1
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
2
|
Zhang J, Zang X, Jiao P, Wu J, Meng W, Zhao L, Lv Z. Alterations of Ceramides, Acylcarnitines, GlyceroLPLs, and Amines in NSCLC Tissues. J Proteome Res 2024; 23:4343-4358. [PMID: 39317643 DOI: 10.1021/acs.jproteome.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Abnormal lipid metabolism plays an important role in cancer development. In this study, nontargeted lipidomic study on 230 tissue specimens from 79 nonsmall cell lung cancer (NSCLC) patients was conducted using ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Downregulation of sphingosine and medium-long-chain ceramides and short-medium-chain acylcarnitine, upregulation of long-chain acylcarnitine C20:0, and enhanced histamine methylation were revealed in NSCLC tissues. Compared with paired noncancerous tissues, adenocarcinoma (AC) tissues had significantly decreased levels of sphingosine, medium-long-chain ceramides (Cer d18:1/12:0 and Cer d16:1/14:0, Cer d18:0/16:0, Cer d18:1/16:0, Cer d18:2/16:0, Cer d18:2/18:0), short-medium-chain (C2-C16) acylcarnitines, LPC 20:0 and LPC 22:1, and significantly increased levels of the long-chain acylcarnitine C20:0, LPC 16:0, LPC P-16:0, LPC 20:1, LPC 20:2, glyceroPC, LPE 16:0, and LPE 18:2. In squamous cell carcinoma (SCC) tissues, sphingosine, Cer d18:2/16:0 and Cer d18:2/18:0, and short-medium-chain acylcarnitines had significantly lower levels, while long-chain acylcarnitines (C20:0, and C22:0 or C22:0 M), LPC 20:1, LPC 20:2, and N1,N12-diacetylspermine had significantly higher levels compared to controls. In AC and SCC tissues, the levels of LPG 18:0, LPG 18:1, and LPS 18:1 were significantly decreased, while the levels of ceramide-1-phosphate (C1P) d18:0/3:0 or LPE P-16:0, N1-acetylspermidine, and 1-methylhistamine were significantly increased than controls. Furthermore, an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model based on a 4-lipid panel was established, showing good discrimination ability between cancerous and noncancerous tissues.
Collapse
Affiliation(s)
- Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, P. R. China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Jiangyu Wu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Wei Meng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Lizhen Zhao
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, P. R. China
| |
Collapse
|
3
|
Fischer C, Thomas D, Gurke R, Tegeder I. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Pflugers Arch 2024:10.1007/s00424-024-03012-0. [PMID: 39177699 DOI: 10.1007/s00424-024-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.
Collapse
Affiliation(s)
- Caroline Fischer
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Robert Gurke
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Irmgard Tegeder
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
4
|
Song J, Liu Y, Peng J, Jiang Y, Lin X, Zhang J. Identification of serum metabolites associated with polybrominated diphenyl ethers (PBDEs) exposure in papillary thyroid carcinoma: a case-control study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:377. [PMID: 39167306 PMCID: PMC11338980 DOI: 10.1007/s10653-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
As the most common endocrine cancer, thyroid cancer (TC) has sharply increased globally over the past three decades. The growing incidence of TC might be counted by genetics, radiation, iodine, autoimmune disease, and exposure to environmental endocrine-disrupting chemicals (EDCs). Polybrominated diphenyl ethers (PBDEs), being typical EDCs, have been widely utilized in plastics, electronics, furniture, and textiles as flame retardants since the 1980s, and research has indicated a significant correlation between their exposure and the risk of TC. Even so, PBDEs exposure impact on the metabolic signature for TC remains unexplored. In this study, eight congeners of PBDEs were determined in serum from 111 patents with papillary thyroid cancer (PTC) and 111 healthy participants based on case-control epidemiology using gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (GC-APCI-MS/MS). Based on the tertile distribution of total PBDEs concentrations in 59 participants, metabolomics analysis was further performed by ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap MS. In the partial correlation analysis, the 29 identified metabolites were correlated with PBDEs exposure (P < 0.05). In addition, PBDEs disrupted the metabolism of glycerophospholipids, sphingolipids, taurine, and hypotaurine, indicating that neurotransmitters, oxidative stress, and inflammation are the vulnerable pathways affected in PTC. Furthermore, (±)-octopamine and 5-hydroxyindole, both of which modulate the actions of neurotransmitters, emerged as potential disturbed metabolite markers for TC following exposure to PBDEs. This study analyzed the impact of PBDEs on PTC in terms of the metabolic changes and further explored possible biomarkers, which helped us have a deep understanding of the possible mechanism of the effects of PBDEs on TC.
