1
|
Liu C, Xiu C, Zou Y, Wu W, Huang Y, Wan L, Xu S, Han B, Zhang H. Cervical cancer diagnosis model using spontaneous Raman and Coherent anti-Stokes Raman spectroscopy with artificial intelligence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125353. [PMID: 39481169 DOI: 10.1016/j.saa.2024.125353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Cervical cancer is the fourth most common cancer worldwide. Histopathology, which is currently considered the gold standard for cervical cancer diagnosis, can be time-consuming and subjective. Therefore, there is an urgent need for a rapid, objective, and non-destructive cervical cancer detection technique. In this study, high-wavenumber spontaneous Raman spectroscopy was used to detect cervical squamous cell carcinoma and normal tissues. The levels of lipids, fatty acids, and proteins in cervical cancerous tissues were found to be higher than those in normal tissues. Raman difference spectroscopy revealed the most significant difference at 2928 cm-1. Additionally, a Coherent anti-Stokes Raman spectroscopy (CARS) instrument was employed to enhance the wavenumber signal intensity and sensitivity. The intrinsic relationship between CARS imaging and cervical lesions was established. The CARS images indicated that the intensity of normal cervical squamous cells was zero, whereas the intensities of keratinized and non-keratinized cervical squamous cell carcinoma tissues were significantly higher. Consequently, diagnostic outcomes could be obtained by observing CARS images with the naked eye. Furthermore, the characteristic structure of keratin pearls in keratinized cervical cancer could serve as a marker for subdividing cervical cancer types. Finally, a ConvNeXt network, a machine-learning model built from CARS images, was utilized to classify different types of tissue images. The results indicated a verification accuracy of 100 %, with a loss function of 0.0927. These findings suggest that the diagnostic model established using CARS images could efficiently diagnose cervical cancer, providing novel insights into the pathological diagnosis of this disease.
Collapse
Affiliation(s)
- Chenyang Liu
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Caifeng Xiu
- The Department of Cadre's Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Yongfang Zou
- The Department of Radiology, Changchun Infectious Disease Hospital, Changchun 130000, China.
| | - Weina Wu
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Yizhi Huang
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Lili Wan
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry of Jilin University, Changchun 130000, China.
| | - Bing Han
- The Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130000, China.
| | - Haipeng Zhang
- The Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Shabani E, Hasanzadi A, Allela OQB, Kareem RA, Abed RE, Al-Nuaimi AMA, Athab ZH, Khodarahmi S. The role of lipids and lipids lowering drugs in human papillomavirus (HPV) and HPV-associated cancers. Infect Agent Cancer 2025; 20:4. [PMID: 39876011 PMCID: PMC11773819 DOI: 10.1186/s13027-025-00635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Both women and men are now confronted with the grave threat of cancers caused by the human papillomavirus (HPV). It is estimated that 80% of women may encounter HPV over their lives. In the preponderance of cases involving anal, head and neck, oral, oropharyngeal, penile, vaginal, vulvar, and cervical malignancies, high-risk HPV (HR-HPV) is the causative agent. In 2019, HPV is believed to have been the cause of 620,000 new cases of cancer in women and 70,000 new cases of cancer in men worldwide. The bulk of the 530,000 cervical cancer cases (~ 270,000 fatalities) caused by HPV infection (86% of cases, 88% of deaths) happen in poor nations each year. Lipid metabolism is crucial in HPV infection and cancer development related to HPV. One of the most noticeable metabolic abnormalities in cancer is lipid metabolism reprogramming, in which cancer cells dysregulate lipid metabolism to obtain sufficient energy, building blocks for cell membranes, and signaling molecules necessary for invasion, metastasis, proliferation, and survival. Moreover, HPV proteins' stimulation of lipid production in infected cells will probably have a significant effect on oncogenesis. In addition, lipids are critical in producing cellular energy, the epithelial-mesenchymal transition (EMT) process, and therapy resistance of HPV-related cancers (HRCs). Therefore, lipids are essential in HPV infection and HRC development and may also be an important target for new approaches associated with treatments during HPV infection or cancer development. This review study looked at the role of lipids and lipid-lowering drugs in HPV and related cancers.
