identified in fish and human genomes and classified as noncoding. This precursor can be cleaved to shorter sequences (32, 21, and 11 amino acids), which bind and activate APJ, and can be blocked by APJ antagonists. Contrary to Apelin and APJ, widely distributed in organs and tissues, Elabela expression is more restricted, and different studies have revealed the potential role of Elabela in cancers. This review summarizes the current studies focusing on the role of Elabela in different cancers.
Collapse
Affiliation(s)
- Benjamin Liet
- Institut National de la Santé et de la Recherche Médicale U1029 LAMC, F-33400 Talence, France; Université de Bordeaux F-33400, Talence, France
| | - Nicolas Nys
- Institut National de la Santé et de la Recherche Médicale U1029 LAMC, F-33400 Talence, France; Université de Bordeaux F-33400, Talence, France
| | - Geraldine Siegfried
- Institut National de la Santé et de la Recherche Médicale U1029 LAMC, F-33400 Talence, France; Université de Bordeaux F-33400, Talence, France.
| |
Collapse
|