Collapse
Affiliation(s)
- Jiayi Song
- POPs Lab, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yuan Liu
- POPs Lab, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Jinling Peng
- POPs Lab, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yousheng Jiang
- POPs Lab, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Xiaoshi Lin
- POPs Lab, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Jianqing Zhang
- POPs Lab, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Li W, Liu J, Cai T, Hu X. TCF12 Transcriptionally Activates SPHK1 to Induce Osteosarcoma Angiogenesis by Promoting the S1P/S1PR4/STAT3 Axis. Mol Cell Biol 2024; 44:178-193. [PMID: 38767243 PMCID: PMC11123469 DOI: 10.1080/10985549.2024.2341781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/27/2024] [Indexed: 05/22/2024] Open
Abstract
Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wo Li
- Department of Anesthesiology, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Jitong Liu
- Department of Anesthesiology, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Ting Cai
- Department of Anesthesiology, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Xia Hu
- Department of Anesthesiology, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| |
Collapse
|
6
|
Novikova S, Tolstova T, Kurbatov L, Farafonova T, Tikhonova O, Soloveva N, Rusanov A, Zgoda V. Systems Biology for Drug Target Discovery in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:4618. [PMID: 38731835 PMCID: PMC11083274 DOI: 10.3390/ijms25094618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Tretinoin/pharmacology
- Systems Biology/methods
- HL-60 Cells
- Gene Expression Profiling
- K562 Cells
- Drug Discovery/methods
- Transcriptome
- Cell Line, Tumor
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase 6/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Expression Regulation, Leukemic/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia; (S.N.) (T.T.); (L.K.); (T.F.); (O.T.); (N.S.); (A.R.)
| |
Collapse
|
7
|
Chen L, Wang L, Han Z, Qin P, Niu G, Du J. SKI-349, a Sphingosine Kinases 1/2 Inhibitor, Suppresses Cell Viability, Invasion, and AKT/mTOR Signaling Pathway, and Shows Synergistic Cytotoxic Effects with Sorafenib in Hepatocellular Carcinoma. TOHOKU J EXP MED 2024; 262:173-180. [PMID: 38123304 DOI: 10.1620/tjem.2023.j100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
SKI-349 is a novel sphingosine kinases (SPHK) inhibitor with anti-tumor effects. This study aimed to assess the effect of SKI-349 on cell biological behaviors, downstream pathways, and its synergistic effect with sorafenib in hepatocellular carcinoma (HCC). HCC cell lines (Huh7 and Hep3B) were treated with SKI-349 at concentrations of 1, 2, 4, or 8 μM. Then, SPHK1/2 activity, cell viability, proliferation, apoptosis, invasion, and protein expressions of phosphorylated-protein kinase B (p-AKT), AKT, phosphorylated-mammalian target of rapamycin (p-mTOR) and mTOR were detected. Combination index values of SKI-349 (0, 1, 2, 4, or 8 μM) and sorafenib (0, 2.5, 5, 10, or 20 μM) were calculated. SKI-349 decreased the relative SPHK1 and SPHK2 activity compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Meanwhile, SKI-349 reduced cell viability, 5-ethynyl-2'-deoxyuridine (EdU) positive cells, and invasive cells, while it increased apoptotic cells compared to blank control in a dose-dependent manner in Huh7 and Hep3B cell lines. Based on the western blot assay, SKI-349 decreased the ratio of p-AKT to AKT and that of p-mTOR to mTOR compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Additionally, SKI-349 combined with sorafenib declined cell viability with concentration gradient effects compared to SKI-349 sole treatment, and they had synergistic cytotoxic effects in Huh7 and Hep3B cell lines. SKI-349 suppresses SPHK1 and SPHK2 activity, cell viability, invasion, and AKT/mTOR signaling pathway, as well as exhibits a synergistic cytotoxic effect with sorafenib in HCC.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Basic Medical, Xingtai Medical College
| | | | - Zongqi Han
- Department of Basic Medical, Xingtai Medical College
| | - Peng Qin
- Department of Vascular Intervention, The Second Affiliated Hospital of Xingtai Medical College
| | - Guangxu Niu
- Department of Pathology, Handan Central Hospital
| | - Jingxia Du
- Department of Basic Medical, Xingtai Medical College
| |
Collapse
|
8
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
9
|
Singothu S, Bhandari V. Computational assessment of marine natural products as LasR inhibitors for attenuating quorum sensing in Pseudomonas aeruginosa. J Biomol Struct Dyn 2024:1-15. [PMID: 38379380 DOI: 10.1080/07391102.2024.2319110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
The Quorum Sensing (QS) system in bacteria has become a focal point for researchers aiming to develop novel antimicrobials to combat multidrug-resistant bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, has developed resistance against a variety of antimicrobial agents, making it a formidable pathogen responsible for nosocomial infections. QS system mainly controls the expression of genes responsible for biofilm formation and virulence of bacteria. Within the QS system of P. aeruginosa, the transcription activator LasR plays a pivotal role and is an appealing target for the development of antimicrobial agents. In this study, we employed molecular docking and molecular dynamics simulations to identify potential inhibitors of LasR by screening marine natural products (MNPs) from the CMNPD database. We identified ten MNPs with excellent docking scores (less than -11.7 kcal/mol) against LasR, surpassing the binding energy of the co-crystal 3-oxo-C12-HSL (-8.594 kcal/mol) and the reference compound cladodionen (-6.71 