Collapse
Affiliation(s)
- Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Hasanzadi
- Department of Obstetric and Gynecology, University of Gilan, Rasht, Iran
| | | | | | - Riyad E Abed
- College of Health and Medical Technology, National University of Science and Technology, Nasiriyah, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shiva Khodarahmi
- Shahid Beheshti University of Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Sah S, Schwiebert EM, Moore SG, Liu Y, Gaul DA, Boylan KLM, Skubitz APN, Fernández FM. Metabolomics of Papanicolaou Tests for the Discovery of Ovarian Cancer Biomarkers. Metabolites 2024; 14:600. [PMID: 39590836 PMCID: PMC11596055 DOI: 10.3390/metabo14110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Ovarian cancer (OC) remains one of the most lethal cancers among women due to most cases going undiagnosed until later stages. The early detection and treatment of this malignancy provides the best prognosis, but the lack of an accurate and sensitive screening tool combined with ambiguous symptoms hinders these diagnoses. In contrast, screening for cervical cancer via Papanicolaou (Pap) tests is a widespread practice that greatly reduces the cancer's mortality rates. Interestingly, previous studies show evidence of OC cells in Pap tests, suggesting that proteins, and potentially lipids, shed from ovarian tumors end up in the cervix. The goal of this study is to evaluate the practicality of using Pap tests as biospecimens for OC-screening-related metabolomics. Methods: To evaluate the effectiveness of using residual Pap test samples as biospecimens for potential metabolomics work, 29 Pap test samples, collected from women over the age of 50 with normal cytology and no visible blood contamination, were first obtained from the University of Minnesota, with IRB approval. These samples were centrifuged to recover the cell pellets from the supernatants. The cell pellets underwent a biphasic extraction, followed by an RP-LC-MS analysis, while the supernatants underwent two separate extractions and analyses, including RP-LC-MS and HILIC-LC-MS. Non-targeted features were detected in the range of 220-1000 m/z to determine the sensitivity and scope of the various extraction and analytical workflows, as well as evaluating residual Pap test samples as viable metabolomics biospecimens. Results: The biphasic extraction and subsequent RP-LC-MS analysis of the isolated cell pellets from all 29 samples yielded informative, exploratory data, highlighting the potential of using residual Pap test samples as biospecimens for metabolomics, specifically lipidomics, studies. Each sample was analyzed in both the positive and negative ion mode, yielding the detection of 7318 in the positive ion mode and 3733 in the negative ion mode. Using multiple reference libraries, 22.85% and 36.19% of these features were annotated in the positive and negative ion mode, respectively. Among these detected features, 453 unique lipids, representative of 20 different lipid subclasses, were annotated in all 29 samples. Of the various lipid subclasses represented from the detected lipids, ceramides, triacylglycerols, hexosylceramides, and phosphatidylcholines contributed to over half (53.3%) of the detected lipids at 16.2%, 13.0%, 12.8%, and 11.3%, respectively. Conclusions: The detection of these 453 common lipids across all patients establishes a relative lipidome baseline for women over the age of 50 with normal cervical cytology. This exploratory study is the first investigation to utilize residual Pap test samples as biospecimens in a metabolomics/lipidomics workflow.
Collapse
Affiliation(s)
- Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30322, USA; (S.S.); (E.M.S.); (D.A.G.)
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA (Y.L.)
| | - Elisabeth M. Schwiebert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30322, USA; (S.S.); (E.M.S.); (D.A.G.)
| | - Samuel G. Moore
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA (Y.L.)
| | - Ying Liu
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA (Y.L.)
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30322, USA; (S.S.); (E.M.S.); (D.A.G.)
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA (Y.L.)
| | - Kristin L. M. Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (K.L.M.B.); (A.P.N.S.)
| | - Amy P. N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (K.L.M.B.); (A.P.N.S.)