kcal/mol). Furthermore, we selected five of these MNPs with the highest MM/GBSA binding energies for extensive 100 ns molecular simulations to assess their stability. The molecular dynamics simulations indicated three MNPs, namely CMNPD10886, CMNPD20987, and CMNPD20960, maintained high stability throughout the 100 ns simulation period, as evidenced by their root mean square deviation, root mean square fluctuation, radius of gyration, and hydrogen bond interactions within the ligand-protein complex analysis. Furthermore, essential dynamics (PCA and DCCM) were performed to analyse the correlated motion of amino acids. These findings suggest that these compounds hold potential as inhibitors of LasR, offering promising prospects for the development of treatments against infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Hengst JA, Nduwumwami AJ, Sharma A, Yun JK. Fanning the Flames of Endoplasmic Reticulum (ER) Stress: Can Sphingolipid Metabolism Be Targeted to Enhance ER Stress-Associated Immunogenic Cell Death in Cancer? Mol Pharmacol 2024; 105:155-165. [PMID: 38164594 PMCID: PMC10877730 DOI: 10.1124/molpharm.123.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress. Given that sphingolipids have both prosurvival and proapoptotic effects, they also exert opposing effects on life/death decisions in the face of prolonged ER stress detected by the UPR. In this review, we will focus on several recent studies that demonstrate how sphingolipids affect each arm of the UPR. We will also discuss the role of sphingolipids in the process of immunogenic cell death downstream of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiating factor 2α (eIF2α) arm of the UPR. Furthermore, we will discuss strategies to target the sphingolipid metabolic pathway that could potentially act synergistically with agents that induce ER stress as novel anticancer treatments. SIGNIFICANCE STATEMENT: This review provides the readers with a brief discussion of the sphingolipid metabolic pathway and the unfolded protein response. The primary focus of the review is the mechanism(s) by which sphingolipids modulate the endoplasmic reticulum (ER) stress response pathways and the critical role of sphingolipids in the process of immunogenic cell death associated with the ER stress response.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Asvelt J Nduwumwami
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Arati Sharma
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Jong K Yun
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| |
Collapse
|
11
|
Salama YA, Hassan HM, El-Gayar AM, Abdel-Rahman N. Combined quercetin and simvastatin attenuate hepatic fibrosis in rats by modulating SphK1/NLRP3 pathways. Life Sci 2024; 337:122349. [PMID: 38128755 DOI: 10.1016/j.lfs.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis involves several signalling pathways working in concert regulating the deposition of extracellular matrix. In this study, we evaluated the effect of quercetin and simvastatin alone and their combination on the treatment of experimentally induced hepatic fibrosis in rats. To decipher the potential mechanisms involved, liver fibrosis was induced in rats by administration of 40 % carbon tetrachloride (CCl4) (1 μl/g rat, i.p., twice weekly) for 6 weeks. Quercetin (50 mg/kg, orally), simvastatin (40 mg/kg, orally) either individually or combined were administered for another 4 weeks. The three treatment groups ameliorated hepatic dysfunction and altered parameters of sphingolipid and pyroptosis pathways. Yet, the combined group showed a more pronounced effect. Treatments lowered serum levels of GOT, GPT, ALP and elevated albumin and total protein levels. Histopathological and electron microscope examination of liver tissue revealed diminished fibrosis and inflammation. Protein expression levels of α-SMA, IL-1β, PPAR-γ, TGF-β1, caspase-1 and caspase-3 expression in liver tissues were reduced. Additionally, hepatic mRNA levels of SphK1 and NLRP3 decreased after treatment. Furthermore, the three groups lowered MDA levels and elevated total antioxidant capacity, GSH and Nrf2 expression levels. Treatments downregulated sphingolipid pathway and NLRP3-mediated pyroptosis and stimulated an anti-apoptotic, anti-proliferative and antioxidant activity. This suggests that targeting the SphK1/NLRP3 pathway could be a prospective therapeutic strategy against liver fibrosis.
Collapse
Affiliation(s)
- Yasmin A Salama
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Amal M El-Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt.
| |
Collapse
|
12
|
Lin Y, Wu Y, Zhang Q, Tu X, Chen S, Pan J, Xu N, Lin M, She P, Niu G, Chen Y, Li H. RPTOR blockade suppresses brain metastases of NSCLC by interfering the ceramide metabolism via hijacking YY1 binding. J Exp Clin Cancer Res 2024; 43:1. [PMID: 38163890 PMCID: PMC10759737 DOI: 10.1186/s13046-023-02874-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/29/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.
Collapse
Affiliation(s)
- Ying Lin
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yun Wu
- Department of General Practice Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiangzu Zhang
- The High Performance Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100095, China
| | - Xunwei Tu
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Sufang Chen
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Junfan Pan
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Nengluan Xu
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Ming Lin
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Peiwei She
- The Centre for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Gang Niu
- The High Performance Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100095, China.