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30322, USA; (S.S.); (E.M.S.); (D.A.G.)
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA (Y.L.)
| |
Collapse
|
4
|
Mwangi GF, Niyonzima N, Atwine R, Tusubira D, Mugyenyi GR, Ssedyabane F. Dyslipidemia: prevalence and association with precancerous and cancerous lesions of the cervix; a pilot study. Lipids Health Dis 2024; 23:3. [PMID: 38184564 PMCID: PMC10770978 DOI: 10.1186/s12944-023-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND In Sub-Saharan Africa, the prevalence of dyslipidemia is on the rise, with studies showing dyslipidemia as a contributing factor to the progression of premalignant lesions to cervical cancer. In Uganda, cervical cancer and dyslipidemia are common health concerns, considering the increasing trends of dyslipidemia in the general population and inadequate information regarding dyslipidemia and cervical lesions. This study aimed to determine the prevalence of dyslipidemia and its association with precancerous and cancerous lesions of the cervix among women attending a cervical cancer clinic at the Uganda Cancer Institute. METHODS This cross-sectional study was conducted from February to April 2022 among women with premalignant and malignant lesions of the cervix. Data on social demographics and health-seeking behaviours were collected using a pretested structured questionnaire after written informed consent had been obtained. Pap smear collection preceded visual inspection with acetic acid; cervical biopsies were collected appropriately from eligible participants; and cervical lesions were classified using the Bethesda system 2014. Serum lipids, total cholesterol (T.C.), high-density lipoprotein (HDLc), low-density lipoprotein (LDLc), and triglycerides (T.G.s) were analysed using the COBAS™ 6000 Clinical Chemistry Analyser. The associations were assessed using the chi-square test, and P ≤ 0.05 was considered statistically significant. RESULTS The overall prevalence of dyslipidemia among women with cervical lesions was 118/159 (74%), and low HDLc was the most prevalent at 64.6% (95% CI 39.0-54.3). High T.C. (P = 0.05), high T.G.s (P = 0.011), and low HDL-c (P = 0.05) showed a significant association with precancerous lesions. High LDL-c (P = 0.019), high T.G.s (P = 0.02), and high T.G.s (P < 0.001) showed a statistically significant association with cancerous lesions. CONCLUSION The prevalence of dyslipidemia was high, with high TC, T.G.s, and low HDL-c significantly associated with precancerous lesions. Also, elevated T.G.s and high LDLc were significantly associated with cancerous lesions. Women may benefit from dyslipidemia screening along with cervical cancer screening. WHAT THIS STUDY ADDS The present study builds upon previous findings suggesting a link between dyslipidemia and cervical lesions by investigating the relationship between these two factors, specifically in women of this geographical location, where we need adequate information on these associations.
Collapse
Affiliation(s)
- Gakii Fridah Mwangi
- Department of Medical Laboratory Science, Mbarara University of Science and Technology (MUST), P.O. Box 1410, Mbarara, Uganda.