| | - Yusheng Chen
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Hongru Li
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Provincial Key Laboratory of Medical Big Data Engineering, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
13
|
Shakeel I, Khan S, Roy S, Sherwani F, Ahmad SF, Sohal SS, Afzal M, Hassan MI. Investigating potential of cholic acid, syringic acid, and mangiferin as cancer therapeutics through sphingosine kinase 1 inhibition. Int J Biol Macromol 2023; 253:127036. [PMID: 37788733 DOI: 10.1016/j.ijbiomac.2023.127036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The signaling of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) regulates various diseases, including multiple sclerosis, atherosclerosis, rheumatoid arthritis, inflammation-related ailments, diabetes, and cancer. SphK1 is considered an attractive potential drug target and is extensively explored in cancer and other inflammatory diseases. In this study, we have investigated the inhibitory potential and binding affinity of SphK1 with cholic acid (CA), syringic acid (SA), and mangiferin (MF) using a combination of docking and molecular dynamics (MD) simulation studies followed by experimental measurements of binding affinity and enzyme inhibition assays. We observed these compounds bind to SphK1 with a significantly high affinity and eventually inhibit its kinase activity with IC50 values of 28.23 μM, 33.35 μM, and 57.2 μM for CA, SA, and MF, respectively. Further, the docking and 100 ns MD simulation studies showed that CA, SA, and MF bind with the active site residues of SphK1 with favorable energy and strong non-covalent interactions that might be accountable for inhibiting its kinase activity. Our finding indicates that CA, SA, and MF may be implicated in designing novel anti-cancer therapeutics with an improved affinity and lesser side effects by targeting SphK1.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fakhir Sherwani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
14
|
Zhang J, Liu T, Wang Y, Yan X, Li Y, Xu F, Zhang R. Dynamic alterations of the transcriptome-wide m 6A methylome in cytogenetically normal acute myeloid leukaemia during initial diagnosis and relapse. Genomics 2023; 115:110725. [PMID: 37820824 DOI: 10.1016/j.ygeno.2023.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Accumulating studies have indicated that N6-methyladenosine (m6A) plays an important role in acute myeloid leukaemia (AML). However, little is known about the m6A methylome at a transcriptome-wide scale in AML patients. We obtained three pairs of bone marrow (BM) samples from cytogenetically normal AML patients at the timepoints of diagnosis (AML) and relapse (R_AML) and three BM samples from healthy donors used as normal controls (NCs). Methylated RNA immunoprecipitation next-generation sequencing (MeRIP-Seq) was conducted to identify differences in the m6A methylomes between AML and NC and between R_AML and AML. We identified a total of 11,076 and 11,962 differential m6A peaks in AML and R_AML group, respectively. These dysregulated m6A peaks were detected on all chromosomes, especially chr1, chr19 and chr17, and were mainly enriched in 3' untranslated regions, stop codon and coding sequence regions. Moreover, GO and KEGG analyses indicated that m6A -modified genes were significantly enriched in cancer-related biological functions and pathways. Additionally, we identified a link between the m6A methylome and RNA transcriptome via combined analyses of MeRIP-seq and RNA-seq data. In addition, 5 genes, HSPG2, HOMER3, TSPO2, CXCL12 and FUT1 regulated by m6A modification potentially, were shown to be related to the prognosis of AML patients. Additionally, we detected the mRNA expression of major m6A regulators and potential target mRNA on the leukemogenesis and found that the expression of IGF2BP2, HSPG2 and HOMER3 were upregulated in AML at the time of diagnosis. Moreover, their expression became downregulated after remission and then elevated again at relapse. Our study provides the first data on the differential m6A methylome in AML patients during initial diagnosis and relapse. This study demonstrates a novel relationship between m6A modification and AML relapse and paves the way for further studies aimed at elucidating the epigenic mechanisms involved in the relapse of AML.
Collapse
Affiliation(s)
- Jinjing Zhang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Tong Liu
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yue Wang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiaojing Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Li
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Feng Xu
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Rui Zhang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
15
|
Sousa N, Geiß C, Bindila L, Lieberwirth I, Kim E, Régnier-Vigouroux A. Targeting sphingolipid metabolism with the sphingosine kinase inhibitor SKI-II overcomes hypoxia-induced chemotherapy resistance in glioblastoma cells: effects on cell death, self-renewal, and invasion. BMC Cancer 2023; 23:762. [PMID: 37587449 PMCID: PMC10433583 DOI: 10.1186/s12885-023-11271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
Collapse
Affiliation(s)
- Nadia Sousa
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Geiß
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, Medical University Mainz, Mainz, Germany
| | | | - Ella Kim
- Department of Neurosurgery, Medical University of Mainz, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
16
|
Bergkamp ND, van Senten JR, Brink HJ, Bebelman MP, van den Bor J, Çobanoğlu TS, Dinkla K, Köster J, Klau G, Siderius M, Smit MJ. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P 1 signaling axis. Sci Signal 2023; 16:eade6737. [PMID: 37582160 DOI: 10.1126/scisignal.ade6737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The G protein-coupled receptor (GPCR) US28 encoded by the human cytomegalovirus (HCMV) is associated with accelerated progression of glioblastomas, aggressive brain tumors with a generally poor prognosis. Here, we showed that US28 increased the malignancy of U251 glioblastoma cells by enhancing signaling mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that stimulates oncogenic pathways in glioblastoma. US28 expression increased the abundance of the key components of the S1P signaling axis, including an enzyme that generates S1P [sphingosine kinase 1 (SK1)], an S1P receptor [S1P receptor 1 (S1P1)], and S1P itself. Enhanced S1P signaling promoted glioblastoma cell proliferation and survival by activating the kinases AKT and CHK1 and the transcriptional regulators cMYC and STAT3 and by increasing the abundance of cancerous inhibitor of PP2A (CIP2A), driving several feed-forward signaling loops. Inhibition of S1P signaling abrogated the proliferative and anti-apoptotic effects of US28. US28 also activated the S1P signaling axis in HCMV-infected cells. This study uncovers central roles for S1P and CIP2A in feed-forward signaling that contributes to the US28-mediated exacerbation of glioblastoma.