| | - Nixon Niyonzima
- Uganda Cancer Institute (UCI), P.O. Box 3935, Kampala, Uganda
| | - Raymond Atwine
- Department of Pathology, Mbarara University of Science and Technology (MUST), P.O. Box 1410, Mbarara, Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology (MUST), P.O. Box 1410, Mbarara, Uganda
| | - Godfrey R Mugyenyi
- Department of Obstetrics and Gynecology, Mbarara University of Science and Technology (MUST), P.O. Box 1410, Mbarara, Uganda
| | - Frank Ssedyabane
- Department of Medical Laboratory Science, Mbarara University of Science and Technology (MUST), P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
5
|
Chen B, Wang Y, Wu Y, Xu T. Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells. Curr Cancer Drug Targets 2024; 24:987-1004. [PMID: 38284713 DOI: 10.2174/0115680096266981231215111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
High-risk HPV infection accounts for 99.7% of cervical cancer, over 90% of anal cancer, 50% of head and neck cancers, 40% of vulvar cancer, and some cases of vaginal and penile cancer, contributing to approximately 5% of cancers worldwide. The development of cancer is a complex, multi-step process characterized by dysregulation of signaling pathways and alterations in metabolic pathways. Extensive research has demonstrated that metabolic reprogramming plays a key role in the progression of various cancers, such as cervical, head and neck, bladder, and prostate cancers, providing the material and energy foundation for rapid proliferation and migration of cancer cells. Metabolic reprogramming of tumor cells allows for the rapid generation of ATP, aiding in meeting the high energy demands of HPV-related cancer cell proliferation. The interaction between Human Papillomavirus (HPV) and its associated cancers has become a recent focus of investigation. The impact of HPV on cellular metabolism has emerged as an emerging research topic. A significant body of research has shown that HPV influences relevant metabolic signaling pathways, leading to cellular metabolic alterations. Exploring the underlying mechanisms may facilitate the discovery of biomarkers for diagnosis and treatment of HPV-associated diseases. In this review, we introduced the molecular structure of HPV and its replication process, discussed the diseases associated with HPV infection, described the energy metabolism of normal cells, highlighted the metabolic features of tumor cells, and provided an overview of recent advances in potential therapeutic targets that act on cellular metabolism. We discussed the potential mechanisms underlying these changes. This article aims to elucidate the role of Human Papillomavirus (HPV) in reshaping cellular metabolism and the application of metabolic changes in the research of related diseases. Targeting cancer metabolism may serve as an effective strategy to support traditional cancer treatments, as metabolic reprogramming is crucial for malignant transformation in cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yishi Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Shao Y, Wang P, Zheng Y, Cui H, Lou Z, Li S, Huang F, Wu C. A replicative recombinant HPV16 E7 expression virus upregulates CD36 in C33A cells. Front Microbiol 2023; 14:1259510. [PMID: 37795297 PMCID: PMC10545859 DOI: 10.3389/fmicb.2023.1259510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023] Open
Abstract
Objective In past decades, the role of high-risk HPV (HR-HPV) infection in cancer pathogenesis has been extensively studied. The viral E7 protein expressed in pre-malignant cells has been identified as an ideal target for immunological intervention. However, the cultivation of HPV in vitro remains a significant challenge, as well as the lack of methods for expressing the HPV E7 protein and generating replication-competent recombinant viral particles, which posed a major obstacle to further exploration of the function and carcinogenic mechanisms of the E7 oncoprotein. Therefore, it is imperative to investigate novel methodologies to construct replication-competent recombinant viral particles that express the HPV E7 protein to facilitate the study of its function. Methods We initiated the construction of recombinant viral particles by utilizing the ccdB-Kan forward/reverse screening system in conjunction with the Red/ExoCET recombinant system. We followed the infection of C33A cells with the obtained recombinant virus to enable the continuous expression of HPV16 E7. Afterwards, the total RNA was extracted and performed transcriptome sequencing using RNA-Seq technology to identify differentially expressed genes associated with HPV-induced oncogenicity. Results We successfully established replicative recombinant viral particles expressing HPV16 E7 stably and continuously. The C33A cells were infected with recombinant viral particles to achieve overexpression of the E7 protein. Subsequently, RNA-Seq analysis was conducted to assess the changes in host cell gene expression. The results revealed an upregulation of the CD36 gene, which is associated with the HPV-induced oncogenic pathways, including PI3K-Akt and p53 signaling pathway. qRT-PCR analysis further identified that the upregulation of the CD36 gene due to the expression of HPV16 E7. Conclusion The successful expression of HPV16 E7 in cells demonstrates that the replicated recombinant virus retains the replication and infection abilities of Ad4, while also upregulating the CD36 gene involved in the PI3K-Akt signaling and p53 pathways, thereby promoting cell proliferation. The outcome of this study provides a novel perspective and serves as a solid foundation for further exploration of HPV-related carcinogenesis and the development of replicative HPV recombinant vaccines capable of inducing protective immunity against HPV.