Collapse
Affiliation(s)
- Nick D Bergkamp
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hendrik J Brink
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten P Bebelman
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuğçe S Çobanoğlu
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Johannes Köster
- Algorithms for Reproducible Bioinformatics, Institute of Human Genetics, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Medical Oncology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gunnar Klau
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Siderius
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Nadhan R, Kashyap S, Ha JH, Jayaraman M, Song YS, Isidoro C, Dhanasekaran DN. Targeting Oncometabolites in Peritoneal Cancers: Preclinical Insights and Therapeutic Strategies. Metabolites 2023; 13:618. [PMID: 37233659 PMCID: PMC10222714 DOI: 10.3390/metabo13050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Peritoneal cancers present significant clinical challenges with poor prognosis. Understanding the role of cancer cell metabolism and cancer-promoting metabolites in peritoneal cancers can provide new insights into the mechanisms that drive tumor progression and can identify novel therapeutic targets and biomarkers for early detection, prognosis, and treatment response. Cancer cells dynamically reprogram their metabolism to facilitate tumor growth and overcome metabolic stress, with cancer-promoting metabolites such as kynurenines, lactate, and sphingosine-1-phosphate promoting cell proliferation, angiogenesis, and immune evasion. Targeting cancer-promoting metabolites could also lead to the development of effective combinatorial and adjuvant therapies involving metabolic inhibitors for the treatment of peritoneal cancers. With the observed metabolomic heterogeneity in cancer patients, defining peritoneal cancer metabolome and cancer-promoting metabolites holds great promise for improving outcomes for patients with peritoneal tumors and advancing the field of precision cancer medicine. This review provides an overview of the metabolic signatures of peritoneal cancer cells, explores the role of cancer-promoting metabolites as potential therapeutic targets, and discusses the implications for advancing precision cancer medicine in peritoneal cancers.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
| | - Srishti Kashyap
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.N.); (S.K.); (J.H.H.); (M.J.)
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Sarkar J, Aoki H, Wu R, Aoki M, Hylemon P, Zhou H, Takabe K. Conjugated Bile Acids Accelerate Progression of Pancreatic Cancer Metastasis via S1PR2 Signaling in Cholestasis. Ann Surg Oncol 2023; 30:1630-1641. [PMID: 36396870 PMCID: PMC9911402 DOI: 10.1245/s10434-022-12806-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) has an extremely high mortality rate, where obstructive jaundice due to cholestasis is a classic symptom. Conjugated bile acids (CBAs) such as taurocholic acid (TCA) have been reported to activate both the ERK1/2 and AKT signaling pathways via S1P receptor 2 (S1PR2) and promote growth of cholangiocarcinoma. Thus, we hypothesize that CBAs, which accumulate in cholestasis, accelerate PC progression via S1PR2. METHODS Murine Panc02-luc and human AsPC-1, MIA PaCa2, and BxPC-3 cells were treated with TCA, S1PR2 agonist CYM5520, S1PR2 antagonist JTE-013, sphingosine-1-phosphate (S1P), and functional S1P receptor antagonist (except S1PR2) FTY720. Bile duct ligation (BDL) was performed on liver implantation or intraperitoneal injection of Panc02-luc cells. RESULTS Panc02-luc and AsPC-1 cells predominantly expressed S1PR2, and their growth and migration were stimulated by TCA or CYM5520 in dose-dependent manner, which was blocked by JTE-013. This finding was not seen in PC cell lines expressing other S1P receptors than S1PR2. Panc02-luc growth stimulation by S1P was not blocked by FTY720. BDL significantly increased PC liver metastasis compared with sham. PC peritoneal carcinomatosis was significantly worsened by BDL, confirmed by number of nodules, tumor weight, bioluminescence, Ki-67 stain, ascites, and worse survival compared with sham. CYM5520 significantly worsened PC carcinomatosis, whereas treatment with anti-S1P antibody or FTY720 also worsened progression. CONCLUSIONS CBAs accelerated growth of S1PR2 predominant PC both in vitro and in vivo. This finding implicates S1PR2 as a potential therapeutic target in metastatic S1PR2 predominant pancreatic cancer.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA, USA
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masayo Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA, USA
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Phillip Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine and, McGuire VA Medical Center, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine and, McGuire VA Medical Center, Richmond, VA, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA, USA.
- Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.
- Department of Surgery, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
19
|
Kang Y, Sundaramoorthy P, Gasparetto C, Feinberg D, Fan S, Long G, Sellars E, Garrett A, Tuchman SA, Reeves BN, Li Z, Liu B, Ogretmen B, Maines L, Ben-Yair VK, Smith C, Plasse T. Phase I study of opaganib, an oral sphingosine kinase 2-specific inhibitor, in relapsed and/or refractory multiple myeloma. Ann Hematol 2023; 102:369-383. [PMID: 36460794 DOI: 10.1007/s00277-022-05056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/13/2022] [Indexed: 12/04/2022]
Abstract
Multiple myeloma (MM) remains an incurable disease and there is an unmet medical need for novel therapeutic drugs that do not share similar mechanisms of action with currently available agents. Sphingosine kinase 2 (SK2) is an innovative molecular target for anticancer therapy. We previously reported that treatment with SK2 inhibitor opaganib inhibited myeloma tumor growth in vitro and in vivo in a mouse xenograft model. In the current study, we performed a phase I study of opaganib in patients with relapsed/refractory multiple myeloma (RRMM). Thirteen patients with RRMM previously treated with immunomodulatory agents and proteasome inhibitors were enrolled and treated with single-agent opaganib at three oral dosing regimens (250 mg BID, 500 mg BID, or 750 mg BID, 28 days as a cycle). Safety and maximal tolerated dose (MTD) were determined. Pharmacokinetics, pharmacodynamics, and correlative studies were also performed. Opaganib was well tolerated up to a dose of 750 mg BID. The most common possibly related adverse event (AE) was decreased neutrophil counts. There were no serious AEs considered to be related to opaganib. MTD was determined as at least 750 mg BID. On an intent-to-treat basis, one patient (7.7%) in the 500 mg BID dose cohort showed a very good partial response, and one other patient (7.7%) achieved stable disease for 3 months. SK2 is an innovative molecular target for antimyeloma therapy. The first-in-class SK2 inhibitor opaganib is generally safe for administration to RRMM patients, and has potential therapeutic activity in these patients. Clinicaltrials.gov: NCT02757326.
Collapse
Affiliation(s)
- Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Daniel Feinberg
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengjun Fan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Sellars
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Anderson Garrett
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sascha A Tuchman
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandi N Reeves
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lynn Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | - Charles Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | |
Collapse
|
20
|
Gonzalez P, Debnath S, Chen YA, Hernandez E, Jha P, Dakanali M, Hsieh JT, Sun X. A Theranostic Small-Molecule Prodrug Conjugate for Neuroendocrine Prostate Cancer. Pharmaceutics 2023; 15:481. [PMID: 36839802 PMCID: PMC9967013 DOI: 10.3390/pharmaceutics15020481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
After androgen deprivation therapy, a significant number of prostate cancer cases progress with a therapy-resistant neuroendocrine phenotype (NEPC). This represents a challenge for diagnosis and treatment. Based on our previously reported design of theranostic small-molecule prodrug conjugates (T-SMPDCs), herein we report a T-SMPDC tailored for targeted positron emission tomography (PET) imaging and chemotherapy of NEPC. The T-SMPDC is built upon a triazine core (TZ) to present three functionalities: (1) a chelating moiety (DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for PET imaging when labeled with 68Ga (t1/2 = 68 min) or other relevant radiometals; (2) an octreotide (Octr) that targets the somatostatin receptor 2 (SSTR2), which is overexpressed in the innervated tumor microenvironment (TME); and (3) fingolimod, FTY720-an antagonist of sphingosine kinase 1 that is an intracellular enzyme upregulated in NEPC. Polyethylene glycol (PEG) chains were incorporated via conventional conjugation methods or a click chemistry reaction forming a 1,4-disubstituted 1,2,3-triazole (Trz) linkage for the optimization of in vivo kinetics as necessary. The T-SMPDC, DOTA-PEG3-TZ(PEG4-Octr)-PEG2-Trz-PEG3-Val-Cit-pABOC-FTY720 (PEGn: PEG with n repeating ethyleneoxy units (n = 2, 3, or 4); Val: valine; Cit: citrulline; pABOC: p-amino-benzyloxycarbonyl), showed selective SSTR2 binding and mediated internalization of the molecule in SSTR2 high cells. Release of FTY720 was observed when the T-SMPDC was exposed to cathepsin B, and the released FTY720 exerted cytotoxicity in cells. In vivo PET imaging showed significantly higher accumulation (2.1 ± 0.3 %ID/g; p = 0.02) of [68Ga]Ga-DOTA-PEG3-TZ(PEG4-Octr)-PEG2-Trz-PEG3-Val-Cit-pABOC-FTY720 in SSTR2high prostate cancer xenografts than in the SSTR2low xenografts (1.5 ± 0.4 %ID/g) at 13 min post-injection (p.i.) with a rapid excretion through the kidneys. Taken together, these proof-of-concept results validate the design concept of the T-SMPDC, which may hold a great potential for targeted diagnosis and therapy of NEPC.
Collapse
Affiliation(s)
- Paulina Gonzalez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Preeti Jha
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marianna Dakanali
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Williams JL, Smith C, Hall C, Khaled Z, Maharaj A, Kwong R, Pittaway J, Casas J, Parvanta L, Abdel-Aziz TE, Palazzo F, Chung TT, Guasti L, Metherell L, Prasad R. Elevated sphingosine-1-phosphate lyase leads to increased metabolism and reduced survival in adrenocortical carcinoma. Eur J Endocrinol 2023; 188:lvac007. [PMID: 36651165 DOI: 10.1093/ejendo/lvac007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 12/01/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Adrenocortical carcinomas (ACCs) are invasive tumours arising in the adrenal cortex, and steroidogenic tumours are associated with worse prognostic outcomes. Loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1) cause primary adrenal insufficiency and as a key degradative enzyme in the sphingolipid pathway, SGPL1 also influences the balance of pro-proliferative and pro-apoptotic sphingolipids. We, therefore, hypothesized increased SGPL1 may be linked to increased disease severity in ACC. DESIGN Analyse SGPL1 expression impact on patient survival and adrenal cancer cell phenotype. We analysed two ACC cohorts with survival and corresponding transcriptomic data, focusing on SGPL1 and sphingolipid pathway genes. In vitro, we generated SGPL1-knockout and overexpressing H295R adrenocortical cells to investigate the role of SGPL1 in cell signalling in ACCs. RESULTS We found increased expression of several sphingolipid pathway receptors and enzymes, most notably SGPL1 correlated with reduced patient survival in both cohorts. Overexpression of SGPL1 in the H295R cell line increased proliferation and migration while reducing apoptosis, while SGPL1 knockout had the opposite effect. RNA-seq revealed a global increase in the expression of genes in the electron transport chain in overexpressing cells, correlating with increased aerobic respiration and glycolysis. Furthermore, the opposite phenotype was seen in cells lacking SGPL1. We subsequently found the increased proliferation is linked to metabolic substrate availability and increased capacity to use different fuel sources, but particularly glucose, in overexpressing cells. CONCLUSIONS We, therefore, propose that SGPL1-overexpressing ACC tumours reduce patient survival by increasing fuel usage for anabolism and energy production to facilitate growth and invasion.