Collapse
Affiliation(s)
- Yunting Shao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Peng Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yunji Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongtu Cui
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Zhangrong Lou
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
8
|
Raman Spectroscopy for Early Detection of Cervical Cancer, a Global Women’s Health Issue—A Review. Molecules 2023; 28:molecules28062502. [PMID: 36985474 PMCID: PMC10056388 DOI: 10.3390/molecules28062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
This review focuses on recent advances and future perspectives in the use of Raman spectroscopy for cervical cancer, a global women’s health issue. Cervical cancer is the fourth most common women’s cancer in the world, and unfortunately mainly affects younger women. However, when detected at the early precancer stage, it is highly treatable. High-quality cervical screening programmes and the introduction of the human papillomavirus (HPV) vaccine are reducing the incidence of cervical cancer in many countries, but screening is still essential for all women. Current gold standard methods include HPV testing and cytology for screening, followed by colposcopy and histopathology for diagnosis. However, these methods are limited in terms of sensitivity/specificity, cost, and time. New methods are required to aid clinicians in the early detection of cervical precancer. Over the past 20 years, the potential of Raman spectroscopy together with multivariate statistical analysis has been shown for the detection of cervical cancer. This review discusses the research to date on Raman spectroscopic approaches for cervical cancer using exfoliated cells, biofluid samples, and tissue ex vivo and in vivo.
Collapse
|
9
|
Barik AK, M SP, N M, Pai MV, Upadhya R, Pai AK, Lukose J, Chidangil S. A micro-Raman spectroscopy study of inflammatory condition of human cervix: Probing of Tissues and blood plasma samples. Photodiagnosis Photodyn Ther 2022; 39:102948. [PMID: 35661825 DOI: 10.1016/j.pdpdt.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
The present study explores the application of the micro-Raman spectroscopy technique to discriminate normal and cervicitis condition from cervical malignancy by analyzing the Raman signatures of tissues and plasma samples of the same subjects. The Raman peaks from tissue samples at 1026 cm-1,1298 cm-1 and 1243 cm-1 are attributed to glycogen, fatty acids and collagen and are found to be reliable signatures capable of identifying cervicitis and normal condition from cervical cancer. The Raman signatures from plasma samples belonging to carbohydrates (578 cm-1), lipids (1059 cm-1) and nucleic acids (1077 cm-1,1341 cm-1 and 1357 cm-1) are quite useful to classify various stages of cervix at par with tissue based diagnosis. The PCA-SVM based classification of the spectral data indicates the potential of Raman spectroscopy based liquid biopsy to rule out false diagnosis of cervicitis as cervical malignancy.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Muralidhar V Pai
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Abhilash K Pai
- Department of Data Science & Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
10
|
The impact of HPV infection on human glycogen and lipid metabolism - a review. Biochim Biophys Acta Rev Cancer 2021; 1877:188646. [PMID: 34763025 DOI: 10.1016/j.bbcan.2021.188646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Reinterpretation of the Wartburg effect leads to understanding aerobic glycolysis as a process that provides considerable amount of molecular precursors for the production of lipids, nucleotides and amino acids that are necessary for continuous growth and rapid proliferation characteristic for cancer cells. Human papilloma virus (HPV) is a number one cause of cervical carcinoma with 99% of the cervical cancer patients being HPV positive. This tight link between HPV and cancer raises the question if and how HPV impact cells to reprogram their metabolism? Focusing on early phase proteins E1, E2, E5, E6 and E7 we demonstrate that HPV activates plethora of metabolic pathways and directly influences enzymes of the glycolysis pathway to promote the Warburg effect by increasing glucose uptake, activating glycolysis and pentose phosphate pathway, increasing the level of lactate dehydrogenase A synthesis and inhibiting β-oxidation. Our considerations lead to conclusion that HPV is substantially involved in metabolic cell reprogramming toward neoplastic phenotype and its metabolic activity is the fundamental reason of its oncogenicity.
Collapse
|