Collapse
Affiliation(s)
- Jack L Williams
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Chris Smith
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charlotte Hall
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Zakaa Khaled
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Avinaash Maharaj
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Ruth Kwong
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - James Pittaway
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry IQAC-CSIC, Barcelona and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD). ISCIII. Madrid, Spain
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom
| | - Tarek Ezzat Abdel-Aziz
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, NW1 2PG London, United Kingdom
| | - Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, W12 0HS London, United Kingdom
| | - Teng-Teng Chung
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, NW1 2PG London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Lou Metherell
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
22
|
Li T, Zhou T, Liu Y, Wang J, Yu Z. Efficacy analysis of targeted nanodrug for non-small cell lung cancer therapy. Front Bioeng Biotechnol 2022; 10:1068699. [DOI: 10.3389/fbioe.2022.1068699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Biological macromolecules have been widely used as biomedical carriers in treating non-small cell lung cancer (NSCLC) due to their biocompatibility, targeting, biodegradability, and antitumor efficacy. Nanotechnology has been used in clinics to treat many diseases, including cancer. Nanoparticles (NPs) can accumulate drugs into tumors because of their enhanced permeability and retention (EPR) effects. However, the lack of active targeting ligands affects NPs drug delivery. Arginine-glycine-aspartic (RGD), as a targeting ligand, has distinct advantages in targeting and safety. In the present study, an RGD peptide-modified nanogel called RGD−polyethylene glycol−poly (L-phenylalanine-co-L-cystine) (RGD−PEG−P (LP-co-LC−P (LP-co-LC) was investigated to deliver vincristine (VCR) as NSCLC therapy. The VCR-loaded targeted nanoparticle (RGD-NP/VCR) demonstrated excellent antitumor efficacy compared to the free drug (VCR) and untargeted nanoparticle (NP/VCR) without any significant side effects. RGD-NP/VCR has better tumor inhibition and fewer side effects, indicating its potential benefit in NSCLC treatment.
Collapse
|
23
|
Di Paolo A, Vignini A, Alia S, Membrino V, Delli Carpini G, Giannella L, Ciavattini A. Pathogenic Role of the Sphingosine 1-Phosphate (S1P) Pathway in Common Gynecologic Disorders (GDs): A Possible Novel Therapeutic Target. Int J Mol Sci 2022; 23:ijms232113538. [PMID: 36362323 PMCID: PMC9658294 DOI: 10.3390/ijms232113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)–S1P–S1P receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown to be dysregulated in those disorders and they are likely implicated in their pathogenesis and pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues. The present review highlights the past and latest evidence on the role played by the S1P pathways in common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the regulation of this signaling pathway that could represent an innovative and promising therapeutical target, also for ovarian cancer treatment.
Collapse
Affiliation(s)
- Alice Di Paolo
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
- Correspondence: ; Tel.: +39-0712204675
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Valentina Membrino
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luca Giannella
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
24
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
25
|
Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. PHYTOCHEMISTRY 2022; 200:113213. [PMID: 35472482 DOI: 10.1016/j.phytochem.2022.113213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Rishi Sharma
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
26
|
Li RZ, Wang XR, Wang J, Xie C, Wang XX, Pan HD, Meng WY, Liang TL, Li JX, Yan PY, Wu QB, Liu L, Yao XJ, Leung ELH. The key role of sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance. Front Oncol 2022; 12:941643. [PMID: 35965565 PMCID: PMC9364366 DOI: 10.3389/fonc.2022.941643] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.
Collapse
Affiliation(s)
- Run-Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Xuan-Run Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jian Wang
- Department of Oncology, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
| | - Xing-Xia Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Wei-Yu Meng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Tu-Liang Liang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jia-Xin Li
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Pei-Yu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Qi-Biao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Xiao-Jun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
- Breast Surgery, Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| |
Collapse
|
27
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
28
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
29
|
Millner A, Running L, Colon-Rosa N, Aga DS, Frasor J, Atilla-Gokcumen GE. Ceramide-1-Phosphate Is Involved in Therapy-Induced Senescence. ACS Chem Biol 2022; 17:822-828. [PMID: 35353506 DOI: 10.1021/acschembio.2c00216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingolipids are key signaling lipids and their dysregulation has been associated with various cellular processes. We have previously shown significant changes in sphingolipids in therapy-induced senescence, a state of cell cycle arrest as a response to chemotherapy, including the accumulation of ceramides, and provided evidence suggesting that ceramide processing is important for this process. Herein, we conducted a focused small molecule inhibitor screen targeting the sphingolipid pathway, which highlighted a new lipid regulator of therapy-induced senescence. Among the inhibitors tested, the inhibition of ceramide kinase by NVP-231 reduced the levels of senescent cells. Ceramide kinase knockdown exhibited similar effects, strongly supporting the involvement of ceramide kinase during this process. We showed that ceramide-1-phosphate was upregulated in therapy-induced senescence and that NVP-231 reduced ceramide-1-phosphate levels in different cell line models of therapy-induced senescence. Finally, ceramide-1-phosphate addition to NVP-231-treated cells reversed the effects of NVP-231 during senescence. Overall, our results identify a previously unknown lipid player in therapy-induced senescence and highlight a potential targetable enzyme to reduce the levels of therapy-induced senescent cells.
Collapse
Affiliation(s)
- Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Nicole Colon-Rosa
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
- Department of Chemistry, University of Puerto Rico, Cayey, 00736, Puerto Rico
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
30
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
31
|
Design, Synthesis and Biological Activity Testing of Library of Sphk1 Inhibitors. Molecules 2022; 27:molecules27062020. [PMID: 35335379 PMCID: PMC8951126 DOI: 10.3390/molecules27062020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
Our team discovered a moderate SphK1 inhibitor, SAMS10 (IC50 = 9.8 μM), which was screened by computer-assisted screening. In this study, we developed a series of novel diaryl derivatives with improved antiproliferative activities by modifying the structure of the lead compound SAMS10. A total of 50 new compounds were synthesized. Among these compounds, the most potent compound, named CHJ04022Rb, has significant anticancer activity in melanoma A375 cell line (IC50 = 2.95 μM). Further underlying mechanism studies indicated that CHJ04022R exhibited inhibition effect against PI3K/NF-κB signaling pathways, inhibited the migration of A375 cells, promoted apoptosis and exerted antiproliferative effect by inducing G2/M phase arrest in A375 cells. Furthermore, acute toxicity experiment indicated CHJ04022R exhibited good safety in vivo. Additionally, it showed a dose-dependent inhibitory effect on the growth of xenograft tumor in nude mice. Therefore, CHJ04022R may be a potential candidate for the treatment of melanoma.
Collapse
|
32
|
McGowan EM, Lin Y, Chen S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers (Basel) 2022; 14:cancers14030535. [PMID: 35158806 PMCID: PMC8833440 DOI: 10.3390/cancers14030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Incidence of gastrointestinal (GI) cancers is increasing, and late-stage diagnosis makes these cancers difficult to treat. Chronic and low-grade inflammation are recognized risks for most GI cancers. The GI mucosal immune system maintains healthy homeostasis and signalling molecules made from saturated fats, bioactive sphingolipids, play essential roles in healthy GI immunity. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is a key mediator in a balanced GI immune response. Disruption in the S1P pathway underlies systemic chronic metabolic inflammatory disorders, including diabetes and GI cancers, providing a strong rationale for using modulators of the S1P pathway to treat pathological inflammation. Here, we discuss the effects of bioactive sphingolipids in immune homeostasis with a focus on S1P in chronic low-grade inflammation associated with increased risk of GI carcinogenesis. Contemporary information on S1P signalling involvement in cancers of the digestive system, from top to bottom, is reviewed. Further, we discuss the use of novel S1P receptor modulators currently in clinical trials and their potential as first-line drugs in the clinic for chronic inflammatory diseases. Recently, ozanimod (ZeposiaTM) and etrasimod have been approved for clinical use to treat ulcerative colitis and eosinophilic oesophagitis, respectively, which may have longer term benefits in reducing risk of GI cancers.
Collapse
Affiliation(s)
- Eileen M. McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
- Correspondence: ; Tel.: +86-614-0581-4048
| | - Yiguang Lin
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Size Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
33
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
34
|
Shamshiddinova M, Gulyamov S, Kim HJ, Jung SH, Baek DJ, Lee YM. A Dansyl-Modified Sphingosine Kinase Inhibitor DPF-543 Enhanced De Novo Ceramide Generation. Int J Mol Sci 2021; 22:ijms22179190. [PMID: 34502095 PMCID: PMC8431253 DOI: 10.3390/ijms22179190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Maftuna Shamshiddinova
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Shokhid Gulyamov
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Hee-Jung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Seo-Hyeon Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Dong-Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58628, Korea;
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
- Correspondence: ; Tel.: +82-43-261-2825
| |
Collapse
|
35
|
Galal SA, Omar MA, Khairat SHM, Ragab FAF, Roy S, Naqvi AAT, Hassan MI, El Diwani HI. Design and synthesis of new pyrazolylbenzimidazoles as sphingosine kinase-1 inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Aurora B kinase: a potential drug target for cancer therapy. J Cancer Res Clin Oncol 2021; 147:2187-2198. [PMID: 34047821 DOI: 10.1007/s00432-021-03669-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ensuring genetic integrity is essential during the cell cycle to avoid aneuploidy, one of the underlying causes of malignancies. Aurora kinases are serine/threonine kinase that play a vital role in maintaining the genomic integrity of the cells. There are three forms of aurora kinases in the mammalian cells, which are highly conserved and act together with several other proteins to control chromosome alignment and its equal distribution to daughter cells in mitosis and meiosis. METHODS We provide here a detailed analysis of Aurora B kinase (ABK) in terms of its expression, structure, function, disease association and potential therapeutic implications. RESULTS ABK plays an instrumental in mitotic entry, chromosome condensation, spindle assembly, cytokinesis, and abscission. Small-molecule inhibitors of ABK are designed and synthesized to control cancer progression. A detailed understanding of ABK pathophysiology in different cancers is of great significance in designing and developing effective therapeutic strategies. CONCLUSION In this review, we have discussed the physiological significance of ABK followed by its role in cancer progression. We further highlighted available small-molecule inhibitors to control the tumor proliferation and their mechanistic insights.
Collapse
|